Magneto-Mechanical Coupling of an Electric Motor with Isogeometric Finite Elements

Bachelor thesis

The need for higher energy efficiency and decarbonization give rise to a steadily increasing importance of electric drives. Simulations allow the physical limits to be pushed in order to increase the power density and make motors more cost-efficient. This work aims to investigate the influence of mechanical stresses in electric motors on the electromagnetic behavior and find out how stress dependent material properties can be mitigated or exploited. Simulations are performed in an Finite Element (FE) framework using Isogeometric Analysis (IGA), which allows to exactly represent the geometry. This enables an efficient coupling of the geometric, magnetic and mechanical systems.