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Abstract

The assessment of human movements in the context of medical treatments has become
increasingly popular in recent years due to progress in the estimation of human poses.
This work demonstrates the development of the Motion Quality Assessment (MoQuA)
algorithm, which assesses recorded sports exercises from two camera perspectives. The
objective is to provide feedback on the quality of exercise performance. Using MediaPipe,
human pose estimation (HPE) is conducted from both camera perspectives, and the
resultant data is subsequently filtered, fused, and normalized to ensure consistency and
accuracy. The precision of the position estimation is validated by comparison with a
Motion Capture suit. As a result of the fusion of the two data sources, an improvement in
the estimate of 18.49% is achieved. Based on the coordinates, further relative features,
such as angles, are determined. The quality of movement is assessed by comparing the test
movement with a ”Golden Standard” through multidimensional Dynamic Time Warping
(mDTW). The determination of whether the exercise has been performed correctly is
made through a classification process for which a wide range of models were trained. A
decision tree, identified as the best model, achieves an accuracy of 91.7%. The traceability
and importance of the features are evaluated by using Explainable Artificial Intelligence
(XAI), including Local Interpretable Model-agnostic Explanations (LIME) and SHapley
Additive exPlanations (SHAP). Finally, feature importance is used to identify the limb that
causes the errors. The MoQuA algorithm demonstrates the capability to reliably classify a
wide range of exercises with a small dataset.
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1. Introduction

1.1. Motivation and background

In modern medicine, physiotherapy plays a key role in the treatment and rehabilitation
of a wide range of diseases and physical complaints. Its practice extends from sports
injuries to chronic diseases such as osteoporosis, Parkinson’s disease [1] and arthritis [2].
Physiotherapeutic treatment mainly involves direct interaction between the patient and a
physiotherapist, where the therapist guides exercises or performs massages and manual
therapies. The direct interaction ensures that the treatment is supervised by medically
trained humans, which is essential for guaranteeing correct exercise performance and,
consequently, the success of the therapy [3].

The healthcare system faces the dilemma that the financial costs for regular sessions with
professional physiotherapists often face a significant limitation. Statistics are showing
this by the fact that in the period from 2010 to 2022, statutory health insurance (SHI)
expenditure in Germany increased by around 41% when adjusted for inflation. In addition,
the share of physiotherapy costs in SHI expenditure rose from 2.12% to 2.85%, which
highlights the increasing relevance of cost expenditure [4, 5]. Patients also carry out their
therapeutic exercises independently at home as an integral part of the therapy. While
this self-management of treatment may represent a cost-efficient part of physiotherapy, it
carries considerable challenges and risks, especially for individuals lacking prior athletic
experience or knowledge of body mechanics. The autonomous performance of therapeutic
exercises without expert supervision and guidance can lead to difficulties in ensuring the
correct technique. The absence of external correction mechanisms, such as mirrors or
direct feedback from a therapist, makes it challenging for patients to practice their posture
and movement exercises correctly. This can be problematic since individuals without ex-
perience in physical exercises often lack the capability to identify critical mistakes in their
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technique independently. The risk of incorrect performance of exercises at home is substan-
tial and can lead to a deterioration of therapeutic outcomes [6]. Incorrect movements can
not only slow down or stop the healing process but also increase the risk of injuries, which
in turn may extend the rehabilitation period and potentially lead to an increased need
for medical intervention [7]. The previously described challenges highlight the impor-
tance of devising strategies that enhance the accuracy of home-based therapeutic exercises.

A promising approach to overcome the challenges associated with the independent per-
formance of physiotherapeutic exercises lies in developing and implementing automatic
assistance systems. These innovative technologies have the potential to fundamentally
change the dynamics of home therapy by providing real-time monitoring and precise
feedback on the quality of exercise practice. Such systems not only enhance the effec-
tiveness of home therapy but also significantly reduce the risk of injuries that could arise
from incorrect exercise practice. To use this technology as a real option for assistance,
it is essential that the support system is designed to be cost-efficient and easy to use.
This includes broad availability and adoption, creating an affordable extension to on-site
therapy sessions accessible to a wide range of patients. Moreover, these systems must
be highly user-friendly. The automatic assistance systems should be designed in a way
that they can be easily used by individuals with limited technical knowledge or by those
with little experience with performing physiotherapeutic exercises. Intuitive operation
and accessibility are key elements that ensure all patient groups can benefit from the
advantages of this technology. Another important aspect for the development of such
assistance systems is the ability to operate with a minimal set of basic data. Considering
the potential complexity and significant effort associated with large-scale data collection
and processing, these systems should be capable of effectively learning and adapting based
on a limited amount of initial data. By utilizing advanced machine learning (ML) and
artificial intelligence (AI) algorithms, these systems could continuously learn from user
interactions, thereby improving their accuracy and effectiveness over time without the
need for extensive pre-programming or manual data entry. In summary, the development
of automatic assistance systems for home physiotherapy exercises holds the potential to
revolutionize the quality and safety of exercise performance. By combining cost-efficiency,
user-friendliness and the ability to operate on minimal basic data, such systems can achieve
broad acceptance and make a significant contribution to improving healthcare provision
and the quality of life for patients.
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1.2. Objective and organization of research

The primary objective of this work is to conceptualize and develop a support system for
motion analysis, considering the main aspects presented in the previous section. In the
beginning, a scenario is defined for the training of the Algorithm wherein the patient is
recorded with two cameras from two perspectives. From both perspectives, an estimate
of the human pose is made. The test patient is also equipped with a Motion Capture suit
(MoCap suit) that determines posture data based on inertial sensors. This data has a low
error rate and is therefore used to provide control data to assess the accuracy of human
pose estimation (HPE) [8]. Given the progress in computer science in recent years, robust
algorithms for position determination are now available. MediaPipe was chosen because
of its high balance between calculation time and estimation quality [9]. Furthermore, the
estimates of posture will synchronize and normalize and improve their accuracy through
filtering techniques and sensor fusion. Subsequently, a procedure for extracting significant
features will be used, utilizing the Dynamic Time Warping (DTW) algorithm to work
with minimal data. A multitude of relative features will be computed to identify which
features are particularly informative. The determined features are supposed to be used
to train a classification algorithm. This classifier is expected to autonomously identify
informative features and analyze the classifier through Explainable Artificial Intelligence
(XAI) methodologies. The importance of features will be utilized to understand the
individual decisions of the classifier. Based on the evaluation of the importance of the
features, the limb responsible for the error is identified. For user accessibility and clinical
application, simple cameras, like webcams, are intended to maximize user-friendliness
and facilitate access for a broad patient group. Furthermore, it is expected that no MoCap
suit will be required after the development is completed. This means video recordings
alone are sufficient for the motion assessment. The overall aim is to develop technologies
that are advanced in their capabilities and integrative in their user-friendliness in order to
make state-of-the-art healthcare solutions accessible to a diverse group of patients.

Based on the objectives mentioned, this work is structured as described in the following.
Chapter 2 begins with a compilation of the current state of the art. It discusses the
achievements and methods relevant to this work and analyzes the milestones achieved so
far. It tries to identify gaps in the current research and describes how this work attempts
to offer a new perspective compared to existing research. Subsequently, the focus shifts to
HPE as a basis for converting video material to positional data about the human body. The
functionality of pose estimation is explained, and various existing models are compared.
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Chapter 3 shows the development of the Motion Quality Assessment (MoQuA) algorithm.
The chapter begins with a detailed description of data collection, specifying the dimension
of the dataset used, the experimental setup and the performance of data acquisition.
Followed by a description of data collection processes and a comprehensive overview of
the structure and core components of the MoQuA algorithm. This overview incorporates
key aspects of HPE, coordinate processing, feature extraction using DTW, classification
and the approach of XAI. These components constitute the framework of the algorithm
and are explored in terms of their interdependence and their contribution to the overall
performance of the algorithm. Subsequent sections of the chapter are dedicated to a
detailed mathematical explanation of each step within the MoQuA algorithm.

The developed MoQuA algorithm is thoroughly assessed and debated in Chapter 4. The
first Section 4.1 is about the accuracy of the HPE, which is an important factor for the
precision of the entire system. The quality of the HPE is validated by comparing the
determined positional values with those obtained through a high-precision MoCap suit. By
using relative features such as hip width as a basis for comparison, a detailed assessment
of the algorithm’s performance in terms of the accuracy of posture estimation is performed.
A significant section of the evaluation deals with improving feature extraction, with a
particular focus on the application of various fusion techniques. These techniques aim to
combine data from different camera perspectives to enable a more comprehensive and
precise capture of movement features. Another key aspect of the evaluation, described in
Section 4.2, is optimizing classification performance. For this purpose, features generated
by DTW are used to train and evaluate various machine-learning models. The methods
considered include Linear Regression, Decision Trees, Random Forest, Support Vector
Machines (SVM), and Artificial Neural Networks (ANN). These different approaches are
tested for their effectiveness in order to choose the model with the highest accuracy. In the
next part of the evaluation (Section 4.3), the explainability of the models is examined using
techniques such as LIME (Local Interpretable Model-agnostic Explanations) and SHAP
(SHapley Additive exPlanations). These methods contribute to the transparency of the
decision-making processes by indicating which features have the greatest impact on model
predictions. The resulting feature importance is used to precisely detect limbs which cause
errors in the execution of the exercise. The determined feature importance contributes to
understanding the model’s functionality and increases confidence in the accuracy of limb
detection and classification. Finally, Section 4.4 summarises the evaluation.

The final Chapter 5 focuses on a comprehensive summary and conclusive evaluation of the
entire outcomes. It offers a reflection on the implications and significance of the findings
applying them in a broader field. It concludes with an outlook for future research.
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2. Theoretical background

This chapter reviews the progress and methodologies in human movement analysis. It
recaps the evolution of motion quality assessment technologies, includingmachine learning
and motion capture, to highlight the challenges and advancements in making these
analyses more accurate and accessible. The chapter examines related works and sets the
groundwork for developing innovative solutions in physiotherapy motion analysis.

2.1. Related work

The analysis of human movements has become increasingly important in recent years due
to new technical possibilities and ever-increasing demand in the field of fitness, rehabilita-
tion and preventive actions [10]. The published research pursues different perspectives
and can be divided into two main categories: the recognition of human movements
and the evaluation of the quality of human movements. These two research directions
are closely linked, as accurately recognising movements is a fundamental prerequisite
for subsequent qualitative assessment [11]. This work focuses mainly on the area of
motion quality assessment. This implies a trajectory-based human movement analysis to
identify and evaluate deviations from a defined standard or norm. Trajectories define
the path curves representing the route of a moving object over time. In biomechanics,
they specifically describe the paths that a human or a part of their body follows during
movement, mapped as a function of time. The analysis of motion quality is of essential
importance for the development of targeted rehabilitation measures or the improvement
of physical performance [12]. Human Motion Quality Assessment (HMQA) has been
applied in various fields, such as sports training programmes [10], competitive sports
assessment systems [13], motor rehabilitation [12], medical diagnostic procedures [14],
educational performance assessment [15] and ergonomic risk analysis [16]. Even though
the subject areas are different, they are suitable for transfer to physiotherapy exercises
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due to the similarly abstract task of estimating and comparing movement trajectories.

Exercise is characterized as a deliberate and systematic movement aimed at improving or
sustaining physical fitness. It encompasses activities like body conditioning and sports
and is intentional, structured, and often repetitive, designed to achieve a particular fitness
goal [17, 18]. HMQA describes such procedures for the assessment of these exercises.
Healthcare professionals usually perform these for medical purposes, and sports trainers
ensure correct movement execution. The professionals can support the development of
automated assessment methods and increase the data quality through their expertise [19].

Historically, HMQA has utilised rule or template-based methods. Rule-based methods
assess motion through set conditions, such as joint angles [20], while template-based
methods, DTW [21], match patterns against established motion recordings. In some
cases, a combination of the two methods is also used. These methods are easy to imple-
ment and can be used in real-time because they follow clearly defined calculation rules,
and the operators used can be calculated quickly. An improvement could generally be
achieved by additionally using ML methods [22]. Figure 2.1 shows the abstract schematic
representation that most models implement. There may be deviations, for example, the
omission of individual steps [11]. The following is a brief description of the steps and
their individual uses.

The initial step in the standard process is typically the collection of data, which is defined
by the dynamics of movement. There are primarily two categories of data collection:
those based on inertial sensors and those reliant on optical capture. The most widely
utilized method involves MoCap suits, wherein subjects wear suits equipped with sen-
sors that measure acceleration. Another commonly used approach is based on optical
systems, primarily cameras, as utilized in this thesis. The preference for MoCap suits
stems from their significantly lower data noise levels compared to data obtained from
camera-based systems. The disadvantage, by contrast, is that such a suit is expensive
and rarely available and therefore not user-friendly. Regardless of the chosen method,
three-dimensional data points (x, y, and z) for various keypoints of the body are out-
put as a time series. This point, therefore, represents a coordinate. The measurements
invariably contain inaccuracy, necessitating filtering methods to enhance data quality [23].

Following the collection of motion capture data, the next step typically involves data
normalization, which ensures the comparability of the data. The reasons for this are
differences in physique as well as errors in the measurement. There are two types of
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Figure 2.1.: The abstract representation of a human movement analysis. It shows the complete
process from data collection to prediction by [11]. This process involves multiple steps:
data gathering, preprocessing (which includes filtering, segmenting, and normalizing
data), extracting and engineering features, selecting those features, building the
machine learning model, and finally, validating and evaluating the model.

normalization: spatial, which aligns data to a consistent coordinate system and plane, and
temporal, which adjusts the duration of data segments to a uniform length. Spatial nor-
malization is essential for accurate representation of the human skeleton in assessments.
Temporal normalization is important for compatibility with certain machine-learning
algorithms like CNNs but may alter the original time-series data. Despite being time-
consuming, preprocessing is necessary as it enhances the accuracy of the assessment by
standardizing the input data, making it more amenable to analysis. Each application
should carefully consider the necessity and extent of these preprocessing steps [19].

The next step is the feature extraction. Different approaches are used in related work,
and the most commonly used ones are described in the following. A fundamental feature
extraction approach involves utilising each joint’s raw data from the recorded signals as a
feature vector (e.g., the values of the three axes (X, Y, Z) of a triaxial accelerometer can
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serve as features over time). These feature vectors encapsulate all time series data from
an exercise execution and serve as inputs for ML algorithms. Another method involves
applying various statistical/aggregating functions (e.g., minimum, mean, and standard
deviation) that provide descriptive statistics for the time series and are utilized as fea-
tures. These features are often used with shallow ML algorithms [24]. In addition to
the previous methods, feature construction transforms features into different and more
efficient representations or dimensions while retaining the expressive power of the original
features. Various techniques are employed for such transformations, leveraging differ-
ent properties of the data. One approach is the application of dimensionality reduction
algorithms (e.g., principal component analysis), which capture large variations in the
data and omit invariant aspects. Another strategy is transfer learning, which converts
features into a format that has been used successfully in other areas. For example, a set
of feature vectors representing time series values can be converted into an RGB image,
with each column representing a skeletal joint, the rows representing time points, and
the RGB values representing the position of (x, y, z) of a joint that features at that time.
This generates a heatmap. The trained model may be applied backwards to predict the
location [25]. Another frequent transformation for skeletal data is to convert it into a
graph that may represent the connection of the joints in the human body. This allows
features to be extracted using a graph convolutional network (GCN). This increases the
performance of the classifiers [26].

High-dimensional features increase the complexity and accuracy of the ML model. There-
fore, to reduce complexity, the extracted features should be selected instead of using
all to develop the model. This may be particularly necessary for more complex systems
that use multiple input devices and modalities and may contain features irrelevant to the
performed movements. In simple cases, this process can be manually performed based
on empirical knowledge. However, various algorithms for feature selection have been
proposed to choose optimal feature sets. Feature selection algorithms are divided into
unsupervised and supervised algorithms. Unsupervised algorithms may use correlation
analyses or clustering techniques to identify redundant features. Supervised algorithms
are typically categorized into wrapper techniques (e.g., sequential algorithms and genetic
algorithms), filter techniques (e.g., correlation criteria and mutual information), and
embedded techniques that select features during the training of the model (e.g., Random
Forest (RF)) [27].

The extracted features or data series are classified according to their application in the
final part. A wide range of classification methods is applied across different studies, from
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simple decision trees to complex neural networks and ensemble methods. Many studies
address the challenge of limited datasets Khan et al. [28], which increases the likelihood
of overfitting. Therefore, particular attention is paid to ensuring a clean split between
training and test datasets. This is only a brief overview. Chapter 3 provides a more detailed
overview of current methods and their applications in this work.

An exemplary instance of a comprehensive system utilizing a MoCap suit is showcased in
[29]. Here, position data is sourced from a Tesla Suit, which concurrently facilitates the
provision of haptic feedback. A probabilistic model for each exercise is initially developed
and then compared with the real-time execution variant. This paper also undertakes an
exercise classification followed by segmentation into individual exercises. It was possible
to provide immediate feedback during execution, signifying not only the identification
of erroneous executions but also the detection of three distinct error types. A Support
Vector Machine (SVM) was employed for the classification purpose. The limitation of this
study arises from a small dataset. The system’s efficacy was rated at 86% for classification
and up to 99% for segmentation. A challenge identified is the difficulty in recognizing
variations in the execution speed of exercises, indicating that exercises must be performed
at a similar speed for the model to recognize them effectively. This problem has not been
solved. This limitation highlights that, although haptic feedback is readily provided, its
contribution to performance improvement could not be evaluated. Additionally, applying a
MoCap suit poses a significant barrier to entry for users. Overall, this paper demonstrates
the feasibility of evaluating exercises through position data and error detection.

With advances in computer vision technology, studies have started to utilise optical sensors
in the form of cameras in addition to inertial sensors. Although error assessment is still in
its infancy, recognising specific exercises and counting repetitions is already being carried
out successfully. It is shown by these developments that an era is being approached
where the assessment and improvement of human movement using camera-based tech-
nology can rival that of inertial sensors [30]. Various methods are used, with the use of a
sequence-to-sequence autoencoder being emphasised in Jain and Harit [31]. This is based
on videos recorded by experts in order to simulate the possible movement dynamics. The
discrepancy between the sequenced movement and the actual video is then measured.
However, this method was only evaluated on the basis of a sun salutation exercise, where
it was applied relatively successfully. Nevertheless, it was impossible to identify where
exactly the error in the execution of the movement was, which meant that no concrete
feedback was provided. This is due to the fact that the autoencoder provides an overall
output, and individual body points were not considered separately.
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In Chariar et al. [32], the MediaPipe framework is used to estimate the positions and then
a Long Short-Term Memory (LSTM) network is used to determine the type of squat. This
recognises that each person performs squats differently and suggests the most appropriate
variation based on optimal posture. A distinction is made between seven different types
of execution. This suggests a form of abstract error detection and suggestions for im-
provement, although these are generalised as they relate exclusively to different types of
execution. A high accuracy of 94.6% was achieved for this specific use case, although this
model is limited solely to squats. In Lei et al. [33], the estimation of joint features from
data is performed, but only two-dimensional data is utilized. This introduces a challenge
in segmenting longer sequences, as the analysis focuses on performances within sports
rather than on specific sports exercises. In related applications, movement is fragmented
into individual segments and normalised over time, which also enables comparability [34].
Recent research has begun to employ motion assessment methods based on metrics derived
from posture estimation, such as angles [35] and the DTW technique for performance
assessment. Examples of such research differentiate merely between ”good” and ”bad”
performances without providing detailed error descriptions [36–38]. In one of the most
recent studies, a similar method of posture estimation and feature extraction of derived
quantities and the use of DTW for error correction was used. This method was then
tested to see to what extent it actually improves execution quality. It was observed that
the execution quality of older people was significantly improved by the system, which
indicates that the development of such a system is reasonable [39].

