Projekte

REACT-EU

Früherkennung von Atemwegserkrankungen mittels Infrarotthermographie und KI-Methoden

Häufige Symptome der Covid-19 Erkrankungen sind Fieber und die Beeinträchtigung der Atemwege, welche sich durch Husten oder Veränderungen der Atemmuster (z.B. beschleunigte, flache Atmung) ausdrücken. Beides lässt sich mittels kontaktloser Sensorik aus der Entfernung detektieren. Besondere Bedeutung kommt hierbei der Infrarotthermographie zu: Diese ist unabhängig von der Beleuchtung und der visuelle Eindruck der Thermographie unterscheidet sich stark von Videoaufnahmen im sichtbaren Bereich. Dies erleichtert die Anonymisierung und verbessert die Nutzerakzeptanz, was die Anwendung im öffentlichen Raum ermöglicht. Im Rahmen des Projektes sollen Methoden der künstlichen Intelligenz entwickelt werden, welche die Früherkennung von Covid-19 Erkrankungen aus Infrarotthermographiedaten ermöglicht.

Dieses Projekt wird aus Mitteln des Europäischen Fonds für regionale Entwicklung als Teil der Reaktion der Union auf die COVID-19-Pandemie finanziert.

NeuroRehaBot

KI-basierte Mensch-Maschine-Interaktion in der Neurorehabilitationsrobotik

Schlaganfall und Rückenmarksverletzungen gehören zu den Hauptursachen für langfristige körperliche Behinderungen bei Erwachsenen. Jedes Jahr überleben etwa 10 Millionen Menschen einen Schlaganfall, der teilweise gravierende Schäden im zentralen Nervensystem (ZNS) hinterlässt. Das Ziel der Neurorehabilitation besteht darin, die Funktionsfähigkeit nach einer Schädigung des ZNS durch intensive Physiotherapie zu verbessern. Wie in vielen Bereich spielt auch hier KI/Robotik eine immer größere Rolle, sei es in der Grundlagenforschung zum Verständnis der Funktionserholung nach Schlaganfall, oder z.B. als angewandte KI-Forschung im Bereich der robotergestützten Telerehabilitation. Im Rahmen von NeuroRehaBot wird ein CoBot angeschafft und als Demonstrator für KI in der Neurorehabilitation im Bereich der oberen Extremitäten in Betrieb genommen werden. Der Demonstrator bietet die Grundlage für gemeinsame Forschungs- Publikations- und Antragsaktivitäten der hessian.AI-PIs Peters (IAS) und Hoog Antink (KIS*MED). Er soll darüber hinaus im interdisziplinären Medizintechnik-Studiengang genutzt werden um Medizintechniker:innen für KI und Robotik zu begeistern.

BYouTrain

Biomechanisch informiertes, vertrauenswürdiges maschinelles Lernen aus sozialen Videoplattformen zur Überwachung von körperlichem Training

Soziale Videoplattformen wie YouTube sind eine beliebte Quelle für das Erlernen verschiedener Fähigkeiten, einschließlich körperlicher Übungen. Wir wollen ein System entwickeln, das diese reichhaltige Informationsquelle nutzt, um Nutzerinnen und Nutzern zu helfen, Übungen richtig auszuführen. Wir wollen erreichen, dass die Maschine automatisch aus der „Weisheit der Massen“, die in sozialen Videoplattformen enthalten ist, lernt, was eine korrekt ausgeführte Übung ist. Zu diesem Zweck schlagen wir einen auf Biomechanik basierenden Ansatz für maschinelles Lernen vor. Durch die Verschmelzung von Bildverarbeitung, biomechanischer Modellierung und maschinellem Lernen wird das System auf aussagekräftigen biomechanischen Parametern beruhen und somit effizient sein, sowohl was den Rechenaufwand als auch die benötigten Daten angeht. Vor allem aber wird es intrinsisch erklärbar sein und somit in der Lage sein, die Qualität von Übungen zu klassifizieren und Empfehlungen auf vertrauenswürdige Weise zu geben. In diesem interdisziplinären Projekt wird KIS*MED seine Expertise in den Bereichen Kamerabasierten Bewegungserfassung, Signalverarbeitung und maschinelles Lernen einbringen, während das Lauflabor seine Expertise in den Bereichen biomechanische Modellierung, Sportwissenschaft und Aufzeichnung menschlicher Bewegung beisteuern wird. Das Projekt wird gefördert vom FiF – dem Forum interdisziplinäre Forschung.

YLSY-Stipendienprogramm

Yurt Dışına Lisansüstü Öğrenim Görmek Üzere Gönderilecek Adayları Seçme ve Yerleştirme

YLSY (“Auswahl und Vermittlung von Kandidaten, die für eine postgraduale Ausbildung ins Ausland geschickt wurden”) ist ein offizielles Stipendium, das vom türkischen Bildungsministerium angeboten wird, um qualifizierte Postgraduierte für öffentliche Ämter und Behörden auszubilden.

Am KIS*MED ist Gökhan Güney ein YLYS-Stipendiat und Promotionsstudent. Seine Arbeit konzentriert sich auf die durch künstliche Intelligenz unterstützte Analyse menschlicher Zustände in einem breiten Spektrum, einschließlich, aber nicht beschränkt auf die Handbewegungen und Augenblinzelreflexe von Parkinson-Patienten und die emotionalen Zustände gesunder Menschen.

mSimCam

Eine multimodale Simulationsumgebung für kamerabasierte Erfassung kardiorespiratorischer Aktivität (HO 6691/1-1)

Ein beliebtes Motiv vieler Zukunftsszenarien ist der Arzt, der kontaktlos einen Patienten abscannen und damit unmittelbar dessen gesamten Gesundheitszustand erfassen kann. In der Praxis zeigen sich kamerabasierte Verfahren als vielversprechende Ansätze, sich dieser Vision anzunähern. Insbesondere zur Überwachung der Atmung und des Pulses wurde bei KIS*MED dazu bereits an Techniken geforscht, welche unter optimalen Bedingungen Pulsrate und Atemrate mittels Kameras erfassen. Um die Weiterentwicklung voranzutreiben, wird eine Vielzahl möglichst diverser Datensätze benötigt.