These studies present some of the most successful methodologies, acknowledging that
numerous other methods have been partially explored. Two comprehensive literature
reviews provides an overview of all related works and methodologies [11, 12]. It was
discovered that comparing these methods presents significant challenges. This difficulty
arises partly because some systems were tested using only specific exercises and due to
varying definitions of error detection and correction. Additionally, the comparability is
further limited because the datasets and models used are often not publicly available, and
a unique dataset has been created. While there are some public databases, they were
generally not designed to correct sports exercises, making them only marginally useful.
The diversity in error definitions and using different performance metrics also significantly
restrict comparability. This work aims to bridge the gaps identified in previous studies and
to view them within a unified context. This entails disregarding the speed of executions
and focusing on the applicability to a wide range of exercises, as well as a more precise
error localization on a segmental body group level, utilizing simple sensory technology,
namely cameras.
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2.2. Human pose estimation

One of the fundamental components of HMQA is obtaining the appropriate data foun-
dation. This section deals with the methods available for deriving data points from
individual images, which form a temporal trajectory of data points when sequenced from
a video containing multiple frames. Initially, the section addresses these methods’ general
principles and variations, subsequently describing some of the most widely adopted and
specifically trained models. It evaluates which model is chosen for this work, notably the
BlazePose model, utilised within Google’s MediaPipe library. Other methodologies are
briefly outlined, while BlazePose receives a more detailed examination. The conclusion
thoroughly justifies selecting the BlazePose model, drawing on comparisons, strengths,
and weaknesses identified in existing literature.

The selection of the BlazePose model over others is predicated on its superior accuracy,
speed, and robustness in various conditions, as established by comparative literature.
This evaluation considers not only the technical capabilities of the models but also their
applicability to real-world scenarios, emphasizing the importance of precision in human
posture estimation. The choice is further supported by BlazePose’s integration within the
MediaPipe framework, which offers a comprehensive toolset for real-time, cross-platform
application development. This decision carefully considers the model’s advantages, in-
cluding its ability to generate high-fidelity posture estimations from video data, thereby
enhancing the analysis and understanding of human motion.

2.2.1. Overview

Estimating human pose, which aims to predict the positions of joints in a human body
based on an image or video of the individual, has become a widely pursued aim in
computer vision in recent years. These endeavours, known as Human Pose Estimation
(HPE), provide critical geometric and kinematic information about the human figure
and facilitate a multitude of applications ranging from human-computer interaction and
motion analysis to augmented reality (AR), virtual reality (VR) and healthcare [40].
Described in the following and shown in Figure 2.2 are the three most commonly used
body model types in HPE: skeleton-based, contour-based and volume-based models.

Skeleton-based models represent the human skeleton with joints and associated limbs
represented as simple graphs. They are known for their simplicity and flexibility but do
not contain any texture or contour information about the body. Contour-based models
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Figure 2.2.: The three most common body model types: skeleton-based model (a); contour-based
model (b); volume-based model (c) by [41]

provide a rough representation of the body shape and outline by mapping body parts
through geometric shapes such as rectangles or through the silhouette of a person. They
have been used in previous HPE methods and include models such as cardboard mod-
els and Active Shape Models (ASMs). Volume-based models represent 3D body shapes
and postures using geometric shapes or mesh structures. Volumetric models in HPE
enable a more precise and comprehensive capture of the three-dimensional structure of
the human body, leading to improved accuracy in analysis and application. However,
the main drawback is the high computational power and data processing requirements,
which increase the cost and complexity of the technology. These are often obtained from
3D scans and include modern models such as SCAPE, SMPL and uniform deformation
models [41]. As the selected approach in this thesis compares trajectories, skeleton-based
models are chosen because they provide a compact and efficient representation of human
motion by reducing the complexity of keypoints and their connections, which facilitates
the analysis of motion trajectories. They are robust to external influences such as illumi-
nation changes and background variations as they directly capture the structure of the
human body. Thanks to advanced deep learning techniques and the recent accumulation
of extensive datasets, significant progress has been made in HPE, resulting in many li-
braries available to address this challenge. The most notable are Openpose [42], DeepCut
[43], AlphaPose [44], ShuffleNet [45], High-Resolution Network [46] and BlazePose [47].

Despite rapid development, HPE faces several challenges that affect estimation quality.
Such challenges include occlusion and the ambiguity of depth, which remain significant
obstacles to overcome. 2D HPE from images and videos labelled with 2D positions is easily
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achievable and has seen high performance in estimating the human pose of a single person
using deep learning techniques. Due to the results in 2D estimation, the focus has recently
shifted towards the HPE of multiple people in complex scenes with significant occlusion.
Conversely, 3D HPE is more challenging than its 2D counterpart in obtaining accurate 3D
position information. Although motion capture systems can acquire 3D positional data in
controlled laboratory settings, their applicability in natural environments is limited. This is
primarily due to the challenge of generating 3D information from a 2D image. For instance,
a 2D skeleton can correspond to multiple 3D poses, as illustrated. The issue of depth
ambiguity could be significantly mitigated by incorporating temporal information, images
from various viewpoints, etc. Visual cues, such as shadows and objects of known size, can
be utilised to resolve ambiguities in images. However, capturing such information directly
from images proves to be exceptionally challenging because the 3D world transforms a
2D projection plane in an image. Estimating the 3D pose of multiple people poses is a
more significant challenge than that of a single person because the different people have
to be separated from each other and the number of people is unknown. The additional
challenge in estimating multiple people from a single-view image lies in occlusion by
nearby individuals. When estimating the 3D pose of numerous people from various views,
the most significant challenges include a more extensive state space, occlusions, and
ambiguities between views [48].

Most existing methods rely on two-stage processes for each frame, which need more
efficiency because each step requires more computing power. Another problem is the
significant differences across various datasets, as each dataset employs different logic and
MoCap suits, making it difficult to force a model to generalise. Summarizing the problem
is focusing on single-person estimation, as one always expects precisely one person in the
camera, and on 3D estimation from a single image or second estimation for registration
through two images, with further details to follow in later Chapter 3. The following
presents some of the most important deep learning models used for HPE.

2.2.2. OpenPose

OpenPose [42] is the first real-time technology that can recognise numerous human body
keypoints (up to 135) on a single picture proposed by Cao et al. The first step is passing an
image through a Convolutional Neural Network (CNN) to extract the feature maps of the
input. In particular, the first ten layers of the VGG-19 network, which are integrated into
the model, are used. A multi-stage CNN generates two output types from these feature
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maps: Part Confidence Maps (PCM) and Part Affinity Fields (PAF). These maps represent
the probability of the position of body parts or the spatial relationship and orientation of
neighbouring body parts respectively.

In the subsequent stages of the CNN, the predictions of each of these outputs are gradually
refined. Bipartite graphs based on the PCM are created between pairs of body parts (e.g.
the hips, shoulders,...) and help to place the body’s individual parts in relation to each
other. The PAF is first used to refine the connections between the body parts from the
feature maps of the base network. The results of the previous layers are then used to
improve the recognition in the confidence maps further. Finally, a greedy algorithm is
applied to analyse the final PCM and PAF. This step allows OpenPose to efficiently and
accurately identify the positions and connections of the body parts.

The advantage of OpenPose is that it offers considerable precision, as it was developed
specifically for operation on GPUs. This enables high accuracy in keypoint detection
without compromising the quality of the implementation. OpenPose is also free of charge
for non-commercial use. In contrast, the disadvantages of OpenPose are that the image
has low-resolution the results provide a limited level of detail in the keypoint predictions.
In addition, the programme does not provide any information about the depth of the
detected objects. OpenPose is based on deep neural networks (DNN), so a powerful
machine is required for efficient operation. This may have a slight impact on speed or you
get lower precision, when a low computing power is available [49].

2.2.3. DeepCut

DeepCut [43] stands out as an innovative model in multiple HPE, employing a unique
bottom-up approach. Developed by Pishchulin et al. in 2016, the model is designed to
tackle the dual challenges of detecting body parts and estimating poses. This approach
delineates DeepCut’s operation into three critical stages: detecting body part candidates,
classifying and labelling each detected part into various human body subsections like
arms, legs, and torso, and finally, grouping these parts according to the individuals they
belong to. This last step is notably complex due to the potential presence of multiple
individuals in a single image. A key component to DeepCut’s methodology is the use of
Integral Linear Programming (ILP), which cleverly organises detected keypoints to render
a skeletal depiction of human figures in the output image. The model aims to seamlessly
blend all operational phases, from the initial recognition of body parts to the ultimate
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pose presentation, within a cohesive framework.

The advantages of DeepCut are manifold. It offers a holistic solution that simultane-
ously solves detection and pose estimation, providing a comprehensive tool for complex
scenarios without the necessity for markers or special equipment typically required by
marker-based systems. However, the model is not without limitations. The complexity of
solving an ILP problem makes DeepCut highly computationally intensive, mainly when
dealing with images featuring multiple subjects. Moreover, the precision of the pose
estimation and the resolution of the results are inherently limited by the quality of the
input images.

DeepCut’s utility spans a broad spectrum of applications, from enhancing video surveillance
capabilities to advancing sports analysis and facilitating more nuanced human-computer
interaction. Its value is especially pronounced in scenarios that necessitate the accurate
capture and analysis of multiple individuals’ poses simultaneously, such as in motion
research or in developing interactive systems designed to interpret human movements
[50]. Despite the challenges associated with its computational intensity and precision
limits, DeepCut represents a significant leap forward in the automated estimation of
human poses, offering a novel and effective solution to a complex problem.

2.2.4. AlphaPose

AlphaPose [44], introduced in 2017 by Fang et al., is an advanced posture estimation
system distinguished by its top-down methodology for detecting the poses of multiple
individuals. It represents the first open-source system of its kind, aiming to address
the challenges of posture estimation ”in the wild” which means in natural, uncontrolled
environments. The system comprises three components: A Symmetric Spatial Transformer
Network (SSTN), Parametric Pose Non-Maximum Suppression (NMS) and a Pose-guided
Proposals Generator (PGPG). The process initiates with bounding box proposals pro-
vided by a VGG-based SSD512 detector for human detection. These proposals are then
forwarded to the Symmetric STN + SPPE module, which generates the pose proposals.
During the training phase, a Parallel SPPE module is employed to avoid local minima,
enhancing the training process’s reliability [51]. A well-acknowledged issue in multi-
person posture estimation is the redundancy in detected poses, which means that the
same pose may be recognised several times for one person. AlphaPose addresses this
challenge with a parametric Pose NMS, which eliminates redundant poses. Additionally,
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a Pose Guided Proposals Generator is utilised during training to augment the training data.

AlphaPose is applied in fields requiring accurate full-body multi-person posture estimation
and tracking, such as behavioural analysis, where capturing subtle human actions is
required. It is a system capable of accurate full-body posture estimation and simultaneous
monitoring in real time. With techniques like Symmetric Integral Keypoint Regression,
Parametric Pose NMS, and Pose Aware Identity Embedding, AlphaPose precisely locates
whole-body keypoints. It tracks individuals concurrently, even with inaccurate bounding
boxes and redundant detections. Despite the challenges posed by the top-down approach,
such as localisation errors and prediction inaccuracies, AlphaPose represents a significant
advancement in posture estimation and has proven to be highly effective across various
datasets [52].

The most essential advantage of AlphaPose is the ability to circumvent errors prevalent in
traditional systems, such as incorrect identification or localisation. Optimising the net-
work’s hyperparameters significantly enhances its performance. Compared to conventional
single-stage process frameworks, AlphaPose’s two-stage framework delivers more accurate
results. The two-stage structure also presents disadvantages, notably impacting speed or
runtime efficiency. Moreover, there are scenarios where AlphaPose may not perform as
well as compared to other mentioned posture estimation methods. For example, when
recognizing poses in very crowded scenes [53].

2.2.5. ShuffleNet

ShuffleNet [45] is an innovative architecture for convolutional neural networks (CNNs)
designed specifically for mobile devices with limited computing power. This architecture is
designed to perform complex tasks such as object recognition efficiently and pose estima-
tion efficiently [54]. At the heart of ShuffleNet are the ShuffleNet units, which are based
on pointwise group convolution and a channel shuffle. These techniques make it possible
to drastically reduce the number of computational operations without compromising
accuracy. With pointwise group convolution, the channels are divided into groups, and
each group is processed separately. This saves computing power compared to traditional
convolutional operations. The channel shuffle ensures that the features are swapped
between the groups to promote the flow of information between the channels and improve
network performance. Another advantage of ShuffleNet is the use of depthwise separable
convolutions, which became popular in MobilenetV1. This type of convolution reduces
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the complexity of operations by treating the channels individually and then applying a
1x1 convolution to combine the features. ShuffleNet further extends this by using group
convolution for the 1x1 convolutions, which further increases efficiency [45].

In summary, the advantages of ShuffleNet are apparent: it is highly efficient in terms
of computing power, making it ideal for mobile use. It offers high-speed execution on
ARM-based devices while maintaining accuracy comparable to more powerful networks
like AlexNet. This efficiency makes ShuffleNet an excellent choice for real-time applica-
tions such as 2D posture estimation of multiple people in resource-constrained scenarios.
Nevertheless, there are drawbacks. Due to its focus on efficiency, ShuffleNet may not
consistently achieve the same accuracy as some larger and more computationally intensive
networks. In addition, it may be a challenge to further optimise the architecture to
improve maximum performance (mAP) without sacrificing efficiency [55].

Overall, ShuffleNet is an excellent solution for developers and researchers who want to
bring powerful CNN capabilities to hardware with limited resources. The architecture has
mobile image and video analytic applications, especially where real-time processing and
energy efficiency are critical, such as mobile object and gesture recognition and augmented
reality applications.

2.2.6. High-Resolution Network

HRNet [46], which stands for High-Resolution Network, represents an advanced approach
in HPE characterised by preserving high-resolution representations throughout the entire
processing sequence [46]. Unlike most existing methods that reconstruct high-resolution
representations from low-resolution ones, HRNet initiates with a high-resolution sub-
network and incrementally integrates subnetworks from high to low resolution. This
multi-scale architecture facilitates parallel connections between subnetworks of varying
resolutions, leading to repeated multi-scale fusions. Each representation, from high to low,
benefits from the information of the other parallel representations, yielding a rich and
precise high-resolution depiction. The success of HRNet is attributed to two main aspects:
Firstly, the continuous preservation of high resolution circumvents the need to restore
it, enhancing the accuracy and spatial precision of the keypoint heatmaps. Secondly,
the repeated fusion of multi-resolution representations enables the creation of reliable
high-resolution depictions. This methodology results in exceptionally accurate outcomes
in pose estimation across various benchmark datasets, including Common Objects in
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Context (COCO) and MPII (Max Planck Institute for Informatics Human Pose) for keypoint
detection and PoseTrack for pose tracking.

Advantages of HRNet include high accuracy and spatial precision: On the one hand, the
HRNet generates more accurate and spatially precise keypoint heatmaps than many other
network architectures. By preserving high resolution throughout the process and through
repeated representation fusions, an efficient use of the available information is ensured.
HRNet has yielded promising in HPE and shows potential for applications in other dense
prediction tasks such as facial alignment, object detection, and semantic segmentation.
On the other hand, the disadvantages of HRNet are its computational intensity and the
need for optimisation regarding computational speed. Although HRNet is praised for its
accuracy, its complex architecture can lead to higher computational demands, potentially
limiting its deployment on devices with limited resources. There is a continuous need to
optimise the network’s structure and training methods further to enhance its mAP [56].

In conclusion, HRNet is exceptionally suited for high accuracy in HPE by using images
and videos and finds use in sports analytics, surveillance, interactive systems, and the
healthcare industry. Its capability to estimate precise poses in complex scenes with multiple
individuals and under various conditions renders HRNet a valuable tool for researchers
and developers in computer vision and related fields [57].

2.2.7. BlazePose

BlazePose, developed by Google Research, is an advanced technology designed to estimate
a single person’s pose, particularly tailored for fitness applications [47]. Its two-stage
approach distinguishes from another methods. Initially, a detector identifies the Region
of Interest (ROI) within an image where the pose is located. Subsequently, a tracker
estimates the keypoints within this area. A critical feature of BlazePose is the requirement
for an initial pose alignment, necessitating the clear annotation of either the entire person
or at least the hip and shoulder points. During the inference phase, shown in Figure
2.3, BlazePose demonstrating remarkable real-time capabilities in various tasks, such as
detecting hand and facial features. This system integrates a compact body pose detector
and a pose tracker used for predicting keypoint positions, confirming the presence of a
person in the image, and determining the refined ROI for the image. If the tracker fails to
detect a person, the detection network is prompted to analyze the following image. Most
modern object detection solutions rely on NMS in their final post-processing step, which is
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Figure 2.3.: Human pose estimation pipeline overview for the BlazePose model by [47]

effective for rigid objects with limited degrees of freedom. This approach faces challenges
when dealing with complex movements, such as gestures of greeting or hugging. These
difficulties occur because several overlapping bounding boxes may satisfy the criteria for
Intersection over Union (IoU), which the Non-Maximum Suppression (NMS) algorithm
uses. To address this issue, the strategy shifts towards identifying the bounding box of

Figure 2.4.: Tracking network architecture: regression with heatmap supervision by [47]

more stable body parts, such as the face or torso. Observations suggest that the face, with
its distinct, high-contrast characteristics and consistent appearance, typically provides a
clear indication of the torso’s location to the neural network. In pursuit of a swift and
efficient person detection tool suitable for Augmented Reality (AR) applications, it is
assumed that the person’s head is always visible in scenarios involving only one individual.
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As a result, a rapid face detection system implemented directly on the device serves as the
basis for person detection. This system not only recognizes faces but also estimates key
person-specific alignment metrics, including the midpoint of the hips, the encompassing
circle’s diameter, and the tilt, defined as the angle formed by the line connecting the
midpoint of the shoulders and hips.

Figure 2.5.: Shows the body model of Blazepose, both the position and the naming of the 33
keypoints by [47]

The pose estimation component of the system calculates the locations of 33 human key-
points, as indicated in Figure 2.5, using the alignment suggestions from the initial stage
of the pipeline. The methodology combines heatmaps, offsets, and regression techniques,
as depicted in Figure 2.4. In pose detection, heatmaps serve to visualize the potential
locations of body parts through color gradients, with each essential body part represented
by its own heatmap where more intense colors indicate higher likelihoods. Offsets are used
to refine these predictions by providing vectors that adjust the keypoint positions beyond
the general areas indicated by the heatmaps. BlazePose utilizes a regression method
to directly learn the coordinates of keypoints, enhancing the accuracy and efficiency of
pose estimations. During training, both heatmap and offset losses are utilized, but these
layers are omitted at the inference stage to streamline the process. This setup allows for
the use of heatmaps in tracking the light embedding, which aids the regression encoder
network. The architecture incorporates skip connections throughout to integrate high
and low-level data effectively. Moreover, it is noted that preventing gradient transfer from
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the regression encoder back to the heatmap-trained features enhances heatmap perfor-
mance and significantly boosts the precision of the coordinate regression. Incorporating

Figure 2.6.: The image shows a position estimate using MediapPipe Pose. The red dots correspond
to the keypoints shown in Figure 2.5.

a relevant pose prior is critical to the proposed method. During training, the ranges for
angles, scaling, and shifting are intentionally restricted to optimize data augmentation
and preparation. This constraint helps to reduce the network’s demand on computational
and energy resources, enhancing the speed and efficiency of the system on the device.
Alignment of the person in the neural network’s square image input is based on either
the detection from the previous phase or keypoints from the prior image, centering the
midpoint between the hips. The system calculates rotation by defining a line L between
the centers of the hip and shoulder and adjusts the image to make line L parallel with
the y-axis. Scaling is adjusted to ensure all body points are enclosed within a square
bounding box. To accommodate movement and alignment discrepancies between images,
a 10% scaling and shifting augmentation is also applied, improving the tracker’s ability to
manage variations in body position.

To aid in the prediction of unseen points, random rectangles filled with different colours
(occlusions) are generated during training, introducing a visibility classifier per point
that indicates if a certain point is hidden and whether the location prediction is judged
erroneous. This enables continuous tracking of a person, even in the presence of severe
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occlusions, such as when just the upper body is visible or the rest of the person’s body is
outside the scene. Figure 2.6 shows a HPE using MediaPipe pose. The red dots represent
the keypoints. Each point in this example has a visibility of over 50%. The Blazepose
model thus offers a computationally efficient HPE optimised for sports exercises [58].

2.3. Summary

In this chapter, the basics of HMQA and the fundamental methods for high-accuracy HPE
were explained, along with an introduction to some of the most significant trained models.
Ultimately, BlazePose was chosen for this work. The decision was based on the objective
requirements, prioritising a balance between real-time processing capabilities and high
estimation accuracy. Furthermore, the focus on fitness exercises plays a significant role
[49]. Although AlphaPose and OpenPose deliver superior quality results, their longer
computation times render them less suitable for real-time applications [59]. Additionally,
BlazePose was specifically developed for fitness exercises, making it the primary choice
for tracking in this context. While ShuffleNet also offers high computational speed, it
lacks the estimation accuracy found in BlazePose [54]. The drawback of the HRNet is its
significantly higher computational intensity compared to the other models, a limitation
similarly applicable to DeepCut [51]. Besides this, a single person estimation is sufficient
for the case of application of this process. Another essential aspect in choosing MediaPipe,
which supports BlazePose, was the need to implement a system that was powerful and
efficient in real-time processing and offered cross-platform support. MediaPipe’s modular
and extensible architecture allows easy customization to meet specific requirements, which
is especially valuable for fitness exercise analysis. In addition, it was a goal to develop
a system compatible with low-cost hardware and provide a user-friendly experience to
ensure broad accessibility and ease of use. This combination of technical performance,
adaptability to fitness applications, cross-platform support, cost and ease of use made
MediaPipe an ideal choice for developing a HPE system that works in real-time and is
easily accessible to the end user. In view of these considerations, the decision is made in
favour of BlazePose.
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3. Development of the Motion Quality
Assessment Algorithm

This chapter introduces the mathematical foundations at the core of the algorithm, pro-
viding a comprehensive overview of the entire algorithm, building upon the estimation
of human poses discussed in the preceding chapter. Subsequently, it conducts a detailed
analysis of each step the algorithm undergoes, as well as the various modes of operation in
which it functions. To introduce this chapter, it is necessary first to present the theoretical
foundations and methods essential for understanding the structure and functionality of
the algorithm. An explanation of the data collection, the setup and a basic description of
the dataset are provided at the beginning of the chapter. This methodological approach
facilitates a profound understanding of the algorithm’s functionality - from the initial
estimation of the pose to the complex details of its foundations. Based on the foundations
described below, the MoQuA algorithm was implemented, laying the groundwork for the
evaluations in the following chapter.

3.1. Data collection and setup

In order to develop a system to improve physiotherapy practice, collecting data on sports
exercises is essential. The following outlines the data collection process necessary for
the system’s development. The primary objective is to record sports exercises using a
dual-camera setup. The participant is equipped with a MoCap suit to validate the accuracy
of the system’s pose estimation. This process will incorporate a variety of perspectives
by having the participant assume different orientations towards the cameras and occupy
various positions within the room. In the experimental setup, the cameras are strategically
positioned in a vertical plane parallel to the ground, oriented at a 90-degree angle relative
to each other. The participant is positioned centrally between the two cameras, each
covering an approximate area of 5 x 5meters and 3 x 3meters. The participant’s orientation
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Figure 3.1.: Top-down perspective of the experimental configuration by [60]. Cameras were
positioned to ensure that their image planes were perpendicular to the floor surface.
The line of sight for the participant is represented by the angle α for Camera 1 (C1)
and the angle β for Camera 2 (C2).

towards the cameras is quantified with the line of sight using two angular parameters: α
for Camera 1 and β for Camera 2. The experimental setup is shown in Figure 3.1. This
alignment ensures comprehensive coverage and optimal data acquisition from multiple
viewpoints. This arrangement is designed to maximise the efficacy of the data collection
process, ensuring a robust foundation for developing the physiotherapy support system.

3.1.1. Equipment

The material utilised in this study includes two EMEET Full HD Webcam - C960 cameras1
or the Reolink RLC-510A2, which is an low-cost security type camera and an MTw
Awinda Motion Capture system by Movella3. The Webcam cameras, chosen for their
cost-effectiveness, boast a resolution of 1080p and a frame rate of 29.5 frames per second.
The Reolink has a resolution of 2560×1920 and a frame rate of 30 frames per second. The
MoCap suit, on the other hand, records data at a rate of 60 Hz. Therefore, it necessitates
down-sampling the captured data to 29.5 (or 30) Hz to synchronise with each camera’s
frame rate. Due to the length of the recording sequence, it is necessary to adjust the

1https://emeet.com/en-eu/products/webcam-c960
2https://reolink.com/de/product/rlc-510a/
3https://www.movella.com/products/wearables/xsens-mtw-awinda
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frame rate precisely, otherwise the synchronisation will not be successful. The MoCap suit
is designed to provide the x-y-z coordinates of 23 different body segments and 66 joint
angles, such as the flexion and extension of the right knee. The MoCap suit has proven to
provide reliable and accurate data for human movement [61] and has been successfully
used in exercise-related motion analysis [62]. The previous mentioned arguments leads
to the conclusion that the MoCap suit is suitable for validating the data.

3.1.2. Data and setup

The data collected encompass a total of 372 execution units, which were recorded over
three separate sessions. The first data collection session utilised Reolink cameras, while a
different camera setup was employed for the subsequent two sessions. Overall, recordings
were made of seven different individuals. Throughout the course of the study, 20 rounds
of various exercises were conducted. During the initial session, five different exercises
were performed, followed by seven different exercises in the subsequent session. The first
session was distinguished by the professional accompaniment of a physiotherapist. For
the first session, an extended field of 5 x 5 meters was used, whereas, in the following
two exercise sessions, a more compact field of 3 x 3 meters was utilised. Each exercise
was correctly performed with two repetitions, and two specific errors were documented
for each, allowing for a comprehensive analysis of the executions, including the errors
that occurred. An overview of all rounds with corresponding angles can be found in the
appendix A.1.

The push-up, a fundamental exercise, commences from a prone position with arms
extended, facilitating the elevation and lowering of the upper body. A prevalent error
in this exercise is the misalignment caused by excessively high hips, which disrupts the
ideal body line that should extend from the shoulders to the feet, primarily affecting the
torso. Additionally, the inclination to elevate the gaze upwards rather than maintaining it
downwards leads to a misalignment of the spine and neck, further detracting from the
exercise’s effectiveness.

Squats, integral for leg and hip strength, involve lowering the body by bending the knees
and hips. However, inadequacies such as failing to descend sufficiently, resulting in a knee
angle exceeding 90 degrees, compromise leg muscle engagement. Moreover, positioning
the feet wider than shoulder-width can detrimentally impact the legs and hips, deviating
from the exercise’s intended benefits.
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Kick-backs performed on all fours require one leg to be extended backward and upward,
presenting errors such as looking upwards, which strains the neck. Additionally, positioning
the knees too close to the hands can disrupt the intended alignment, affecting both the
upper body and legs.

The simulation of swimming movements (breaststroke), often performed dry, underscores
the importance of proper head positioning. Directing the head upwards instead of towards
the ground strains the neck, while bringing the shoulder too close to the head can adversely
affect the shoulders, undermining the exercise’s mimicry of swimming dynamics.

A second variant of the push-up, where the knees are on the ground, introduces variations
in execution yet shares common errors with the first variant, such as the upward gaze
and a curved downward back, which lead to misalignment and strain on the neck, spine,
and torso.

Lunges, involving a step forward followed by lowering the body until both knees are bent,
can be compromised by taking too small a step or turning the front knee inward, affecting
the legs, hips, and knee, and detracting from the exercise’s effectiveness in strengthening
these areas.

Finally, sit-ups, aimed at engaging the abdominal muscles by lifting the upper body towards
the knees, present challenges when the knees are not bent sufficiently or the feet lift off
the ground, affecting the abdominal muscles and legs, and reducing the exercise’s efficacy.
A detailed description of the exercise can be found in the appendix B.

The variety of exercises recorded, as well as their performance by various individuals,
allows for the examination of both the effects of the exercises and the effects caused
by individual variations between participants. The dataset, while not overly large, is
sufficiently comprehensive to train models effectively. This setup should enable the
development of a highly accurate model, demonstrably showing that, for instance, even a
single correct recording can be used to achieve significantly reasonable results.

3.2. Motion Quality Assessment (MoQuA) Algorithm

Secondly, the MoQuA algorithm is described, illustrating the pipeline from the input of
video material through preprocessing, HPE, similarity comparison, to classification. This
section briefly outlines the individual steps. The precise mathematical functionality and
background are detailed in the subsequent Subsections 3.3 to 3.7. A schematical view
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Figure 3.2.: This figure illustrates the proposed end-to-end algorithm utilised for the MoQuA
Algorithm of sports exercises. Using Mediapipe, videos are converted into position
trajectories, followed by filtering, fusing and normalisation. The mDTW is then used
to determine the similarity to the Golden Standard, and the features are evaluated
using a classifier. Finally, the limb group is determined by XAI.

of the algorithm is shown in Figure 3.2. The collected data consists of a person who is
filmed by two cameras during the execution of sports activities, as described in Section
3.1. The process begins with footage from Camera 1 and Camera 2, each recording a
video comprising a series of images, resulting in

Vcam,type ∈ Rpx×py×fl , (3.1)

where px and py denote the number of pixels in the x and y direction respectively, fl
denotes the length of the video, cam ∈ {1, 2} represents the individual camera and type
∈ {Test,Correct}, indicates whether it is a test video or the Golden Standard. In the given
context, the term ”test video” implies that there is a recording for which it needs to be
determined whether its execution was correct or incorrect. Furthermore, the method aims

27



to identify which group of limbs is responsible for any possible incorrect performance.
The term ”Golden Standard” refers to the method where, from the exercises that were
correctly performed, one is randomly selected and used as a basis for comparison.
The videos are then processed using the MediaPipe posture estimation as previously
described in Chapter 2.2, producing features of

Zcam,type ∈ R33×3×fl , (3.2)

due to the 33 keypoints from MediaPipe, with each keypoint comprising 3 coordinates
for every frame. Subsequently, the features are filtered, rotated, and scaled to normalise
them, to improve the estimation and to create a better comparability among each other.
Following this step, the coordinates are merged by combining the camera footage. This
means Z1,type and Z2,type merged to ˜︁Ztype. In addition to the joint coordinates, relative
features are calculated. This creates additional features over and above the initial 33.
These features are not 3D points but scalar values and are expressed by

ˆ︁Ztype ∈ Rκ×fl , (3.3)

where κ describes the number of additionally calculated features, which are described in
Section 3.4.5. These steps are done for all videos regardless of their type. The trajectories
from the test video and the Golden Standard have different lengths, fl1 and fl2. In order
to match the sequence length the multidimensional Dynamic Time Warping (mDTW) [63]
is applied, as described in Section 3.5.1. This changes the length of the signal to ˜︁fl1 where
applies max(fl1, fl2) ≤ ˜︁fl1 ≤ (fl1 + fl2–1) and ˜︁fl1 ∈ N. The data is then categorised into
different limb groups as a noise reduction measure. The categorization into various limb
groups is a parameter that can be adjusted, changing the data dimensions

˜︁Z33×3×fl
type → ˜︁Gtype ∈ Rgl1×3×fl ,ˆ︁Zκ×fl

type → ˆ︁Gtype ∈ Rgl2×fl .

In this context, gli denotes various categorizations into limb groups (number of limb
groups) based on a foundational order that commences with the head, torso, left arm, right
arm, left leg, and right leg. This sequential arrangement facilitates a structured approach
to analyzing and processing data pertaining to human movement, by segmenting the
body into its principal limb groups. Such, the approach not only simplifies the assessment
of posture and movement through noise reduction, but is also intended to increase the
specificity and accuracy of the analysis. The noise reduction is achieved by averaging
the individual trajectories. The synchronised test video and correct video signals are
then further processed in the mDTW calculation to determine the distance measure
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(d ∈ Rgl1+gl2). This distance measure, calculated for each limb group, is then fed into a
classifier that decides whether the execution is correct or incorrect. In case of an incorrect
execution, the most probable error is identified within the group using XAI, namely LIME
and SHAP, providing feedback to the subject. The following sections will elaborate on
these steps in detail. This structured approach ensures a thorough analysis and correction
of posture through video analysis, leveraging the mathematical framework of DTW for
synchronization and MediaPipe posture estimation for initial data capture. Incorporating
a classifier for final assessment enhances the system’s utility by providing actionable
feedback, which is essential for applications in physiotherapy, sports science, and personal
fitness.

3.3. Camera geometry

The first part of the MoQuA algorithm deals with the systematic processing and analysis
of video material, which is the primary data source for the explained algorithm. The
challenge is to extract structured and actionable data from the available video content to
capture the dynamics and complexity of the depicted scenarios adequately. A key aspect
in the processing of video material is the application of techniques for transforming the
three-dimensional reality of the world into a two-dimensional image representation. This
transformation enables us to describe phenomena and processes captured in the videos on
a 2D plane, making them accessible for further analysis. Another emphasis is on the fusion
of data from various sources to achieve a more comprehensive and detailed representation.
Combining information captured from different perspectives and with various technical
aims to enrich the analytical base and improve the significance of the findings. To maximise
the quality and expressiveness of the derived image information, it is necessary to identify
and correct distortions caused by suboptimal camera positioning and settings. This involves
using models and techniques developed explicitly for correcting such distortions, such as
the pinhole camera model and lens distortion correction techniques. These approaches
play a vital role in improving image quality and forming the foundation for precise 3D
reconstructions of the recorded scenes. By carefully considering and applying these
methods ensuring the high quality and reliability of the data extracted from the video
material, which is important for the subsequent analysis steps.
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3.3.1. Pinhole camera model

The pinhole camera model is a simple model that illustrates the fundamentals of photog-
raphy and projection. The concept behind this model originates from the observation that
light, passing through a small opening (a ”pinhole”) in a dark room, can create an image
on the opposite side. This model is frequently used as a foundation for understanding
more complex camera and optical systems. The camera geometry described below refers
to Hartley and Zisserman [64] and Escalera et al. [65].

The central concept in the pinhole camera model is shown in Figure 3.3:

• Camera Center (c): The origin of the coordinate system through which central
projection occurs.

• Principal Axis ( Z): The line perpendicular from the camera centre to the image
plane.

• Principal Point (p): The point on the image plane where the principal axis intersects
it.

• Image Plane (Z = f): The plane where the image is formed, located at a distance f
(focal length) from the camera center.

The basic equation that describes the projection of a 3D point in space[x, y, z] onto a 2D
point [xim, yim] on the image plane is derived using similar triangles:

xim = f
x

z
, (3.4)

yim = f
y

z
.

The assumptions of the pinhole camera model are idealised, and in real cameras, lenses
and other optical elements are used to further focus and direct light. Despite its simplicity,
the pinhole model provides a fundamental explanation of how images are created through
projection and illustrates the geometric relationship between objects in space and their
images on a flat image plane.
Equation 3.4 implies that the coordinate origin in the image plane is located at the
principal point. In practice, this is often not the case, meaning that a mapping generally
exists where [cx, cy]

T are the coordinates of the principal point, forming an offset for the
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Figure 3.3.: A systematic overview of the geometry of a pinhole camera [64]

computation of the image’s origin. The mapping is expressed by⎡⎣xy
z

⎤⎦ →
[︃
f x
z + cx

f y
z + cy

]︃
. (3.5)

Expanding this mapping to homogeneous coordinates results in⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦ →

⎡⎣fx+ zcx
fy + zcy

z

⎤⎦ =

⎡⎣f 0 cx 0
0 f cy 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦ . (3.6)

Homogeneous coordinates are a coordinate system used in projective geometry to represent
points at infinity and to perform transformations such as translations, rotations and
scaling. Homogeneous coordinates are obtained by adding an additional dimension to
traditional Cartesian coordinates, simplifying mathematical operations and perspective
representation. Now, the matrix is written as

K =

⎡⎣f 0 cx
0 f cy
0 0 1

⎤⎦ (3.7)

following in

x = K[I|0]xcam. (3.8)
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The matrix K is referred to as the camera calibration matrix. In Formula 3.8, the vector
[x, y, z, 1]T is denoted as xcam. The point xcam is represented in its own coordinate system,
which can be called the camera coordinate system.

To elaborate further, the camera coordinate system is a special reference frame in which
the camera serves as the origin. All measurements and positions of objects are made
relative to this point. The Z-axis of this system runs along the optical axis of the camera,
pointing in the direction the camera is facing. The camera’s principal point, the point on
the image sensor that lies directly opposite the lens, is located on the Z-axis in this system.

The camera calibration matrix K includes the intrinsic parameters of the camera, which
are independent of the scene being viewed. These parameters include the camera’s focal
length, represented by the diagonal element f in the matrix, the position of the principal
point on the sensor, given by the elements cx and cy, with the neglect of the tilt of the x-
and y-axis of the sensor (skew factor) due to the insignificance.

Through camera rotation and translation, it is possible to consider the relationship between
the world coordinate system and the camera coordinate system. These systems are linked
through rotation and translation to describe the position and orientation of points in three-
dimensional space from the camera’s perspective. Given a point xworld with coordinates
[x, y, z] in the world coordinate system, to transform this point into the camera coordinate
system, the camera’s position and orientation is accounted for in the world coordinate
system. The camera is located at a specific point c in the world coordinate system, given
by the vector c = [cx, cy, cz]. To determine the position of a point relative to the camera
position, the camera centre is subtracted vector c from the world coordinate vector xworld,
resulting in xworld − c. The camera can be oriented in various directions. The orientation
of the camera in space is described by a rotation matrix R. This 3x3 matrix transforms
points from the world coordinate system into the camera coordinate system, taking into
account the orientation of the camera. The transformation is given by R[xworld − c]. To
represent these transformations in homogeneous coordinates, the vectors are extended to
4-dimensional vectors by adding an additional dimension with the value 1. This allows
us to represent translations as matrix multiplications. Finally, the camera’s intrinsic
parameters are considered through the camera calibration matrix K. In summary, the
transformation of a point xworld in the world coordinate system into a point xcam in the
camera coordinate system and finally onto the image plane is:

xcam = R[xworld − c]. (3.9)
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for homogeneous coordinates, the following˜is used. In homogeneous coordinates:

x̃cam =

[︃
R −Rc̃
0 1

]︃
x̃world. (3.10)

And then using the camera calibration matrix:

xim = Kxcam. (3.11)

By combining these steps, the projection matrix P is obtained, which incorporates both the
external calibration (position and orientation of the camera) and the internal calibration
(intrinsic camera parameters):

xim = Pxworld = K
[︁
R −Rc

]︁
xworld. (3.12)

Therefore:

P = K
[︁
R −Rc

]︁
. (3.13)
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The projection matrix P has a total of 9 degrees of freedom: 3 from the calibration matrix
K (focal length and coordinates of the principal point), 3 from the rotation matrix R, and
3 from the translation vector t = −Rc [64]. Equation 3.13 can thus be rewritten as

P = K
[︁
R|t

]︁
. (3.14)

A chessboard pattern can be employed to calculate the camera matrix, rotation, and
translation, which is a standard method of camera calibration based on the precise
geometric properties of the chessboard. The process initiates with capturing multiple
photographs of the chessboard pattern from various angles and distances, ensuring that the
pattern is clearly visible in each image. Subsequently, specialised algorithms are utilised to
accurately identify the corners of the chessboard pattern in these images. Each detected
corner is considered as a point, the image position of which is known. The chessboard
pattern facilitates the precise determination of corresponding points, enabling an optimal
estimation. However, a disadvantage is that additional recordings must be made, which
requires additional recordings. In MediaPipe, the output of 2D image coordinates is also
available. These coordinates can likewise be used as corresponding points to determine
the transformation between the two systems. To determine R and t, the corresponding
points x1, x2 of both cameras are used to solve the following equations:

x⊤1 Ex2 = 0,

where the following relationship is given

E21 = t21 × R21.

Here, E is referred to as the essential matrix. The described camera geometry enables the
derivation of both intrinsic and extrinsic camera parameters, facilitating a comprehensive
calibration of the camera system. This model describes all necessary intrinsic and extrinsic
parameters [65].