Die große Herausforderung ist jedoch, dass Kamerabilder geschützte Patienteninformationen darstellen, quasi nicht zu anonymisieren und deshalb schwierig unter verschiedenen Forschungsgruppen zu teilen sind. Weiterhin existieren für viele Krankheitsbilder, wenn überhaupt, nur sehr wenige Messdaten, die nicht für die Evaluierung existierender Algorithmen ausreichen. Daher hat das DFG-geförderte Projekt zum Ziel eine Simulationsumgebung zu schaffen, welche synthetisch Videodaten von realistischen Avataren generieren kann, die relevante kardiorespiratorische Aktivität aufweisen. An diesen Daten können in der Folge nicht nur neuartige Algorithmen getestet werden und z.B. tiefe neuronale Netze trainiert werden, sondern sie ermöglichen erstmals einen einfachen Austausch zwischen internationalen Forschergruppen.

Serious Games for smart medication

In diesem vom hessischen Digitalministerium geförderten Projekt wollen wir gemeinsam mit der smart medication eHealth Solutions GmbH Methoden und Konzepte entwickeln, wie wir mit KI und nichtstörender Sensorik eine quantitative und qualitative Bewegungsanalyse von physiotherapeutischen Übungen für Menschen mit Hämophilie vornehmen können.

Hämophilie (auch Bluterkrankheit genannt) ist eine vererbbare seltene chronische Erkrankung, bei der die Blutgerinnung gestört ist. In Deutschland sind ca. 4.000 Menschen von schwerer Hämophilie betroffen. Bei Menschen mit Hämophilie können spontane Blutungen, selbst ohne Verletzungen und trotz Therapie, am ganzen Körper auftreten. Gelenke, insbesondere Sprunggelenke, Knie und Ellbogen, sind dabei besonders oft betroffen und ihre Beschädigung kann zu Schmerzen, einer eingeschränkten Beweglichkeit und im weiteren Verlauf zur Gelenkzerstörung führen. Patient*innen werden deshalb häufig orthopädisch und physiotherapeutisch behandelt. Ziel ist dabei die Mobilität der Gelenke aufrechtzuerhalten.

Die Therapieadhärenz stellt bei chronischen Patient*innen, insbesondere bei Jugendlichen in der Pubertät, immer eine Herausforderung in der Behandlung dar. Für das (Tele-)Monitoring und für die Therapie werden seit einigen Jahren digitale Lösungen wie elektronische Tagebücher im Sinne einer Digitalen Gesundheitsanwendung mit Medical-Apps eingesetzt. Zudem werden mit Hilfe von Fitness-Trackern und Smartwatches allgemeine Ansätze für das Aktivitäts-Monitoring verfolgt. Der Nachteil dieser Ansätze ist, dass damit keine differenzierte Erfassung der Bewegung mit qualifizierten Aussagen über Bewegungsabläufe einzelner Gelenke möglich ist.

Basierend auf dieser Situation möchten wir gemeinsam mit der smart medication eHealth Solutions GmbH als etablierter Branchenkenner Methoden und Konzepte entwickeln, die unter Nutzung von KI (Machine Learning) und nicht störender Sensor-Technologie (Kamera, Wearables) eine derartige qualitative und quantitative Bewegungsanalyse ermöglichen. Des Weiteren sollen mit der Serious Games Group der TU Darmstadt (PD. Dr. Stefan Göbel) Konzepte und Gamification Prinzipien erarbeitet werden, die zielgerichtet personalisierte (Physio-)Therapieprogramme unterstützen und spielerisch zur Steigerung der Therapieadhärenz beitragen.

KEPRAS – Kontaktlose Evaluierung Physiologischer Reaktionen auf Akustische Stimuli

Lärm im Alltag gehört zu den häufigsten Belastungen des modernen Lebens. Während Schäden am Gehör durch sogenannte aurale Lärmwirkungen bereits gut erforscht sind und in der Regel durch geeigneten Gehörschutz verhindert werden können, stellt extra-auraler Lärm ebenfalls einen bewiesenen Faktor für die Beeinträchtigung der Lebensqualität dar. Extra-auraler Lärm bezieht sich auf vergleichsweise „leise“, aber dauerhaft wirkende Lärmquellen, die häufig als „Stress-Lärm“ bezeichnet werden. Der dadurch verursachte Stress zeigt sich oft durch Veränderungen verschiedener Vitalparameter wie Herzfrequenz, Atemfrequenz oder erhöhte Schweißproduktion.

Da extra-auraler Stress uns im Alltag häufig begegnet, ist es vorteilhaft, diesen nicht-invasiv mittels kamerabasierter Technologien zu erfassen. Ziel des Projekts KEPRAS ist die möglichst präzise Erfassung unterschiedlicher Vitalparameter des Körpers als Reaktion auf akustische Reize. Aus diesen Daten soll eine dynamische Bewertung der Stressreaktionen des Körpers abgeleitet werden.

Anwendungsmöglichkeiten dieser Forschung finden sich sowohl im Alltag, etwa am Arbeitsplatz oder im Auto, als auch bei Personen, die nicht in der Lage sind, ihre Stresssituation verbal zu äußern, wie Neugeborene, Personen mit Demenz oder Behinderungen.

Dieses Projekt wird von der HEAD-Genuit-Stiftung finanziert.