3.3.2. Lens distortion

The emergence of lens distortion in the context of the pinhole camera model is related
to the limitations and physical properties of real lens systems. In reality, lenses are used
instead of pinholes to capture more light and produce a brighter image. The curvature
and material of the lens cause light rays not to be perfectly focused on a point, leading to
distortions in the image. There are two main types of lens distortions: barrel distortion
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Figure 3.5.: On the left is an undistorted object; on the right is pincushion distortion, where the
lines are curved towards the centre and on the middle is barrel distortion, where the
lines curve outwards. These images illustrate the typical effects that optical aberrations
in lens systems can cause [66].

and pincushion distortion, as show in Figure 3.5. Barrel distortion occurs when rays at
the edges are bent more than those closer to the centre, causing objects near the edges
of the image to appear curved and further from the centre. The result is an image that
appears curved, akin to the surface of a sphere. In pincushion distortion, the edge rays are
bent less than the central rays, causing objects near the edges of the image to appear bent
inwards and closer to the centre, creating a cushion-shaped appearance. Barrel distortion
and pincushion distortion are specific types of radial distortion. While radial distortion
pertains to the shape-altering effects in an image, tangential distortion arises from the
misalignment of the image sensor and the lens, causing the image to appear skewed. The
radial distortion can be described by the following equations [67]:

xcorr = xdist(1 + k1r
2 + k2r

4 + k3r
6) (3.15)

ycorr = ydist(1 + k1r
2 + k2r

4 + k3r
6). (3.16)

The tangential distortion is represented by:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (3.17)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy]. (3.18)

By combining and simplifying the equations, one obtains the distortion coefficients:

Distortion coefficients = (k1, k2, p1, p2, k3). (3.19)
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With the help of the camera matrix K, the image can be corrected after determining
the distortion coefficients. To correct an image impaired by lens distortions, the process
begins with calculating the undistorted coordinates for each pixel in the distorted image.
Thereby, the calculation uses previously determined distortion coefficients and refers to the
corresponding mathematical equations that model both radial and tangential distortions.
This step determines a new, corrected location in space for each pixel in the distorted
output image, reflecting its position in the idealised, undistorted image. However, these
newly calculated coordinates do not always result in integer pixel positions, preventing
a direct assignment of pixel values in the digital image grid because pixels always have
whole numbers as coordinates. To overcome this challenge, an interpolation technique is
applied. Techniques such as bilinear or bicubic interpolation allow for the estimation of
the intensity values of the undistorted pixels by considering the values of neighbouring
pixels, thereby creating a smooth and coherent image surface. Finally, the reconstruction
of the undistorted image is completed by using the interpolated intensity values to create
a new image free from the original distortions. The final step presents the visual result of
the preceding mathematical and processing efforts, delivering a corrected image that more
accurately reflects the real scene features than the originally distorted image. Through
these carefully coordinated steps, the image quality is significantly improved, enhancing
visual precision for various applications, from photography to precise image analysis [67].
Due to the often enhanced distortion in use, correction is essential to improve the accuracy
of estimating body positions.

3.3.3. 3D reconstruction

3D reconstruction is an advanced computational process aimed at capturing the three-
dimensional structure of the physical world from two-dimensional data, such as images
or videos. Thus, a important bridge between digital perception and tangible reality has
been forged. As an alternative to 3D world coordinates, 2D image coordinates can also be
estimated, allowing the transformation of data from two cameras into 3D coordinates.
This process assumes a successful camera calibration, which was described in Section 3.3.2.
By calculating the projection matrices P1 and P2 for Camera 1 and Camera 2, as described
in Section 3.3.1, and assuming that the two 2D image coordinates of the keypoints for
each camera have been computed, the 3D points can be reconstructed using Direct Linear
Transform (DLT) and Singular Value Decomposition (SVD) [68]. DLT is a mathematical
method frequently employed in computer vision and photogrammetry to determine the
parameters of a projection matrix or transformation between two coordinate systems.
This method is particularly useful for solving problems such as camera calibration, 3D
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point reconstruction from image pairs, and image registration. DLT involves solving a
linear equation of the form

Ax = 0, (3.20)

where A is a matrix constructed from the coordinates of corresponding points in the two
coordinate systems, and x is the vector of unknown transformation parameters that should
be determine. The solution to this equation is typically obtained through SVD, a technique
that allows finding the best-fitting solution in terms of minimizing the square of the errors,
even when the system is overdetermined or impaired by measurement errors [69]. This
means that it is assumed

u1 =

⎡⎣u1v1
1

⎤⎦ , u2 =

⎡⎣u2v2
1

⎤⎦
as homogenised 2D-pixel coordinates. The homogenised 3D point

x =

⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦
is related to the 2D points through

ui = Pix, (3.21)

as described in Equation 3.12. The objective is to determine the unknown elements within
x. Given that u1 and pi( part of Pi), x are vectors that run parallel to each other, taking
their cross-product should result in zero. This leads to the following conclusion [70, 71]:⎡⎣uivi

1

⎤⎦×

⎡⎣p1x
p2x
p3x

⎤⎦ =

⎡⎣ vip3x− p2x
p1x− uip3x
uip2x− vip1x

⎤⎦ =

⎡⎣ vip3 − p2
p1 − uip3
uip2 − vip1

⎤⎦ x =

⎡⎣00
0

⎤⎦ . (3.22)

The row vectors of p1 are represented as pi, which are four-dimensional vectors. The
formulation 3.22 leads to an equation of the type Ax = 0. The third row is a linear
combination of the first two rows, resulting in only two equations that are insufficient
for solving the three unknowns in x. This outcome is anticipated, as determining a 3D
coordinate from a single camera perspective is not feasible. Assuming that two cameras
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are utilised, it’s possible to augment the matrix with additional rows. Indeed, extra rows
corresponding to any number of views can be appended, leading to the following equation:

Ax =

⎡⎢⎢⎢⎢⎢⎣
v1p3 − p2
p1 − u1p3
v2p3 − p2
p1 − u2p3

...

⎤⎥⎥⎥⎥⎥⎦ x = 0. (3.23)

The goal is to find the non-trivial solution for an equation structured asAx = 0. Considering
the presence of noise in practical scenarios, one could reformulate the equation to Ax = w,
aiming to solve for x in a manner that minimises w. The initial step involves calculating
the (SVD) of A [68, 71].

Ax = USVTx. (3.24)

To reduce w for a given x can be achieved through the computation of the dot product:

wTw =
(︁
xTVSUT

)︁
∗
(︁
USVTx

)︁
= xTVS2VTx. (3.25)

U and V are orthonormal matrices, with S being a diagonal matrix. Furthermore, the
diagonal values of S decrease in magnitude, making the final diagonal entry the smallest.
The resulting characteristic is assured by the SVD decomposition process. Using the
orthonormal form of V, selecting x as one of the column vectors from VT :

viTVS2VTvi = s2i . (3.26)

Based on the previous explanations, it can be concluded that the i’th diagonal element
of S is denoted as si. Given the objective to minimise wTw, it becomes evident that this
equates to selecting the smallest value within S2 by choosing the corresponding vi column
vector from VT as x. The minimum value is achieved when opting for the final column
vector of VT as x. Consequently, the Ax = w equation has been addressed amidst the
noise. This SVD approach is effective even in the absence of noise [69]. In the presence
of noise, a filtering effect occurs, which attenuates the noise. This characteristic makes
SVD a powerful tool not only for achieving a precise decomposition of data but also for
enhancing data quality by reducing noise impact. Through the selective retention of
singular values that represent significant data features while diminishing those associated
with noise, SVD inherently incorporates a denoising process into its application. The dual
functionality of SVD, combining data decomposition with noise reduction, significantly
benefits various data analysis and signal processing applications, ensuring clearer and
more reliable outcomes even in noisy environments [70].
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3.4. Coordinates preprocessing

This chapter gives an overview of the complex and multifaceted processes required to
transform raw data from various sensors into useful, accurate environmental information.
Initially, there is a description of the synchronization necessary for the temporal alignment
of data captured by different sensors. Since sensors often collect data at different times
and with varying frequencies, a robust system must be developed to synchronise these
data streams, allowing them to be meaningfully combined and analyzed. Rotations and
scaling are required for full coordinate processing. Rotations are necessary to understand
the orientation of objects in space, while scaling is used to bring measurement data to a
typical magnitude. Both concepts are essential for the correct interpretation of spatial
relationships.

A significant part of data processing is filtering. Here, the methods of moving average
and low-pass filter are employed to reduce noise and increase the accuracy of sensor
data. Noise reduction allows for an accurate assessment of a system’s state, even with
uncertainties and measurement errors. A necessary next step is turning to sensor fusion,
a process that combines data from different cameras to obtain a more comprehensive and
accurate view of the environment. Angle calculation is essential as a relative size that
describes human posture. Finally, relative values are determined, a method that makes it
possible to describe features independently of the coordinate system, For example, the
MoCap suit has a different coordinate origin than the MediaPipe out. This enables the
evaluation of the HPE compared to the MoCap suit.

3.4.1. Camera synchronization

Synchronization is indispensable to integrate data from diverse sources effectively. Data
from a specific position share identical timestamps, essential when fusing data from two
cameras. Synchronization uses the MoCap suit as a reference, aligning y-plane movement
from MediaPipe with the z-coordinate from the MoCap suit, necessitating matching
sampling rates. Signals with higher frequencies undergo downsampling, adjusting the
MoCap suit’s 60 Hz to the camera’s 30 or 29.5 Hz. These signals, indicating frame-wise
differences on the specified axis, serve as robust features for assessing sequence dynamics.
The method applies outlier removal to diminish noise and artifacts impact, employing
a 15 Interquartile Range (IQR) threshold from the 25th and 75th percentiles of motion
amplitude, enhancing correlation analysis reliability.
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The synchronization process utilises cross-correlation between the motion signals to
identify the temporal offset (lag) that maximises the alignment of these signals across
data sources. Followed by segmenting the relevant segments, computing the full cross-
correlation, and determining the lag corresponding to the highest correlation coefficient.
The resulting lag indicates the necessary adjustment: a positive value implies that the
first signal starts earlier, while a negative value indicates the opposite. The mathematical
representation of the correlation z between two motion signals follows. If x and y denote
arrays and z = correlate(x, y), then the relationship can be expressed as:

z[k] = (x ∗ y)(k −N + 1) =

|x|−1∑︂
l=0

xlyk−l−N+1

where k ranges from 0 to |x|+ |y| − 2. Here, |x| represents the length of x, N is the larger
of the lengths of x and y, and ym is considered to be 0 for any m not within the actual
bounds of y [72].

Thereby, the resulting determination provides a reliable indication of the time difference,
enabling the alignment of the signals to a common starting point. The synchronization
approach, as described, offers a robust framework for aligning data from diverse sources
based on their movement characteristics.

3.4.2. Filtering

Two methods are introduced to reduce the noise in the measurements: the moving average
and the low-pass filter. Applying a moving average filter is a fundamental technique in data
processing, beneficial for smoothing out short-term fluctuations and highlighting longer-
term trends or cycles within a dataset. The rationale behind filtering data, especially
using a moving average filter, stems from the need to mitigate the impact of noise and
outliers that can obscure meaningful insights in raw data. Noise can originate from various
sources, including sensor inaccuracies, environmental variability, or random disturbances
and can significantly distort the actual signal. A moving average filter calculates a series
of averages from various subsets of the entire dataset. The main idea is to calculate the
average of the data points within a specific window that slides across the data. This
process smooths out short-term fluctuations and reveals the underlying trend by averaging
adjacent values over a specified period. The basic formula for a simple moving average of
a dataset is given by:
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MA(t) =
1

N

N−1∑︂
n=0

x(t− n), (3.27)

where MA(t) is the moving average at time t, N is the number of time periods in the
moving average window, and x(t− n) represents the data point at time t− n [73].

The choice of N , the window size, is important as it determines the filter’s smoothing
extent. A larger window will provide a smoother signal but can cause significant changes
in the data, whereas a smaller window will follow the data more closely but with less
smoothing effect. This filtering method is favoured for its simplicity, effectiveness, and
the fact that it requires no assumptions about the underlying data distribution, making it
a versatile tool in various data analysis applications [73].

Another essential tool in data filtering is the low-pass filter, which aims to attenuate
high frequencies while allowing low frequencies to pass through. This type of filter is
particularly useful for reducing noise manifested as high-frequency fluctuations and for
highlighting the fundamental, often low-frequency signals in a dataset. Low-pass filters
are commonly used in signal processing to smooth out unwanted disturbances or rapid
changes in the data, which can be considered noise [74].

In digital signal processing, a low-pass filter can be implemented through discrete convo-
lution of the input signal with a filter kernel or impulse response function. The formula
for a simple digital low-pass filter can be expressed as follows:

y[n] =

M∑︂
k=0

bk · x[n− k], (3.28)

where y[n] is the output signal, x[n] the input signal, bk the filter coefficients defining the
impulse response of the filter, andM the order of the filter. The choice of coefficients bk and
the order M of the filter are adjustable parameters that determine the filter’s frequency
characteristics, thus controlling how effectively the filter suppresses high frequencies.
Low-pass filters are similar in function to moving averages, but use weighted averages to
refine the data analysis. It is required that the sum of the weights is equal to one in order
to preserve the original data magnitude [74].
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The application of a low-pass filter removes high-frequency noise while preserving the
essential, slow changes in the signal. This renders it an indispensable tool in various fields,
from electronics to data analysis, where maintaining signal integrity while reducing noise
is required. Both filtering techniques, the moving average and the low-pass filter, are
utilised to improve the signal quality. According to the evaluation, the moving average
provides superior outcomes and is consequently selected as the default method.

3.4.3. Rotation and scaling

In the process of pose estimation, two significant effects can occur. Firstly, the estimation
may deviate in scaling because the image provides only a 2D projection surface. Con-
sequently, the BlazePose model, described in the previous Chapter (2.2), might result
in a variation in the overall scale, such that the person’s body height is not accurately
represented. Secondly, individuals generally differ in body stature, both in terms of height
and width. While the ratios between width and height are not always the same, they
tend to follow a specific scale. To counteract these effects, the estimations are normalised.
This normalization is achieved by scaling the body to the hip width, meaning that the hip
width is calculated using the following formula:

κ =
1

d(K23,K24)
. (3.29)

whereK23 is the keypoint left hip andK24 the keypoint right hip. d(K23,K24) is calculated
with

d(K23,K24) =
√︁

(x2− x1)2 + (y2− y1)2 + (z2− z1)2. (3.30)

This scaling factor κ is then applied in subsequent operations as follows [64]:

xscaled =

⎡⎣κ 0 0
0 κ 0
0 0 κ

⎤⎦ x.

As a result, the hip width is normalised to 1 at every instance, ensuring higher compa-
rability between different subjects and across various videos. This approach effectively
addresses the challenges of scale variation and body stature differences in pose estimation,
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facilitating a more accurate representation and comparison of human poses.

As a second normalization step, a rotational adjustment is made in addition to scaling.
This adjustment is necessary because the different cameras have varying rotations in
the coordinate system. Additionally, deviations in the estimation itself, including both
model errors and measurement errors, are addressed. To counteract these issues, a rigid
transformation is employed, limited to rotation and translation, without altering the
distances between points. This fully preserves the geometric integrity of the object. This
method effectively minimises distortions that may occur in many estimations. Moreover, it
is flexible in the coordinate axis, which enhances its effectiveness compared to a rotation
constrained to a fixed axis.

Mathematically, a rigid transformation can be expressed using a rotation matrix R and a
translation vector t, which together act to transform an original point p into a new point
p′, following the formula p′ = Rp+ t. The rotation matrix rotates the object around the
three axes of the space while the translation vector shifts its position.

A practical example of estimating a rigid transformation is aligning two sets of points in
different coordinate systems. First, it typically involves calculating the centroid of both
sets of points. This is achieved by computing the mean of the start and target points along
their axes, resulting in Amean and Bmean. The resulting centroids serve as reference points
from which the relative movement of the point sets can be assessed.

To align the points correctly, the mean is subtracted from each point, leading to points
centred around the origin. This operation aims to minimise the difference between the
two sets of points. Subsequently, a matrix H is formed by the product of the subtracted
points Amean and the transpose of Bmean. The SVD of H yields the matrices U, S, and VT ,
from which the rotation matrix R is derived as R = VT · UT .

A particular case occurs when the determinant of R is less than zero, indicating a reflection.
In this case, a correction is made by reversing the sign of the last row of VT and recalculating
R. Finally, the translation vector t is determined by rotating centroid A with R and then
subtracting it from B to obtain the displacement [75].

The benefits of this method are manifold, consisting of allowing an efficient and robust
estimation of the rigid transformation between two sets of points while completely pre-
serving the geometric integrity of the transformed object. This technique is beneficial in
applications where precision and the preservation of the physical properties of objects are
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critical, such as in the alignment of robotic components or the registration of medical im-
ages. Preserving the distances and angles between points enables accurate manipulation
of objects in 3D space without altering their fundamental structure.

3.4.4. Coordinate fusion

The presence of two cameras has a number of advantages. To gain an advantage from
this setup, the data from both sources must be fused, a process known as data fusion, for
which several options exist. Fusion can occur on three levels:

• Image level, where 2D data from each camera are determined and reconstructed
into 3D data.

• Coordinate level, meaning that 3D coordinates are combined.

• Relative level, where relative sizes are directly combined.

At the first option (Image level), the 3D reconstruction, as described in the previous
Section 3.3, is applied. All in all, 2D points are extracted from each camera and then fused
using camera geometry, with the Singular Value Decomposition (SVD) method minimizing
noise in the process. This modification alters the algorithm by first implementing fusion,
followed by rotation and scaling. This modification is shown in Figure 3.6.

px × py

MediaPipe Pose
Test Video Cam 1

Filtering

px × py

MediaPipe PoseTest Video Cam 2
Filtering

Coordinate Fusion Rotation & Scaling

Figure 3.6.: This illustration provides a clear description of the process depicted, emphasising the
reconstruction of 3D data from 2D inputs and the adjustment made to the algorithm’s
sequence to accommodate this process.

On the Coordinate level, three approaches are pursued: The first approach involves issuing
a visibility score (vis)for each estimated point, allowing the fusion to be based on the
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visibility of estimates, shown in the formula

xfusion = xcam1 ·
(︃

viscam1
viscam1 + viscam2

)︃
+ xcam2 ·

(︃
viscam2

viscam1 + viscam2

)︃
. (3.31)

The second approach incorporates prior knowledge, meaning that the position of the
subject relative to the camera is known through rotation. This means the Formula 3.31 is
used again, except that the visibility is fixed. This makes it possible to determine which
parts are likely to be clearly visible. To summarise, this means that when the camera is
positioned directly in front of a person, both the left and right halves are estimated as
equally significant. Nonetheless, when the person is sideways to the camera, the half of
the body that is visible in the camera is valued at 80%, while the more obscured half is
valued at 20%. The stated percentage values are based on a grid search using different
weightings. The analysis was carried out on the interval [60, 90] in 5 percentage point
increments. Besides, these primary factors are adjusted depending on the angle at which
the person faces the camera. Another approach involves combining the predetermined
fixed fusion with the fusion based on visibility, where half the factor is applied in each
case.

There is also the approach of selecting the coordinates associated to the highest visibility
score, but this is not recommended. Potential deviations could lead to distortions in
the skeletal model if points are selected from individual estimates rather than combined.
Therefore, this method has been omitted. The level of calculating relative sizes is excluded
from consideration because it no longer utilises the potential of coordinate data.

In summary, this means that 4 different fusion types are calculated and compared with
each other in Section 4.1. Fusion based on:

• ...the visibility from MediaPipe (fusion vis).

• ...the orientation of the subject to the camera (fusion a prior).

• ...the mixing of the orientation of the subject to the camera and the visibility of
MediaPipe (fusion mixed).

• ...the 3D reconstruction of two 2D HPEs (fusion rc)

In conclusion, integrating data from two cameras and applying these fusion techniques at
different levels can achieve a more accurate and robust representation of human motion,
enhancing the analysis within the used MoQuA algorithm.
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3.4.5. Relative values

In the current context, the analysis of human movements is discussed based on coordinate
information. Relative sizes are required to compare these with other coordinate systems,
such as a MoCap suit. Furthermore, these relative sizes can be used to obtain additional
features related to the coordinates themselves. These allow for a detailed examination
of the relative sizes within human anatomy. A key component of this analysis is the
angles within the body, defined by the relationship between two vectors. Three points
in three-dimensional space are required to determine the angles between these vectors.
Each point is either the start, middle or end point. This definition is necessary to get a
consistent angle. The following formula represents the calculation of an angle based on
such points [68]:

θ = cos−1

(︃
(b− a) · (c− a)
∥b− a∥∥c− a∥

)︃
.

Here a, b, and c represent the positions of the three points in space, with θ being the
calculated angle between them. This method allows to compute specific body angles, such
as:

• Elbow angle: utilizing the keypoints of the elbow, hand, and shoulder.

• Knee angle: defined by the points hip, knee, and ankle.

• Hip angle: based on the points knee, hip, and shoulder.

• Side angle: determined through the elbow, arm, and hip.

• Head angle: established by the points shoulder, midpoint of the shoulders, and nose.

Above angles, hip and shoulder width are classic relative sizes that can be derived from
coordinate information. These measurements are generally constant, with hip width
typically exhibiting less variance than shoulder width due to the shoulders having a
greater degree of freedom.

Additional relative sizes can be ascertained by calculating the distance between key and
hip points, for example, distance between hip and wrist. This is achieved by applying
the distance formula 3.30. Here, x1, y1, z1 and x2, y2, z2 represent the coordinates of the
points under consideration. Through these analytical methods, a profound understanding
of human motion is gained, which is essential for various applications from sports science
to rehabilitation.
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3.4.6. Limb and feature groups

In this section, the sorting of features into distinct limb groups as well as the different
groups of used features described in the preceding section, are delineated. The 33 features
are each allocated to a specific limb group. This allocation is undertaken both to enhance
understanding and to minimize noise. The Table 3.1 displays the assignment of individual
features to their respective limb groups. There are three variants defined for the features,

Landmark Limb Group Dimension
0-10 head 11

11, 12, 23, 24 torso 4
13, 15, 17, 19, 21 left arm 5
14, 16, 18, 20, 22 right arm 5
25, 27, 29, 31 left leg 4
26, 28, 30, 32 right leg 4

Table 3.1.: Assignment of the features from Figure 2.5 to the respective limb group [63].

each distinguished by a varying number of features. The first variant (f1) serves as the
baseline. This set comprises 27 features sourced from six limb groups, with each axis
contributing one feature. Additionally, it includes six primary angles that capture the
spatial orientation of the limbs. Except for the head angle, there are corresponding
features for both the left and right sides. The second variant (f2) builds upon the features
included in f1 by adding relative widths and distances between the limbs, such as the
hip-to-wrist and hip-to-ankle distances. This expansion increases the total feature count
to 55. This group is designed to evaluate the utility of these relative measurements. The
final variant (f3) is the most comprehensive feature set, combining the attributes of f2 and
each of the 33 keypoints without sorting them into limb groups, resulting in a total of 163
features. This approach aims to encapsulate all possible information, making classification
more challenging yet potentially leading to improved outcomes due to the increased data
available. Furthermore, each feature can be individually compared against the others,
facilitating a detailed analysis.

3.4.7. Summary

A comparison with the data from a MoCap suit is essential to evaluate the quality of all
the preprocessing steps and the overall estimation. A direct comparison is challenging
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because the MoCap suit uses a different skeletal model. This discrepancy means that the
individual keypoints do not align, preventing a direct comparison.

Specific relative measures, such as the elbow and knee angles, are compared to circumvent
this issue and still perform an evaluation. These measurements are chosen because they
do not depend on the coordinate system, making them viable for comparison despite
the differences in skeletal models. Additionally, the hip and shoulder width variance is
examined and normalised to the hip width for cases where scaling has not been applied.

These evaluation methods are designed to assess the effectiveness of the estimation
process. By comparing relative sizes independent of the coordinate system and analyzing
the variance in key measurements, it is possible to gauge the accuracy and reliability of the
motion analysis. These evaluation methods allow for an indirect but insightful evaluation
of how well the preprocessing and estimation steps perform in capturing human motion,
even when direct comparisons are not feasible due to model discrepancies.

3.5. Similarity measures for trajectories

The investigation and selection of suitable similarity measures for trajectories generated
during the execution of sports exercises demand a careful analysis of each method’s
characteristics to identify the one that can best handle variable speeds and potential
execution errors. Various similarity measures, including Euclidean distance, Hausdorff
distance, Fréchet distance, DTW, Time Warp Edit Distance (TWED), and Longest Common
Subsequence Distance (LCSS), offer different approaches to evaluating the similarity
between trajectories. In the following, these similarity measures are briefly introduced
and compared with each other. For simplicity, the explanations and definitions of the
individual similarity measures (excluding DTW) are newly introduced and should be
considered as only applicable within this section. Followed by a detailed description of
DTW as a selected similarity measure.

The Euclidean distance is a fundamental metric measure that calculates the direct geo-
metric distance between two points in space. Assuming there are two points rn and sn in
n-dimensional space, then the Euclidean distance results in

ED(rn, sn) =

⌜⃓⃓⎷ n∑︂
i=1

(ri − si)2. (3.32)
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It directly compares points to each other and requires the trajectories to be the same
length. This measure is unsuitable for comparing trajectories that are temporally shifted
or have different speeds, as it does not account for local time shifts and is not robust to
noise [76].

The Hausdorff distance broadens comparison capabilities by measuring the maximum
distance between two sets of points (A and B), allowing for evaluating trajectories of
differing lengths.

H(A,B) = max
{︃
sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(b, a)
}︃
, (3.33)

where a andbare points in A and B and d(a,b) is a selectable metric between two points.
However, this approach also does not consider the order of points, making it less suitable
for trajectories with variable speeds [77].

The Fréchet distance accounts for the arrangement of points along the trajectories by
utilizing the metaphor of a person and a dog positioned at either end of the trajectories,
having to move so that the ”leash” between them remains as short as possible. The Fréchet
distance between two curves, A and B, is defined mathematically as follows:

FD(A,B) = inf
α,β

max
t∈[0,1]

∥A(α(t))− B(β(t))∥, (3.34)

where t ∈ [0, 1] and α and β are continuous and strictly increasing functions mapping
from the interval [0, 1] to parameters describing the curves A and B. This approach is
more intuitive for comparing trajectories that may change in speed and direction but are
also not robust to noise [77].

DTW offers an advanced method for comparing trajectories by allowing the trajectories to
stretch or compress over time to find an optimal match. This makes DTW particularly
suitable for evaluating sports exercises, where the execution speed can vary without
affecting the correctness of the execution. DTW is flexible enough to compare trajectories
of different lengths and can adjust to account for local time shifts [76].

TWED and LCSS provide alternative approaches that entitle temporal distortions in
different ways. The TWED between two time series A and B is determined by the formula
min{D(m,n)}, where A and B are the time series being compared. The function D(m,n)
calculates the minimal edit distance considering deletions and insertions, with penalty
parameters λ for deletions or insertions and ν for mismatches. The special feature of
TWED is that it can assign penalty points for deleting and inserting points to improve
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the match [78]. The LCSS between two sequences A and B is expressed by the function
L(m,n), which determines the length of the longest common subsequence between the
two sequences. Here, A and B are the sequences being compared, and m and n are their
respective lengths. The special feature of LCSS is that it allows skipping elements, offering
some robustness against outliers [79].

Considering the specific requirements in evaluating sports exercises, particularly the
tolerance for variable speeds in execution, DTW emerges as the superior similarity measure
for different reasons. DTW’s ability to adjust trajectories by stretching or compressing
them over time to achieve an optimal match makes it especially suitable for analyzing
movements where speed tells little about the correctness of execution. This flexibility,
combined with the capability to handle different lengths and account for local time shifts,
provides a decisive advantage over other measures that either require a direct point-
to-point match or do not adequately consider the order of points. Hence, DTW is the
preferred choice for assessing the correct execution of sports exercises, considering the
inherent variability in execution speed [80]. Considering these attributes, the DTW
method proves to be a suitable measure for extracting meaningful features from trajectory
data. These features are necessary to train classifiers, especially in a context where only a
small dataset is available. Therefore, the following explains the precise functionality of
DTW.

3.5.1. Dynamic Time Warping

The following description of DTW is based on [81]. Suppose there are the time series
Q = [x1, x2, . . . , xM ] and C = [y1, y2, . . . , yN ], where, in the multidimensional case, for
example, the points consist of xi = [xi,1, xi,2, . . . , xi,K ] and yi = [yi,1, yi,2, . . . , yi,K ]. Here,
K describes the dimension, which is the same for both time series. M describes the length
of the first time series and N the length of the second time series. The goal is to find the
matching point from the other time series for each point so that the distance is minimised.
This process is known as warping, clearly indicating that the algorithm is non-linear. To
create this warping, a path is chosen for which the following constraints apply:

1. Monotonicity: The mapping must be monotonically increasing to preserve the
temporal order of points.

2. Continuity: Each point in a sequence must be assigned to at least one point in the
other sequence.
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3. Boundary conditions: The first point of a sequence must be assigned to the first
point of the other sequence and similarly for the last point.

This means a path is formed that links the two signals. The path is defined by π =
{(x1, y1), . . . , (xp, yq), . . . , (xM , yN )} with fl1 where applies max(M,N) ≤ fl1 ≤ (M +
N–1) and fl1 ∈ N. The length of the path is determined by the minimised cumulative
total distance. Thus, DTW can be described by:

DTW (Q,C) = min
π∈A(x,y)

√︄ ∑︂
(i,j)∈π

d2ij . (3.35)

To create an m×n matrix to determine the path, considering the entire space, all possible
paths A need to be calculated. The size of A, i.e., the number of possible paths from
one corner of the matrix to the opposite corner, is defined by the Delannoy number. The
sum of the individual distances gives the total distance. In the minimization process, it
is determined which of the following steps are chosen: insertion, deletion, match (these
steps need further elaboration).

The determination of the path can be found through dynamic programming:

D(i, j) = D(i, j) +min{D(i− 1, j)⏞ ⏟⏟ ⏞
Insertion

, D(i, j − 1)⏞ ⏟⏟ ⏞
Deletion

, D(i− 1, j − 1)⏞ ⏟⏟ ⏞
Match

}.

The termination condition of the recursive formula for calculating the edit distance occurs
when one of the sequence indices i or j becomes zero, indicating that one of the sequences
has been completely traversed. In this case, the distance directly corresponds to the
number of remaining characters in the other sequence, which need to be either inserted
or deleted to achieve equality. These three operations enable the adaptation of two time
series to each other by determining how the elements of one sequence are matched to
the elements of another sequence. In the following, a detailed description of the steps is
presented.

1. Insertion: This operation adds an extra point into the first time series to achieve
a better match with a point in the second time series. Insertion allows bridging
differences in the time series caused by temporary stretches or expansions in one
of the sequences. In distance calculation, an insertion contributes to a point in one
sequence matching multiple points in the other sequence.
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2. Deletion: Conversely, deletion allows for the removal of a point from the first time
series, thereby achieving a better fit with the second time series. This is useful for
minimizing the effects of contractions or brief events in the time series. Similar to
insertion, deletion helps to align the sequences despite local differences in duration
or the number of events.

3. Match: A match occurs when a point in the first time series is directly matched to
a point in the second time series without requiring an insertion or deletion. This
means that both points are considered equivalent based on a predefined similarity
or distance measure. Matches are ideal as they directly contribute to the alignment
of the two sequences without increasing complexity through additional operations.

The distance is adapted from Equation 3.32:

d(i, j) =
K∑︂
k=1

(xi,k − yj,k)2.

The recursive calculation using these three operations enables determining the cost (or
distance) of matching for each pair of elements in the two time series. The total cost
of a path through the matrix of distance values is minimised by choosing the optimal
combination of insertions, deletions, and matches for each step. This leads to determining
the optimal path, which exhibits the least cumulative distance (or the highest similarity)
between the two time series. Dynamic programming is employed to enhance the efficiency
of the calculation by storing and reusing already computed partial solutions. Calculating
the Delannoy numbers helps to understand the complexity of pathfinding in an m ×
n matrix and provides a mathematical basis for analyzing algorithms that find such
paths, such as DTW. By using this number in the context of pathfinding, the efficiency of
algorithms for finding paths in temporal sequences or spatial grids can be better assessed
and optimised.

Figure 3.7 illustrates the application of the DTW algorithm. Initially, DTW enables a
non-linear alignment between time series. This means it can identify patterns that have
been stretched or compressed in their temporal sequence, which is particularly valuable
when dealing with datasets that undergo the same phases but not within the same time
frame.

Another significant advantage, which is important for the MoQuA algorithm discussed
in this thesis, is the robustness of DTW against changes in speed. As the example in
Figure 3.7 demonstrates, DTW can recognise similar patterns in datasets, even if they are
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Figure 3.7.: An illustration of the advantage of DTW similarity: On the left is a synchronized signal.
The amplitude is shifted for display purposes. The gray lines show the connections of
the individual data points. The dummy movement is shifted on the right. The distance
of the two variants differs only slightly, which shows the elimination of the temporal
shift.

traversed at different speeds. This is crucial in speech recognition, for instance, where the
speaking rate can vary greatly among different people.

DTW is known for its enhanced performance in pattern recognition compared to other
techniques that rely on simple point-to-point distance measurement. The algorithm finds
the optimal match between sequences, leading to more accurate recognition. Furthermore,
DTW is highly versatile. It is not limited to acoustic signals but can be applied to a wide
range of sequential data, such as financial time series, biomedical signals, or motion
data. Lastly, DTW can be customised to the specific needs of a dataset by adjusting the
cost function and other parameters, further improving pattern recognition. The minor
differences in the distance indicated in the diagrams highlight how DTW handles subtle
differences in the temporal extension of sequences to allow for precise matching between
data points, thereby quantifying the similarity between sequences.

3.5.2. Summary

DTW is an effective method for measuring the similarity between two time-sequential
datasets that may operate at different speeds. Therefore, it is chosen to calculate the
features between the different time series. In the classification of exercise routines,
DTW enables the comparison of time series data from movement patterns, even when the
execution speeds vary, because it can adjust the temporal sequence to find an optimal match.
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This flexibility makes DTW particularly suitable for the analysis of sports movements,
where the consistency of the movement is more important than the speed at which it is
performed.

3.6. Classifiers

The last Chapter (3.5) describes how individual time series were transformed into distance
features by applying the DTW method. To make statements based on these features,
various classifiers are introduced, considering both simple classifiers and those with higher
model complexity. The aim is to let the different classifiers compete against each other on
the features.

3.6.1. Linear classification

Linear classification is a basic ML technique that offers a straightforward yet practical
approach for distinguishing between two or more classes. At its core, linear classification
seeks to separate classes using a decision boundary that is linear in nature. This simplicity
facilitates a clear understanding of the model’s decision-making process, enhancing
interpretability.

The essence of linear classification can be encapsulated in the formulation of a linear
equation or hyperplane, defined as wTx+ b = 0, where w represents the weight vector,
x is the feature vector, and b is the bias. The goal is to learn w and b such that the
hyperplane optimally separates the classes in the feature space. For binary classification
tasks, this method assigns labels based on the side of the hyperplane on which the data
points reside, making it a model of high utility for problems with clear linear separability
[82].

Linear classifiers, including Logistic Regression and Linear Support Vector Machines,
are renowned for their computational efficiency and ease of implementation. These
characteristics make linear classification models particularly appealing for tasks with large
datasets and in scenarios where a rapid model deployment is crucial. Moreover, the
linear approach serves as a foundation upon which more complex nonlinear models can
be constructed, often through kernel methods or polynomial feature expansion, thereby
extending their applicability to more intricate datasets.
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However, the simplicity of linear classifiers comes with its constraints. The primary
limitation lies in their inherent assumption of linear separability among classes, which
is only sometimes present in real-world data. Complex datasets with highly intertwined
classes may elude the grasp of linear classification, necessitating alternative approaches
that can capture the nonlinear relationships within the data.

Despite these limitations, the value of linear classification in the ML toolkit is undeniable,
and is therefore a good choice for meaningful characteristics, which this paper attempts
to achieve. Its straightforward interpretability and computational efficiency render it
an essential first line of analysis for many classification problems. Whether used on its
own for linearly separable datasets or as a stepping stone towards more complex models,
linear classification continues to play a key role in developing ML solutions across diverse
domains, from text categorization and image recognition to medical diagnosis and beyond
[82].

3.6.2. Support Vector Machine

The Support Vector Machine (SVM) technique is a classification method used to differ-
entiate between two or more classes. Unlike what the name might suggest, Support
Vector Machines are not physical machines but purely mathematical procedures. The basic
functioning and potential applications of SVMs are outlined in [83], explaining that SVMs
aim to establish a multidimensional, typically non-linear, decision boundary between
classes. This separating boundary is known as a hyperplane. The data points closest to
this hyperplane are termed Support Vectors, representing a subset of the distinctive input
data. The margin MM is defined as the distance between the hyperplane and the nearest
point. Ideally, this distance should be maximised to ensure the most distinct separation
between classes. Once a hyperplane is identified, it results in a simple decision function,
often represented by a step function. The dimensionality of the space is increased to
accommodate the number of features. Furthermore, dimensionality is increased until a
linear hyperplane can separate the generally non-linear data. This process may result in a
significant increase in dimensionality, subsequently increasing computational demands.
The ”Kernel Trick” offers a solution by providing a function that behaves similarly to a
dot product, eliminating the need to know the high-dimensional space to compute the
required dot product. The hyperplane and the Support Vectors are determined through
optimization techniques based on the training data. Unlike neural networks, SVMs are
robust against overfitting, though, like neural networks, they only predict the most likely
class, not the probability of its occurrence. However, this limitation can be mitigated
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by employing a Bayesian filter to estimate the probability, thus compensating for this
disadvantage [84].

3.6.3. Decision Tree

Decision trees [85] are a fundamental tool in ML theory, serving as the foundation for
numerous classification and regression methods. They model decision-making processes
as a series of branches, each representing a decision based on an attribute. These tree
structures are intuitively understandable, functioning similarly to a series of ”If-Then”
rules.

In evaluating human movements, especially concerning exercises and training, decision
trees can be employed to classify the quality of movement execution. Here, each node in
the tree serves as a decision point for specific movement characteristics.

The basics of a decision tree can be described as follows:

• Root Node: This is the starting point of the tree, representing the entire population
or dataset being analyzed. From this point, subgroups are created based on the
most distinguishing attributes.

• Branches: Each branch corresponds to a decision made based on an attribute, such
as the height of a jump or the consistency of stride frequency in a running exercise.

• Internal Nodes: These nodes represent points where an attribute check occurs,
further dividing the datasets.

• Leaves: The endpoints of the tree, making a final decision, in this context, whether
a movement was executed correctly or incorrectly.

In analyzing exercise movements, which is the basis of this work , a decision tree might
first distinguish the type of exercise at an internal node. Subsequent nodes could then
assess the technique, speed, and consistency of the execution. Ultimately, the tree leaves
would classify the movement as correct, needing improvement, or incorrect.

The selection of attributes and decisions at each node is based on statistical methods
to find the best division. Techniques such as maximizing the Information Gain Ratio,
Gini impurity, or the mean squared deviation in regression problems are employed. A
significant advantage of decision trees lies in their interpretability. They can be easily
visualised, facilitating the comprehensibility of decisions. This is particularly useful in
medical diagnostics or sports science, where understanding the decision-making process
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is almost as important as the decision itself. Methods like tree pruning can be applied
to prevent overfitting, where unnecessary branches are removed to simplify the model.
Moreover, performance can be enhanced through ensemble methods like Random Forests,
where the predictions of many decision trees are combined. In practice, applying decision
trees for exercise evaluation would begin with collecting data, such as video footage or
sensor recordings of individual training. After processing and extracting relevant features,
these data would be used to train the decision tree, enabling it to make evaluations and
provide feedback independently [85].

3.6.4. Random Forest

Random Forest is a robust ensemble learning algorithm that leverages the strengths of
multiple decision trees to create a robust model for classification and regression tasks.
By constructing several trees based on random samples of the training data (bootstrap
aggregation or bagging) and random subsets of features at each split, Random Forest
achieves high accuracy and control over overfitting. Each tree in the forest makes an
independent prediction, and the final decision is made through voting (in classification)
or averaging (in regression) across all trees [86].

In addition to the advantages already mentioned, Random Forest possesses several notable
strengths. For instance, it can determine the importance of features for prediction, which
is valuable for the model’s interpretability and understanding of the underlying data
structures. This capability renders Random Forest a predictive tool and an exploratory
analysis instrument.

Another advantage is its flexibility: Random Forest can handle missing data by using the
internal structures of the forest to impute missing values or minimise their impact. This
reduces the need for extensive data preprocessing.

However, like all models, Random Forest has its limitations. Beyond the potentially time-
consuming training process, the model’s complexity can complicate interpretation. While
decision trees are straightforward to understand, amalgamating many trees in a Random
Forest model can make it challenging to discern the specific reasons behind a prediction.

Moreover, the model size, especially with a large number of trees and features, can
lead to significant storage requirements. This may limit the use of Random Forest in
resource-constrained environments or applications requiring fast prediction.
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Despite these challenges, Random Forest remains a popular choice for many ML problems,
thanks to its high accuracy, robustness against overfitting, and ability to handle complex
data structures. Its versatility makes it a valuable tool for various applications, from
disease prediction in healthcare to customer classification in marketing [87].

3.6.5. Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models inspired by the human
brain’s structure and function, designed to recognize patterns and make decisions with
a level of complexity that traditional algorithms struggle to match. They consist of
interconnected processing units, or neurons, which work in parallel to solve specific
problems through learning. ANNs are capable of learning from data, making them highly
effective for tasks such as image recognition, natural language processing, and predictive
modeling. One of the main advantages of ANNs is their ability to handle and make
predictions from large and complex datasets, adapting their structure as they learn from
more data. However, a significant disadvantage is their ”black box” nature, which makes
it difficult to understand how decisions are made, complicating the process of debugging
and verification. Additionally, training ANNs can be computationally expensive and time-
consuming, requiring substantial hardware resources and energy consumption. Despite
these drawbacks, the versatility and efficiency of ANNs in processing and analyzing vast
amounts of data make them indispensable in advancing fields like artificial intelligence
and machine learning [88].

3.6.6. Gradient Boosting

Gradient Boosting is a machine learning technique that builds models in a stage-wise
fashion, where new models are created to correct the errors made by existing models
[89]. It works by combining multiple weak learning models, typically decision trees, to
create a strong predictive model. Each tree is trained on the residual errors of the previous
ones, gradually improving the model’s accuracy. A key advantage of Gradient Boosting
is its effectiveness in handling various types of data, including binary, categorical, and
continuous outcomes, making it highly versatile for a range of predictive tasks. Additionally,
it often provides high predictive accuracy that can outperform other models. However, a
major drawback is its tendency to overfit the data, especially with noisy datasets or when
too many trees are used without proper regularization techniques. Gradient Boosting
also requires careful tuning of its parameters, such as the number of trees and learning
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rate, which can be time-consuming and requires a significant amount of trial and error to
achieve optimal performance [90].

3.7. Explainable Artificial Intelligence

Upon the classification of each instance of the sports exercise, the initial task is to as-
certain which body part is accountable for the erroneous execution. Additionally, the
determination of which features are significantly informative will be made. Consequently,
an assessment of the informativeness of a feature and its value in the classification process
will be conducted. Subsequently, the principles of XAI and two prevalent methodologies,
LIME and SHAP, will be discussed.

XAI aims to make the outcomes of AI models understandable by humans. This field is
gaining importance as AI systems become more complex and widespread, necessitating
decision-making transparency, especially in critical healthcare, finance, and law applica-
tions. Within the scope of XAI, various ML models, including linear classification, Support
Vector Machines (SVM), decision trees, and Random Forests, offer varying degrees of
interpretability [91].

Linear Classification stands out for its simplicity and interpretability. It works by es-
tablishing a linear decision boundary that separates classes. The model’s decisions are
based on the relationship between input features and the target variable, which is directly
interpretable. For example, in logistic regression, a type of linear classifier, the coefficients
of input features indicate the importance and direction of the relationship with the tar-
get variable, offering clear insights into the model’s decision-making process. Support
Vector Machines (SVM) offer a slightly more complex scenario. SVMs work by finding
the hyperplane that best separates the classes in the feature space. While maximizing
the margin between classes is straightforward, using kernel functions to enable nonlinear
classification can obscure interpretability. However, the support vectors data points that
lie closest to the decision boundary provide direct insight into the decision process, as
they are the critical elements defining the boundary. Decision Trees are inherently inter-
pretable by design, as they mimic human decision-making processes through a series of
binary choices—essentially, a flowchart of decisions. This model’s structure allows for
easy visualization and understanding of how input features affect the outcome, with each
node offering a clear, rule-based decision point. The path from the root to a leaf can be
directly translated into a set of conditions leading to a particular decision, making decision
trees an excellent tool for XAI. Random Forests, while building on the interpretability of
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individual decision trees, introduce complexity by aggregating the outcomes of numerous
trees. This ensemble method improves prediction accuracy and robustness but at the cost
of direct interpretability. However, Random Forests contribute to XAI through feature
importance measures, which quantify the contribution of each feature to the prediction
accuracy across all trees in the forest. This offers a macro-level insight into the model’s
decision-making process, although it needs the decision path clarity found in a single
decision tree [92].

In conclusion, the quest for explainability in AI necessitates a balance between model
complexity and interpretability. The straightforward, rule-based insights provided by
linear classifiers and decision trees are valued for their high interpretability, although
they may fall short when dealing with complex, non-linear relationships. On the further
hand, models like SVMs and Random Forests, which are capable of capturing more
complex patterns, pose challenges to interpretability. It has been recognised that tools and
techniques within the XAI framework, such as LIME and SHAP, must be employed to shed
light on the decision-making processes of these intricate models. The continuous evolution
of AI underscores the importance of research in XAI methods that aim to enhance the
transparency and understandability of models, ensuring that the field progresses with a
commitment to clarity and accountability .

3.7.1. Local Interpretable Model-agnostic Explanations

LIME [93] is an innovative technique aimed at breaking through the black-box nature of
complex ML models by providing locally interpretable explanations for their predictions.
This method is particularly valuable as it enhances the explainability and transparency of
MLmodels, which is crucial for the acceptance and trust in AI. LIME generates explanations
by creating a new, human-understandable representation of the data, which might include
the presence or absence of certain words in a text or specific areas in an image. It then
constructs a local approximation of the complex model around the prediction using a
simple model, often a linear model. This simple model is trained to closely approximate
the predictions of the original, complex model near the instance being explained. LIME
selects features that are relevant to the prediction and weights them to show how they
influence the prediction. The refined explanation for a data point x involves the model g
that minimises the locality-aware loss L(f, g,Πx). This loss quantifies the inaccuracy of g
in approximating the model to be explained, f , within its vicinity,Πx, while simultaneously
maintaining a low model complexity. LIME seeks to identify an interpretable model g
that closely replicates the behavior of the complex model f near x. The foundational
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Figure 3.8.: Visualizing LIME: This illustration simplifies the complex decision function of a black-
box model into a local, linear approximation, centered on the significant instance
denoted by the bold red cross from [93].

mathematical expression for LIME is presented as:

min
g∈G

L(f, g,Πx) + λ · Complexity(g)

where f represents the complex model to be explained (for example, a Deep Learning
model), g is the interpretable model providing the explanation (often a simpler model
such as linear regression), L(f, g,Πx) denotes the locality-aware loss, measuring the
accuracy of g in approximating f in the vicinity of x, Πx is the weighting function that
defines the ”proximity” or relevance of points around x, λ is a regularization parameter
that controls the balance between the fidelity of approximation and the complexity of
model g, Complexity(g) measures the complexity of the explanatory model g, ensuring
interpretability. This formulation highlights LIME’s core objective: to create a locally valid
and interpretable model that elucidates the predictions of a complex model in the vicinity
of a specific data point, balancing the trade-off between approximation accuracy andmodel
simplicity for effective explanation. This basic idea is presented in Figure 3.8 The benefits
of LIME are manifold. First, it allows for better traceability of predictions from complex
models, which can be crucial for professionals in various fields, from medicine to finance.
Second, it fosters trust in ML models by demonstrating the features on which predictions
are based. Third, LIME can help uncover biases and injustices in model predictions by
showing which features are overvalued or undervalued. Fourth, it is model-agnostic,
meaning it can work with any classifier without understanding its internal workings.
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However, LIME also has drawbacks. One of the main criticisms is the locality of its
explanations. Since LIME provides local explanations around the prediction of a single
instance, these explanations may only be generalizable to some of the models or other
instances. This can lead to inconsistencies in explanations when analyzing different
instances. Another drawback is the complexity associated with interpreting explanations
generated by LIME, especially if the identified relevant features could be more intuitive to
the end-user. Moreover, the effectiveness of LIME can depend on the choice of human-
understandable data representation and the quality of the simple, local model, posing
additional challenges in implementation.

In summary, LIME offers a valuable approach to improving the transparency and compre-
hensibility of complex AI models by providing locally interpretable explanations. Despite
its limitations, such as limited generalizability and potential interpretation challenges,
it represents a significant step towards responsible AI by laying the groundwork for
understanding and verifying AI decisions [93].

3.7.2. SHapley Additive exPlanations (SHAP)

SHAP [94] is an innovative interpretation method for ML models based on cooperative
game theory principles. It utilises the Shapley value, a method from game theory, to fairly
and accurately assess the contribution of each individual feature to a model’s prediction.
SHAP aims to quantitatively capture the impact of features on the predictions of a model,
thus providing highly detailed insight into the ”why” behind a model’s decisions. This
method is model-agnostic, meaning it can be applied across a broad spectrum of ML
models, from simple linear models to complex deep learning structures. Mathematically,
the contribution of a feature i to the prediction of a model f for a specific instance x is
expressed by the Shapley value φi(f, x) of that feature is calculated as follows:

φi(f, x) =
∑︂

S⊆N\{i}

|S|!(|N| − |S| − 1)!

|N|!
(fx(S ∪ {Ni})− fx(S)) ,

where N is the set of all features, S is a subset of N excluding the feature i, fx(S) is the
prediction value of the model f , considering only the features in S (in addition to a base
value), fx(S ∪ {Ni}) is the prediction value of the model f , considering the features in S
along with the feature i, φi(f, x) is the SHAP value for the feature i, indicating the average
marginal contribution of feature i to the difference between the model’s prediction and
the base value. In the context of sets, the absolute value line, or the so-called ”cardinality”,
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denotes the number of elements in a set. The calculation of SHAP values is based on the
principle that the fair distribution of the ”gain” among all features should occur, so that the
contribution of each feature is measured based on its effects in all possible combinations
of features. This method ensures a consistent and fair allocation of contributions based
on the logic of marginal increment.

A key advantage of SHAP is enhancing the transparency and interpretability of complex
models, which is significant in many fields, especially in critical ones such as medicine and
finance. By quantifying the influence of individual features on model predictions, SHAP
helps to strengthen trust in ML decisions. Moreover, the fair allocation of contributions by
considering all possible combinations of features ensures a balanced assessment of feature
importance. This leads to a consistent and accurate representation of the influences of
features on predictions across different models. Nevertheless, the application of SHAP
also comes with challenges. The most significant drawback is the high computational cost,
especially for models with many features and data points, which may limit its application
in real-time systems or on very large datasets. Additionally, the amount and complexity
of information generated by SHAP can be overwhelming for end users without specific
technical background, complicating interpretation. The accuracy and usefulness of SHAP
explanations can also depend on how data was prepared for the model, potentially leading
to misinterpretations.

Despite these challenges, SHAP represents a significant advancement towards responsible
and interpretable Artificial Intelligence. By providing detailed insights into the decision-
making processes of models, SHAP promotes understanding and trust in ML systems. The
ability to quantify and explain the contribution of individual features to the predictions of
a model is an invaluable asset in the world of Artificial Intelligence, laying the foundation
for more transparent and fair decisions [94].

3.8. Summary

In summary, the individual steps of the MoQuA algorithm have been detailed, and the
entire algorithm pipeline has been explained. The resulting attributes show that the
MoQuA algorithm fulfils the expectations for the implementation of assessments in the
field of physiotherapy. A particular focus is on the use of cost-effective cameras and the
use of a small dataset. Based on the described development, the evaluation and analysis
of the algorithm now follow.
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4. Evaluation and Discussion

This chapter contains an evaluation of the developed MoQuA algorithm and its individual
components, looking closely at various aspects such as exercises, subjects, orientations,
and differences in camera perspective. The term „subject“is used in the following to
refer to the patient more specifically the person performing the sports exercises. The
chapter is focused on three main parts: The evaluation of the pose estimation and the
improvements achieved through preprocessing is the first part. The second part focuses
on the evaluation of the classification processes. The final part is about the identification
of relevant limb groups. Here, the assessment of the significance of individual features
is of particular interest to determine their relative importance and contribution to the
overall performance of the algorithm. In addition, the limb that is likely to cause the
error in the performance of the exercise is determined. Through this strategy, both the
strengths and weaknesses of the comprehensive MoQuA algorithm are illustrated in detail.
The following analysis provides a keen insight into the effectiveness and efficiency of the
analysed MoQuA algorithm and should contribute significantly to the understanding of
its applicability and performance in different contexts.

4.1. Human pose estimation

The following section analyzes and evaluates the accuracy of pose estimation. Data from
a MoCap suit is used as a benchmark. The two estimation approaches, BlazePose Model
from MediaPipe and MoCap suit cannot be directly compared because they differ in the
skeletal model. Therefore, the comparison is made through relative sizes to eliminate
model and coordinate system discrepancies.

The comparison between MediaPipe and the MoCap suit is based on six metrics, described
in Section 3.4.5: the widths of the hips and shoulders, which serve as comparison param-
eters due to their anatomical constancy, and four angles (left and right for both knees and
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Figure 4.1.: A plot demonstrating the execution of two consecutive push-ups. Displayed are the hip
and shoulder width, as well as the angles of the left elbows and knees. These values
are presented for the various types of HPE.

elbows angle) that capture the relative positions of the limbs to each other. The constancy
of hip width is assumed due to anatomical stability even during movements and the lower
constancy of shoulder width, despite possible minimal movement variations.

Figure 4.1 exemplifies a push-up exercise, where the double execution is displayed by
two pronounced wave peaks at the elbow while the legs remain extended and the knee
angle is almost constant. The analysis of the shown data indicates that the MoCap suit
shows little variance for hip and shoulder width, pointing to high accuracy. In general,
the lower the variance, the higher the accuracy of the HPE. In contrast, the camera-based
estimations show significant deviations, although the relative size fluctuation is similar,
and synchronization makes it possible to overlay the movements. This means that 3D
reconstructions can provide a good measure of relative sizes.

In the realm of angular movements, it is shown that exercises are never performed perfectly,
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Figure 4.2.: A table presenting the coefficient of variation of the hip width in percentages for the
combinations of subject, set (CX, SX) and various HPE methods. The value of 0.017%
of the MoCap suit is a basis for comparison.

as indicated by slight peaks, even in MoCap recordings. This implies that no exercise is
done flawlessly. The evaluation of these exercises includes the preprocessing steps carried
out, but it excludes normalization and scaling based on hip width from the analysis. These
specific preprocessing activities are not taken into account in this phase of evaluation,
because then the hip width is the same for all subjects at all times.

The application of a low-pass filter and a moving average was intended to smooth the
signal without significant signal delay. A moving average with a window size of n = 10
proved to be superior to the low-pass filter, which fell below the Nyquist limit, half of the
recording frequency of 30Hz. Therefore, the smoothing of the estimate was successful.
Figure 4.1 shows just an example of a single exercise, but it is necessary to make a more
comprehensive analysis across all exercises in order to get a generally valid statement.
Therefore, comparability is established by differentiating according to subject, set and
data type. For hip and shoulder width, the coefficient of variation is given in percent,
formalized by the equation [95]:

V K =
σ

µ
∗ 100%.

The coefficient of variation has the advantage of normalization to the mean, thereby
eliminating scaling factors and thus enabling comparability of values. The coefficient
of variation of the MoCap suit serves as a reference value, achieving 0.017%, indicating
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Figure 4.3.: A table presenting the coefficient of variation of the shoulder width in percentages
for the combinations of subject, set (CX, SX) and various HPE methods. The value of
3.1% of the MoCap suit is a basis for comparison.

theoretically high accuracy of estimation. For shoulder width, a coefficient of variation
of approximately 3.1% is reported, which was already expected due to the anatomical
mobility of the shoulder.

Figures 4.2 and 4.3 display the coefficients of variation of the pose estimation for various
scenarios, described in 3.4.4. It is shown that hip and shoulder widths yield similar results,
indicating a consistent performance of the algorithm. Generally, values for shoulder width
are higher, because of their anatomical condition.

The analysis of all subjects and sets shows that Camera 1 and Camera 2 deliver similar
results with a coefficient of variation of about 5.8%. This can be explained by the balancing
of good and bad estimates caused by the different orientations of the subjects. It was
found that fusion based on visibility achieves an improvement in estimation by 18, 49%,
highlighting the effectiveness of this method. Fusion based on a priori knowledge or a
combination of a priori knowledge and mix also shows improvements of around 18%,
although they are not quite as effective as pure visibility fusion.

The 3D construction through both cameras shows a more inferior result with 8.87%,
attributable to its dependence on both the pose estimation and the 2D data estimation.
The estimation for rotation and translation (R and T) is often only valid for a specific
image area and is difficult to determine accurately, as described in Section 3.3.3.

Differences between the individual sets, i.e., combinations of subject and set, are clearly
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Figure 4.4.: A table presenting the RMSE of the knee angle for the combinations of subject, set
(CX, SX) and various HPE methods.

observable. Unsatisfactory results, due to their performance values, are particularly
apparent in C1, S2 and C5, S2. In contrast, C4, S1 and C1, S1 stand as examples of
particularly good results. Differences between subjects, such as C1 and C5, could be
traceable to factors like clothing and general body structure affecting the estimation
accuracy of MediaPipe.

Following the analysis of the coordinates, the analysis of relative positions is now described
by examining the angle ratios. The Root Mean Square Error (RMSE) serves as the
benchmark for evaluation, with its results presented in Figures 4.4 and 4.4. An initial
finding indicates that the knee angle consistently achieves better results than the elbow
angle, suggesting that the position of the knee angle can generally be estimated with
greater accuracy than that of the elbow. This might partially be attributed to the increased
difficulty in localizing the position of the hand.

Camera 2 delivers slightly worse results than Camera 1, likely due to the limited visibility
of the angle from Camera 2’s perspective. Furthermore, it is shown that fusion based
on visibility allows for an improvement of about 25% over using just one camera for
estimating the elbow angle, although only a minor improvement is achieved for this angle.

Compared to relative coordinates, both the a priori and the mix fusion show improved re-
sults, suggesting that the relative positions are captured more accurately by these methods.
Notably, the fusion based on reconstruction delivers even better values, highlighting the
potential benefit of reconstruction since the relative positions are depicted more accurately,
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Figure 4.5.: A table presenting the RMSE of the elbow angle for the combinations of subject, set
(CX, SX) and various HPE methods.

even if this leads to a higher variance in absolute values.

Additionally, fusion based on angles (relative level) further improves the results, though
the advantage here is less usable since no fusion occurs at the coordinate system level.
Generally, it can be noted that the differences within the subject and set variations, with
some exceptions, are smaller. This leads to the conclusion that estimating relative positions
is simpler and more accurate than estimating absolute positions.

In the analysis of the effects of camera selection on the accuracy of pose estimation, the
difference between the two types of cameras, Reolink and webcam, is distinguished.
By analyzing all subjects and sets and associating them with the respective cameras, it
was found that the Reolink, on average, delivers 23.09% better results than the webcam.
Specifically for hip width, the webcam scored an average of 5.24%, while the Reolink
achieved 4.03%. There are two reasons, which can mainly explain this difference. First,
the Reolink cameras have a significantly higher resolution than webcams, providing a
more detailed pixel basis for estimations. Second, the Reolink recordings were conducted
in a larger space of 5× 5 meters, compared to 3× 3 meters for the webcam. This resulted
in placing the subjects more centrally in the image, where camera efficiency is higher.
However, the significance of the comparison between camera types is limited by several
factors. The number of subjects and the number of performances per orientation were
not identical between the camera types, therefore a comparison is hard to make.

These inaccuracies cannot be eliminated from the data, as no error modelling has per-
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formed in this case. While they do not reduce the validity of the observed differences
between the cameras, they complicate the quantification of the actual extent of these
differences. Therefore, it is important to emphasize that the conclusions drawn about the
impact of camera selection on the accuracy of pose estimation are bound by the mentioned
limitations.

Figure 4.6.: C5, S2 Figure 4.7.: C1, S2

Figure 4.8.: Two images showing the orientation for case (C1, S2 and C5, S2). This illustrates the
difficulty of estimation, as the subject is turned away from the camera and is in the
depth of space.

The previous analysis in this section has already shown differences between individual
sets, with the ones depicted in Figures 4.7 and 4.6 being particularly noteworthy. These
illustrations show that the referenced represent scenarios in which the subjects are turning
away from or looking sideways at the camera. This is a significant challenge for estimation
accuracy, as the MediaPipe model is primarily designed to recognize persons who are
directly faced towards the camera or in a lateral position.

An additional complicating factor is the positioning of subjects deep within the room, which
means a greater distance to the cameras. This results in fewer pixels per square meter being
available, reducing the pixel density and thus the available resolution for estimations. The
combination of these two factors leads to a significant deterioration in estimation quality,
which stands out in the respective tables with deviations of over 482.97% compared to the
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average. As a result, it can be inferred that for effective classification it is necessary that the
patient are in a position in which they are facing the camera. Alternatively, the model used
must be powerful enough to provide reliable estimates even under suboptimal conditions
- such as reduced pixel density and unfavourable orientations of the subjects, which is
note the case yet. Figure 4.9 presents another subject and exemplifies several, previously
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Figure 4.9.: A plot demonstrating the execution of two consecutive push-ups. Displayed are the hip
and shoulder width, as well as the angles of the left elbows and knees. These values
are presented for the various HPE estimates.

described findings. First, it is noticeable that significant differences in estimation accuracy
can occur between Camera perspectives 1 and 2, depending on the subject’s orientation,
particularly visible at the left elbow. Second, the consistency of the 2D reconstruction is
remarkable, remaining steady regardless of whether the left or right side is viewed. When
examining the left elbow, it is observed that the estimations consistently show an offset
compared to the MoCap suit. Moreover, it is evident that the fusion techniques, both
based on visibility and a priori knowledge, form a good average between the estimates
from Cameras 1 and 2. Specifically, fusion techniques based on visibility prove to be
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8.70 5.91 6.93 3.80 3.96 6.28 6.04 5.94

7.09 5.89 5.84 3.52 5.31 5.65 9.46 6.11

7.47 4.73 4.84 2.59 3.53 4.42 7.21 4.97

7.62 4.87 4.82 2.65 3.72 4.54 7.21 5.06

7.53 4.77 4.83 2.61 3.59 4.46 7.21 5.00

10.76 11.09 8.34 3.90 7.89 11.56 10.02 9.08

hip VK [%]

Figure 4.10.: A table presenting the coefficient of variation of the hip width in percentages for the
combinations of exercise types and various HPE methods. The evaluated exercises
are swimming (sw), push-ups (pu), kick-backs on all fours (4f), squats (sq), push-ups
variation 2 (p2), lunges (lu) and sit-ups (si).

significantly advantageous, because they are closer to more accurate estimates.

The following part of the evaluation is focused on the differences in recognition perfor-
mance across the seven recorded exercises. It begins by considering the absolute sizes,
represented by the hip and shoulder width, listed in Tables 4.10 and 4.11. Based on these
data, a consistent ranking regarding the effectiveness of the various fusion techniques can
be created, similar to the examination of individual subjects and sets. These data match
the previously described results.

In Tables 4.12 and 4.13 the RMSE of the knee and elbow angle are shown. Significant
differences in recognizability are evident in the different exercises. The squat exercise
shows the lowest error value, making it the most accurately captured. In contrast, the
exercises swimming and fit apps are noticeable for significantly worse recognition rates.
This is because the MediaPipe model was primarily trained on recognizing standing or
moving persons and less on lying down or curled-up positions. This discrepancy makes
correct estimation by MediaPipe difficult and leads to increased error rates for these
specific exercises. Therefore it is more difficult for the classifiers. The exercises push-
up, squat, and lunge, as well as an alternative variant of push-up, can be found in the
middle of the ranking. These results imply that certain physical positions and movements
can be captured by MediaPipe with greater accuracy than others, attributable to the
specific training data basis of the model. In the further analysis of relative sizes and
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9.77 6.71 4.29 3.76 4.53 4.40 8.29 5.97

9.12 5.70 5.41 3.82 5.72 6.03 12.96 6.97

8.44 4.99 4.17 2.46 4.22 4.33 8.96 5.36

10.88 7.58 6.25 7.21 6.07 5.90 16.21 8.58

8.81 5.31 4.43 3.30 4.43 4.38 9.98 5.81

11.11 9.53 5.56 5.49 7.66 8.19 13.93 8.78
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Figure 4.11.: A table presenting the coefficient of variation of the shoulder width in percentages for
the combinations of exercise types and various HPE methods. The evaluated exercises
are swimming (sw), push-ups (pu), kick-backs on all fours (4f), squats (sq), push-ups
variation 2 (p2), lunges (lu) and sit-ups (si).
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12.00 8.46 27.84 11.90 21.54 18.05 18.64 16.92

10.94 13.66 30.14 15.62 30.00 20.06 22.16 20.37

9.80 8.34 25.45 13.16 16.97 17.31 19.48 15.79

9.63 9.24 25.35 12.46 16.96 16.86 17.63 15.45

9.30 8.32 25.05 12.71 16.44 17.03 18.10 15.28

8.92 8.95 26.16 11.60 15.88 18.43 17.52 15.35

9.36 8.36 18.04 12.36 16.76 15.38 22.22 14.64

knee angle rmse [degree]

Figure 4.12.: A table presenting the RMSE of the knee angle for the combinations of exercise types
and various HPE methods. The evaluated exercises are swimming (sw), push-ups
(pu), kick-backs on all fours (4f), squats (sq), push-ups variation 2 (p2), lunges (lu)
and sit-ups (si).

their correlation to the subjects and their positions in space, the previously discussed
outcome is verified too. It appears that some exercises yield better estimation results when
considering relative sizes than absolute sizes. A striking example of this is the swimming
exercise, where the knee angle can be estimated relatively precisely, whereas the elbow
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angle exhibits significantly poorer results. This difference can primarily be attributed to
the fact that, in recordings with the webcam, the hands are often positioned at the edge
of the frame, negatively impacting the estimation accuracy, as previously discussed. The
exercises performed on all fours and the second variant of the push-up for the knee angle
also stand out, by possessing a lower performance. It can be assumed that in these cases,
an unusual, rarer position leads to an increased error degree. This emphasizes that the
difficulty of correct recognition and estimation heavily depends on the specific exercise.
Particularly challenging seems to be the exercises sit-ups and swimming, as well as the
all-fours position, which turn out to be particularly difficult to recognize. Verified with the
presented VK values. In contrast, the other exercises can be estimated with significantly
higher accuracy.
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44.10 28.84 27.33 21.52 30.24 23.90 30.79 29.53

46.60 29.37 18.24 21.73 30.42 14.22 36.40 28.14

39.30 27.79 19.79 20.88 28.28 15.81 35.76 26.80

41.53 26.26 19.89 19.42 26.88 17.18 32.95 26.30

39.67 26.80 19.50 19.74 27.40 15.87 33.73 26.10

22.56 19.11 15.43 19.82 18.78 21.08 25.29 20.30

39.75 26.65 20.30 17.84 26.88 15.30 30.99 25.39

elbow angle rmse [degree]

Figure 4.13.: A table presenting the RMSE of the elbow angle for the combinations of exercise types
and various HPE methods. The evaluated exercises are swimming (sw), push-ups
(pu), kick-backs on all fours (4f), squats (sq), push-ups variation 2 (p2), lunges (lu)
and sit-ups (si).

All in All, it can be stated that estimations using camera technology generally show lower
accuracy compared to inertial sensors, as used in MoCap suits. However, the error margins
are similar, making the results comparable. In this section it has been presented that
fusing data from two cameras improves the accuracy of estimations, thereby potentially
facilitating subsequent classification.

The evaluation of the HPE with MediaPipe has also shown that the type of recording,
the orientation of the persons towards the camera, and the type of exercises performed
significantly influence estimation accuracy. This means that the system has to deal with

74



varying quality in the datasets. Another finding discusses the differences between relative
and absolute sizes: in many cases, relative sizes prove to be superior to absolute sizes.
This is due to the greater error tolerance in relative sizes, especially when all points exhibit
the same error and therefore the relative positioning to each other does not change. This
points out that features based on relative sizes are likely to have a positive impact on the
accuracy of the estimation.

Overall, the high-quality estimations should enable effective classification. The previous
described aspects highlight the importance and potential of camera technology for pose
estimation, even if it currently does not quite reach the level of inertial sensors.

4.2. Exercise classification

Based on the evaluation of HPE, this section evaluates exercise classification. The follow-
ing section emphasizes the utilization of features computed through the DTW method,
evaluating their efficacy in conjunction with various classification algorithms. The aim is
to develop a robust model capable of classifying the performing of various exercises with
high precision by distinguishing between correctly and incorrectly performed movements.

This part of the evaluation begins with an exploration of different models, which are
trained on the fusion vis and on the fusion rc (3D reconstruction). The aim is to determine
which is more effective: better focus on visibility fusion or 3D reconstruction. These
fusion types are chosen because, in the previous part of the evaluation, the performance
of visibility data in terms of overall accuracy and the precise relative positioning achieved
through 3D reconstruction is superior. The evaluation encompasses a spectrum of classic
ML algorithms, including Decision Trees (DT), Random Forests (RF), SVM (SVC), Gradient
Boosting (GB), Logistic Regression (LR), and Artificial Neural Networks (ANNs), detailed
in Chapter 3.6. A total of 365 exercise recordings are utilized for training and testing,
partitioned in an 80:20 ratio, selected due to established allocation [88]. Each ML model
is evaluated considering a range of hyperparameters. For Decision Trees, aspects such as
the maximum number of features, maximum depth, selection criterion (Gini Coefficient
or Entropy) and the minimum number of samples per split or leaf are considered. Similar
adjustments are made for Random Forests, Gradient Boosting and SVM, with the latter
focusing on the kernel type and the regularization parameter C. In the case of ANNs,
various architectures are explored, from simpler models with two layers (e.g., 64 and 32
neurons) to more complex configurations with up to five layers and an increasing number
of neurons, aiming to maximize the network’s capacity for feature extraction. Activation
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functions include ReLU (Rectified Linear Unit) and Hyperbolic Tangent, culminating in an
output layer with a sigmoid function.

Optimal combinations of hyperparameters are determined through Hyperparameter Tun-
ing via Random Search, supported by a 5-fold Cross-Validation. Cross-validation is a
statistical technique for evaluating and enhancing the accuracy of prediction models by
partitioning the data into several parts and systematically testing the model with different
parts such as training and test data. This process shall achieve that the ML model’s ro-
bustness against diverse datasets and mitigate overfitting. This traninigs method enables
efficient exploration of the hyperparameter space, ensuring a robust estimate of model
performance across different data segmentations. The hyperparameter exploration is
conducted through Random Search, with the combination of hyperparameters capped at
a maximum of one thousand due to the computing time.
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Figure 4.14.: Results of the model trained on fusion vis with feature variants f1,f2,f3, Single-Subject
(single) or Multi-Subjects (multi) and the ML-Models Decision Trees (DT), Random
Forests (RF), SVM (SVC), Gradient Boosting (GB), Logistic Regression (LR), and
Artificial Neural Networks (ANNs). The best model with 91.7% acc is a decision tree
f2 single.
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The ML models are trained on different variants of the dataset’s pre-processing. First,
models based on the dataset from fusion vis were evaluated. These models were configured
with three distinct feature sets to examine the impact of feature selection on model
performance (as described in Section 3.4.6).

• Variant 1 (f1): This feature set comprises 27 features originating from seven limb
groups, with each axis forming a feature. Additionally, it includes six primary angles
that capture the spatial orientation of the limbs.

• Variant 2 (f2): Alongside the features contained in f1, this set further includes
relative widths and distances between limbs, raising the total number of features to
55.

• Variant 3 (f3): This most comprehensive feature set combines the features of f1 and
f2 with individual keypoints and their groupings, resulting in a total of 163 features.

Furthermore, two data variants were considered in the following evaluation: Multi-Variant
(Multi-Subjects) and Single-Variant (Single-Subject). The Multi-Variant utilized the entire
dataset to provide a broad view across multiple subjects. In contrast, the Single-Variant
was limited to data from a single subject, thereby reducing the dataset to 119 records.
The performance of the models was evaluated using various metrics, including Accuracy
and the F1-Score. The F1-Score is defined as

F1 = 2× precision× recall
precision+ recall

and represent the harmonic mean of precision and recall. Precision measures the propor-
tion of true positive predictions among all positive predictions made by the model, while
recall assesses the proportion of actual positives that were correctly identified [88]. As
depicted in Figure 4.14, the results showcase a broad spectrum of model accuracies. The
metrics are based on the test data set.

As expected, the Single-Variant demonstrated significantly better performance. This leads
to the assumption that models trained on data from a single subject are more reliable.
The most effective Single-Variant model achieved an accuracy of 91.7% and an F1-Score
of 92.3%. In contrast, the best Multi-Variant model achieved an Accuracy of only 72.6%,
emphasizing the significance of feature selection. Notably, the best-performing model was
trained with the feature set from Variant 2.

Upon examining the performance of individual classifiers, no unequivocally superior
methods were identified. Decision Trees are particularly effective, exhibiting nearly
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similar good performances in detecting both positive and negative cases. This indicates
a balanced model capability, without a tendency for misinterpretation in any specific
direction. This speaks in favour of a well-balanced classification.

The observed similarity in model performance can be attributed to the limited size of the
dataset, which restricts the variance in performance metrics.
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Figure 4.15.: Results of the model trained on fusion rc with feature variants f1,f2,f3, Single-Subject
(single) or Multi-Subjects (multi) and the ML-Models Decision Trees (DT), Random
Forests (RF), SVM (SVC), Gradient Boosting (GB), Logistic Regression (LR), and
Artificial Neural Networks (ANNs). The best model with 91.7% acc is a decision tree
f1 single.

Figure 4.15 illustrates the training results of models developed based on 3D construction
features. Notably, the model utilizing fusion vis displays comparable performance to the
best models in this category. Subsequent models, based on fusion rc, exhibit a slight
reduction in performance, approximately 3 to 4 percentage points on average. Interestingly,
the performance of the most inferior models in this category exceeds that of models
based on fusion vis. A consistent observation is that ML models trained exclusively on
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data from a Single-variant (Single-Subject) yield significantly better results compared to
those using data from multi-variant (multi-subjects). This pattern highlights the balanced
classification capability of the again, as no evidence was found suggesting disproportionate
representation of either class. The analysis of individual classifiers suggests that Decision
Trees continue to lead in this context as well. A direct comparison between models
based on 2D features and those utilizing 3D construction features indicates that both
approaches deliver satisfactory results. While 3D construction tends to offer a higher
average accuracy, models based on fusion vis achieve a higher maximum accuracy. This
leads to the conclusion that both approaches have their respective strengths. Therefore it
is difficult to say which construction is the best because both have their advantages.
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Figure 4.16.: A Comparative Analysis of Movement Variability: Highlighting Differences in Body
Proportions (a), Participant Positioning (b), and Movement Execution (c). Black and
red each represent different subjects performing the same exercise, the movements
are synchronised. These distinctions, along with errors, are captured as variances in
DTW, complicating the classification process.

The superior performance of Single-Subject models compared to Multi-Subject models
can be explained by three primary, non-error-related differences, as depicted in Figure
4.16. These differences contribute to the widening distance between the test exercise and
the Golden Standard. As a result, these differences perceived as errors

• Differences in body proportions: Despite applying a scaling factor based on hip
width, significant variabilities in proportions persist, such as the ratio of leg length to
hip width, arm length to width, and shoulder width to hip width. A simple scaling
factor based on hip width cannot fully neutralize these differences.

• Differences in the positioning of the participants: The initial body posture varies
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among subjects, leading to different starting points for the performance of move-
ments.

• Differences in the exercise of movements: Even for standardized exercises, such
as squats, arm movements and other aspects of performance can vary between
individuals. These variations are not errors in the traditional sense but lead to
deviations which should be taken into account.

In Single-Subject models, these variabilities are minimized due to the consistency of body
proportions and exercise performance within an individual. This is not the case with
Multi-Subjects approaches, resulting in increased challenges and correspondingly lower
performance. So-called error correction models have been developed to minimize the
effects of these three differences. These models randomly adjust small rotations and
stretches as well as randomly chosen bias. The adjustment is retained if such adjustments
reduce the distance between model prediction and actual data. This method aims to
improve performance, particularly in Multi-Subjects settings, by eliminating recognizable
but unwanted described bias.

Figure 4.17 shows the results of ML models that have been enhanced using Modeling
Error Correction techniques, from which two primary observations emerge. ML models
predicated on Multi-Subjects data exhibit an average performance enhancement of 3 to
4 percentage points. This suggests that the implemented error correction techniques
are particularly efficacious in the processing of heterogeneous data sources. In contrast,
models based on Single-Subject data experience an average performance decrement of
approximately 5 percentage points. This phenomenon may be attributed to the specific
nature of error correction, which may not offer the same benefits in scenarios characterized
by more consistent data sources and could potentially impair model performance through
overfitting or by worsening errors less pronounced in homogeneous data. Moreover, it
is significant that complex models like Artificial Neural Networks (ANN) or Gradient
Boosting exhibit improved performance after error modelling is applied. This enhance-
ment is notable when compared to their performance before the error modelling. This
indicates that the characteristics rectified through error modelling become more complex,
thereby enabling more sophisticated algorithms to more adeptly capture and generalize
the underlying patterns.

The improvement in Multi-Subjects model performance accentuates the critical impor-
tance of the targeted application of error correction techniques. Whereas in contrast
the performance seen in Single-Subject models due to error modelling shows a decline.
These methods need to be carefully customized to the unique features of the dataset
and the specific phenomena being modelled in order to improve model performance. In
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Figure 4.17.: Results of the model trained on fusion vis with feature variants f1,f2,f3, Single-Subject
(single) or Multi-Subjects (multi) and with reduced model errors (me) and the ML-
Models Decision Trees (DT), Random Forests (RF), SVM (SVC), Gradient Boosting
(GB), Logistic Regression (LR), and Artificial Neural Networks (ANNs). The best
model with 87.5% acc is a Gradient Boosting f3 single.

addition, emphasize these findings and the necessity to comprehend the complexity of
modelling errors and effectively address them through customized modelling approaches.
Thus ensuring that the chosen methods are congruent with the data’s inherent proper-
ties and the analysis’s objectives. Moreover, analysis was performed with model error
reduction for fusion rc, shown in Figure 4.18. This confirmed the previously observed
trend. These findings support the hypothesis that both fusion methods display similar
performance ranges and that error correction is generally beneficial, although it can lead
to performance losses in specific individual applications. This contributes to a decrease
in the overall performance of the MoQuA algorithm. When dissecting the analysis into
Single- and Multi-Subjects scenarios, it was found that Model DT vis f2 Single was the
most effective for Single-Subject scenarios with an accuracy of 91.7%, whereas the best
model for Multi-Subjects scenarios was DT rc f1 multi me, reaching only 74% accuracy,

81



0 20 40 60 80 100
Score [%]

SVC rc f3 Single me
DT rc f2 Single me

ANN rc f3 Single me
DT rc f3 Single me

SVC rc f2 Single me
ANN rc f2 Single me
ANN rc f1 Single me
SVC rc f1 Single me

GB rc f1 Single me
RF rc f2 Single me
GB rc f2 Single me
RF rc f3 Single me
RF rc f1 Single me
GB rc f3 Single me
DT rc f1 Single me
LR rc f2 Single me
DT rc f1 multi me
GB rc f2 multi me
RF rc f1 multi me
RF rc f2 multi me

LR rc f1 Single me
GB rc f1 multi me
DT rc f2 multi me
DT rc f3 multi me

SVC rc f2 multi me
SVC rc f1 multi me

ANN rc f1 multi me
SVC rc f3 multi me

ANN rc f2 multi me
ANN rc f3 multi me

RF rc f3 multi me
GB rc f3 multi me
LR rc f2 multi me
LR rc f1 multi me

LR rc f3 Single me
LR rc f3 multi me

M
od

el

Accuracy

0 20 40 60 80 100
Score [%]

F1 Score

Figure 4.18.: Results of the model trained on fusion rc with feature variants f1,f2,f3, Single-Subject
(single) or Multi-Subjects (multi) and with reduced model errors and the ML-Models
Decision Trees (DT), Random Forests (RF), SVM (SVC), Gradient Boosting (GB),
Logistic Regression (LR), and Artificial Neural Networks (ANNs). The best model
with 83.3% acc is a SVC f3 single.

reflecting a substantial discrepancy of 17.7%. This significant variation implies that post-
hoc adjustments are essential for managing side effects when using data from multiple
subjects. While such modifications may negatively affect the performance when analyzing
data from a Single-Subject, highlighting the importance of context-specific optimizations
in applying error correction techniques to maximize model efficacy.

Further on a comparison between the two camera types, Reolink and webcam, is analysed.
This is possible because the same subject took part in both recording variants. Using the
same parameters as the best model previously described for this subject, a difference can
be identified. The Reolink variant achieves an accuracy of 71.42, while the webcam variant
achieves an accuracy of 79.1. These results should be viewed in the context that around
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two-thirds of the data comes from the webcam variant, so it can only be generalised to a
limited extent.
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Figure 4.19.: Comparative ROC curves of the two best models for Single and Multi- Subjects:
Single-Subject model shows superior classification performance with an AUC of 0.95,
while Multi-Subject model demonstrates moderate discrimination capabilities with
an AUC of 0.70.

In an additional analysis of the classification performance of the best models for Single-
Subject and Mulit-Subject significant differences in their ability to differentiate between
the considered classes are revealed. This analysis is represented by the Receiver Operating
Characteristic (ROC) curves in Figure 4.19. The models, specified as DT vis f2 Single and
DT rc f1 multi me (error reduction), are subsequently evaluated based on their Area Under
the Curve (AUC) values. DT vis f2 Single (Blue Curve). This curve achieves an AUC of 0.95,
indicating excellent class discrimination ability. An AUC near the ideal value of 1 signals a
high model performance, with the curve’s proximity to the upper left corner of the graph
serving as an indicator of superior model performance. The position of the blue curve,
close to this corner, highlights the strong classification capacity of Model DT vis f2 Single.
DT rc f1 multi me (Green Curve). In comparison to both models, Model DT rc f1 multi me
with an AUC of 0.70, exhibits satisfactory but significantly lower performance. This means
that DT rc f1 multi me is capable of class differentiation but with less precision compared to
Model DT vis f2 Single. The dashed line in the diagram represents a random classifier with
an AUC of 0.5, which makes no distinction between the classes and is used as the baseline.
The performance of both models above this line confirms their ability to classify beyond
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random levels. The ROC curve plots the False Positive Rate (FPR) on the X-axis against
the True Positive Rate (TPR, also known as sensitivity) on the Y-axis. FPR is derived as 1
minus the specificity. A ML model that achieves a high TPR while maintaining a low FPR
effectively identifies the actual positive cases while minimizing the number of false-positive
classified cases. The previously presented evaluation demonstrates that, based on the
ROC curves and AUC values, Model DT vis f2 Single is the preferred classifier over DT
rc f1 multi me due to its superior ability to distinguish between classes precisely. This
analysis highlights the importance of AUC as a metric for evaluating model performance
in classification tasks, highlighting its utility in identifying models with an optimal ability
to distinguish capabilities.

In summary, for this section, the best model for single-subject scenarios, DT vis f2 Single,
achieved an accuracy of 91.7%, while the leading multi-subject model, DT rc f1 multi me,
reached 74%. This substantial difference of 17.7 percentage points underscores the need
for customized error correction methods, especially when analyzing data from multiple
subjects, to enhance accuracy. Overall, two satisfactory models were developed.

4.3. Feature importance and limb group detection
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Figure 4.20.: Shows the 10 most influential features for the two best models according to LIME
analysis

This section is based on themain goal of evaluating the features extracted frommotion data,
which means the sequence of HPE. To reach this goal an initial detailed analysis of feature
importance is conducted using the LIME technique LIME facilitates the interpretation
of individual models’ decision-making processes by isolating the influence of individual
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features on the prediction, as explained in Chapter 3.7.2. The average importance of
the features across all tested exercises is calculated to make general statements. The
two previously developed and chosen models (Section 4.2) for Single-Subject and Multi-
Subjects will be analysed in the following section, referring to the aspect of feature
importance.

The analysis with LIME, as illustrated in Figure 4.20, reveals that both evaluated models
place particular focus on features describing the position of the head. Notably, in the DT
vis f2 Single model, the head angle is considered significantly important. This is due to
the fact that a substantial portion of movement errors is directly related to head position,
suggesting that our identified error types can be predominantly captured through head
features. But this focus also has drawbacks, as it may complicate the identification of
other types of errors not directly associated with head position. A differentiated view of
individual head characteristics indicates that the models tend to focus on certain aspects,
which can lead to redundancies in the characteristics. Such redundancy is not necessarily
desirable, as it potentially compromises the efficiency of feature extraction and the gen-
eralizability of the models. The following analysis shows a major difference in feature
importance, with errors related to head position dominating the dataset, emphasizing the
essential role of posture and head alignment in evaluating movement quality. The focus
on the head position raises doubts about the model’s capacity to identify and weigh other
error types, highlighting the necessity for a balanced approach in feature selection and
model training to ensure accurate and comprehensive assessments.
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Figure 4.21.: Shows the 10 most influential features for the two best models according to SHAP
analysis

To validate the findings of the LIME analysis, an additional approach was conducted
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using the SHAP algorithm, with its results presented in Figure 4.21. The SHAP algorithm
provides a result similar to LIME, highlighting key feature head y as particularly relevant.
A noteworthy aspect of the SHAP algorithm is its more nuanced view of the features,
attributable to its ability to represent not just the significance of individual decisions but
the overall importance of features in the decision-making process. Although the order
of feature importance varies between results determined by LIME and SHAP, with some
features swapping positions, the similarity of the evaluations is significant enough to
affirm the reliability of the underlying assumptions, as shown in Figure 4.20 and 4.21.
This consistency emphasizes the robustness of the identified key features as determinants
of model decisions.

The use of both analysis methods (LIME and SHAP) contributes to increasing the trans-
parency and comprehensibility of model decisions by enabling a comprehensive under-
standing of the feature’s importance for the developed algorithm. Supplementing LIME
with SHAP highlights the importance of a multidimensional approach in explaining ML
models. This dual-method approach of LIME and SHAP not only strengthens the credibility
of the explanatory analysis but also provides a more detailed and reliable understanding
of how and why models make certain predictions, facilitating the development of more
interpretable and effective ML systems.
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Figure 4.22.: Visualization of the accuracy of the classification of the incorrect limp group using
SHAP and LIME.

In this part of the evaluation, the significance of features (Feature Importance) of both
classification methods is utilized to assess decisions regarding the correct or incorrect
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execution of exercises. More specifically, this described approach is employed to identify
a corresponding limb group for each incorrectly classified exercise, which significantly
influenced the error. For each decision, the features are sorted and aggregated according
to their association with a limb group, with errors also categorized by limb groups.
Subsequently, the sum of the weights for each limb group is calculated. The group with
the highest cumulative weighting is identified as the primary source of error. Figure 4.22
presents the accuracies of various models taking into account this limb group analysis.
The assumption is that the accuracy of limb group-specific classification is lower than that
of the accuracy of general classification due to a finer differentiation being made. An
important result from the tested data is that the SHAP method is superior in single-subject
classification, while the LIME method achieves better results in Multi-Subject classification.
This illustrates the different nature of the methods. For more powerful ML models, the
accuracy of the limb group analysis is not significantly higher, likely due to the previously
noted focus on head features. Another finding is that errors attributable to other limb
groups are more challenging to identify.

In summary, these XAI approaches enable the extraction of additional insights into the
sources of errors in motion analysis. Although the specific limb group classification may
not achieve the same accuracy as the general classification evaluated in Section 4.2, it
provides valuable information for improving training and feedback methods in motion
analysis applications. This understanding of error sources is important to significantly
enhance the development of targeted interventions and corrective measures, leading to
more effective and personalized training programs.

4.4. Summary

All in all, the application and evaluation of the MoQuA algorithm’s core components
indicate promising results. While improvements are definitely needed in Human Pose
Estimation (HPE), the overall quality of the outcomes is encouraging. While the presented
results do not match the precision of MoCap suit, they stay within an acceptable range.
The evaluation of HPE demonstrates that integrating two different data sources, in this
case two cameras, could achieve a significant improvement in quality by approximately
17.7%, as shown in Section 4.1. This highlights the importance of diversifying information
sources to enhance the accuracy of motion analysis. Potential future optimizations in
camera technology and ML may open the opportunity to focus on a single data source.
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A fundamental factor for the effectiveness of the MoQuA algorithm is the methodology
of data fusion. This research analysed various approaches, such as visibility fusion and
three-dimensional (3D) reconstruction. The 3D reconstruction and visibility fusion proved
to be effective, even if each has its strengths in different aspects. While visibility fusion
provides precise general positional data, 3D reconstruction offers superior results in
determining relative positions and angles, which can be required for specific application
areas. The evaluation also clarifies that, despite certain limitations of the previously
described methods, a comparison between the motion data generated by the algorithm
and those captured with a MoCap suit is possible. This reaffirms the initial assumption,
made in section 2.2, that 3D data and visual material are sufficient for accurate motion
analysis. Considering the rapid development pace in the field of ML libraries, it seems
necessary to continuously evaluate the available tools in order to use the best model.
Current results indicate that future advances in alternative libraries, such as the MediaPipe
method, could potentially lead to further increases in the efficiency and accuracy of motion
analysis. Specifically, there is a need for improvements in estimating body positions in less
expected postures, such as sit-ups, as these are underrepresented in training datasets. The
use of Reolink brand surveillance cameras compared to conventional webcams showed
slight improvements in data collection, although the differences were not statistically
significant. Nevertheless, the wider capture area in the initial recording sessions is for the
used data notably positive. Thus implies the recommendation to aim for as comprehensive
a recording area as possible to optimize the quality and completeness of the motion data.
These findings imply that the continuous improvement and adaptation of algorithms
and data collection methods are essential for the advancement of camera-based motion
analysis, especially regarding the extraction of relevant features and the enhancement of
trajectory similarity. The results of this research are valuable starting points for future
research in this dynamic field.

The multidimensional DTW was used to refine the features based on the previously
described data. This technique has turned out to be robust, particularly in its ability to
neutralize differences in the execution speeds of the analyzed movements, effectively
eliminating a potential source of error. This underlines the outstanding importance of
the DTW procedure within the algorithm, which finds its strength in the precise analysis
and comparability of movement patterns. However, the application of DTW necessitates a
reference standard for comparison. This approach is based on one recorded video due to
the limited availability of data. In a scenario where a more extensive dataset is available,
selecting various correctly performed exercises could achieve wider variability, which
would enable a more refined estimation of exercise performances. This was not feasible
in the current work due to the deliberate decision to minimize effort by using a limited

88



volume of data, as discussed in Chapter 1. Categorizing the captured movements into
so-called ”limb groups” turned out to be an effective method for reducing noise. This is
evident as models utilizing a median number of features show the best performance, as
shown in Figure 4.14. Based on the extracted features, the classification of the motion
data was subsequently carried out. The consideration, evaluation and ultimately choice of
different methods and the resulting insights significantly contribute to the advancement
of precision and efficiency in camera-based motion analysis. These are fundamental for
future research, especially regarding improving feature extraction and expanding the data
basis to enable an even more detailed and comprehensive analysis of movement patterns.
The findings from the application of multidimensional DTW offer promising approaches for
optimizing motion analysis algorithms, particularly by eliminating variances in execution
speed, which were previously seen as a challenge in precise motion analysis.

The preceding classification of extracted features, conducted using a comprehensive range
of models, reveals significant insights regarding the suitability of various algorithms for
motion analysis. Among these, the Decision Tree algorithm has proven to be effective in
handling the characteristic features of the dataset. This emphasizes the importance of
carefully selecting classification models that can appropriately consider the specific prop-
erties of the data. The presence of different subjects in the dataset led to the introduction
of Single-Subject and Multi-Subjects classifications to allow broader generalizability of the
results while simultaneously increasing the comparability of the models. In Single-Subject
classification, which focuses on data from only one individual, an outstanding accuracy of
over 91,7% was achieved. This result contrasts with the accuracy of 74% reached using
the entire dataset (Multi-Subject). The discrepancy between these two approaches is
caused by various factors, including the inherent variability among subjects regarding
body proportions, starting positions and execution types. The challenge of achieving
high generalizability across different subjects throws light on the potential limitations of
universal models in motion analysis. The issues identified in the Single-Subject analysis
indicated that differences in physical characteristics and performance styles of individual
subjects could lead to a deterioration in model performance if not adequately considered.
This highlights the need for an adaptive approach, where individually tailored models are
developed that consider specific features and needs of users. In practice, this could mean
that in physiotherapy, a base model is initially used, which is then individually adjusted by
recording and analyzing a ’Golden Standard’ – consisting of several correctly performed
exercises by the patient. This method enables combining the advantages of generalization
across multiple subjects with the specific strengths of Single-Subject classification to ensure
a customized and effective motion analysis.

The evaluation of feature quality and the traceability of how classification models make
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their decisions are essential aspects of developing precise motion analysis systems. By
using interpretability techniques such as LIME and SHAP it is revealed that features related
to the head exert a significant influence on the ML models’ decision-making processes.
This is mainly due to a significant proportion of detected errors being associated with head
position, complicating the identification of other error types. The model’s focus on head
movements underscores the need for a more diversified data basis to improve classification
accuracy across a broader range of movement errors. Although the approach of specifically
training models to distinguish between correct and incorrect exercise performances was
discarded due to the limited amount of data per exercise and type of error, this emphasizes
the importance of an expanded and diversified dataset.

Regardless, the challenge of collecting sufficient data for comprehensive training remains
due to the high effort involved in data collection. Furthermore, the analysis of feature
importance showed that angle calculations, in particular, represent a valuable metric for
the classification of motion sequences. Integrating these specific features is important for
achieving more precise classification results. In order to enable the assignment of errors
to specific limb groups, LIME and SHAP utilised the explainability of the models. These
XAI methodologies enabled targeted identification of which limb group a detected error
pertains to. Despite these improvements, a limit to accuracy improvement through more
complex models exists, partly traceable to the disproportionate consideration of head
movements. These findings necessitate the introduction of a wider differentiation of errors
in future research and the corresponding expansion of datasets to avoid overemphasis
on certain types of errors. Especially in the context of physiotherapeutic exercises, it is
important to train models on a wide range of motion sequences to enable comprehensive
analysis and classification. This can ensure a consistently high classification performance
across various types of exercises and errors, significantly enhancing the practical utility in
physiotherapy.

Overall the implementation and development of the MoQuA Algorithm appears to be
a promising approach. A detailed focus on specific exercises as well as individual error
types is possible. However, a significant expansion of variability within the datasets
is required for comprehensive application to ensure precise and generalizable analysis.
Notably, the benefit of simple models, as described in Section 3.6, that allow fast execution
is important for real-time applications. Future development could aim to achieve an
even more flexible adaptation of the Golden Standard by integrating new methods and
algorithms for HPE. Maybe this could be realized by combining several correctly performed
exercise variants to create a comprehensive basis for evaluating exercise performance.
Furthermore, the expanded classification, especially the direct assessment of specific error
types and their assignment to certain body groups (Limb Groups), offers a promising
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perspective for refining analysis methods. Such differentiation requires a significant
expansion of the existing dataset. A special focus should be the application of these
technologies in physiotherapy. The evaluation of HPE through MediaPipe shows that the
accuracy of movement estimation varies depending on the type of exercise performed.
The goal for a broad application should be to ensure consistently high-quality motion
analysis, regardless of the specific exercise. This would not only enhance the effectiveness
of therapeutic measures but also improve cost efficiency by enabling patients to perform
exercises correctly and independently at home. Using a webcam, which is available in
most households, already provides a solid foundation for practical implementation. In
summary, the MoQuA algorithm represents a targeted solution with the potential to
improve the quality and accessibility of motion analyses significantly. Continuous research
and development in this field probably to produce powerful systems that can offer valuable
support both in physiotherapy and in independent health care at home.
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5. Conclusion

All in all, this work presents the development of an advanced algorithm (the MoQuA
Algorithm), which assesses the quality of sports exercise performance by using video
material. This process spans from comprehensive preprocessing and the sophisticated
refinement of features using DTW to the final classification and ensuring traceability.
Notably, the achieved accuracy of 91.7% in the analysis of individuals and up to 74% in the
evaluation of group exercises highlights the effectiveness and reliability of the developed
algorithm. In brief, this method enables combining the advantages of generalization
across multiple subjects with the specific strengths of Single-Subject classification to
ensure a customized and effective motion analysis. In practice, this could mean that
in physiotherapy, a base model is initially used, which is then individually adjusted by
recording and analyzing a ’Golden Standard’ consisting of several correctly executed
exercises by the patient as described in the previous evaluation.

A significant result of this thesis is that the fusion of data from two camera perspectives
significantly improved the quality of the motion data. Despite the inherent challenges of
estimating positions by using video cameras, results that are comparable to those of the
MoCap suit, which were previously considered the gold standard, were achieved. This
validates the practicability and innovative character of theMoQuA approach, which enables
precise error detection and feature analysis in the context of the performance of exercises
and lays the foundation for understandable and traceable results. A key value of the
MoQuA algorithm is its ability to identify specific erroneous motion groups (Limb Groups).
This goes beyond a simple assessment of right or wrong, as it is essential not only to detect
errors but also to provide concrete indications of how the performance can be improved.
Identifying specific weaknesses in movement execution offers a deep understanding
for trainers and athletes alike to refine their technique in a targeted manner. Future
enhancements could include integrating XAI to maintain or even expand the system’s
explainability, perhaps through action segmentation to identify errors in specific phases
of a movement. Furthermore, the thesis presents various suggestions for improvement,
such as expanding the dataset and conducting specific estimates for individual exercises
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to further increase the accuracy and effectiveness of the system. It also shows that even a
limited dataset is sufficient to develop a powerful model, highlighting the accessibility
and applicability of the MoQuA algorithm in practice. A practical implementation of the
MoQuA system should be extended by fine-tuning the trained ML model for individual
patients. Additionally, introducing an exercise-specific classification could allow a more
accurate assessment of different types of exercises through a two-stage process where
the exercise type is initially classified before recognizing specific errors. Furthermore,
improvements in HPE should be explored, especially for exercises where current posture
estimations, such as sit-ups, do not perform as effectively as desired based on existing
training data. Moreover, the accessibility of webcams as an already available and easy-to-
use tool for data collection emphasizes the practical feasibility of implementing MoQuA in
various settings, making advanced motion analysis more accessible to a broader audience.
The use of small data sets can be considered sufficient, but the enlargement of the data set
can contribute to improvement. So it is possible to start with small data sets and improve
the model as new data sets are created

In conclusion, based on the findings and improvements by the MoQuA algorithm, it is not
only possible to identify mistake-causing limbs but also provides a well-founded basis for
possible improvement. The previously discussed results offer valuable starting points for
future research aimed at refining the HMQA process and expanding its application areas.
The previous analysis and developed approach contribute to improving feature extraction
for camera-based motion analysis using trajectory similarity, laying a foundation for future
innovations in this field. In this way, the main goal of supporting physiotherapy with the
MoQuA algorithm is achieved.
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A. Overview of Subject/Set combinations

Rounds Subject Set α [deg] β [deg]
1 C1 S1 90 0
2 C1 S2 180 90
3 C2 S1 90 0
4 C2 S2 30 -60
5 C2 S1 90 0
6 C2 S2 135 45
7 C3 S1 90 0
8 C3 S2 -90 180
9 C4 S1 90 0
10 C4 S2 45 -45
11 C5 S1 90 0
12 C5 S2 -135 135
13 C5 S3 90 0
14 C5 S4 45 45
15 C5 S5 -45 135
16 C5 S6 90 0
17 C6 S1 90 0
18 C6 S2 45 45
19 C7 S1 90 0
20 C7 S2 45 45

Table A.1.: Table of Subject/Set combinations with corresponding angles. See Figure 3.1 for the
setup.
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B. Exercise execution

The specific exercises and the associated errors are outlined in detail, providing clear
guidance for the participant on executing each variation. It is crucial to make the mistakes
clearly so that they are recognisable in the end.

B.1. Push-up variant 1

(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.1.: Shows the correct movement of a push-up (a); Mistake 1: hips too high (b); Mistake
2: looking upwards (c).

The following describes the correct execution of a push-up.

• Starting Position:

– Begin in a plank position with your hands placed slightly wider than shoulder-
width apart.

– Your arms should be extended, with your hands positioned directly under your
shoulders.

– Keep your body in a straight line from your head to your heels.

• Lowering:
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– Lower your body by bending your elbows.

– Ensure that your body forms a straight line during the descent.

– Go as low as possible without touching the ground.

• Rising:

– Press back up to return to the starting position.

– Fully extend your arms but avoid overextending your elbows.

• Breathing:

– Inhale as you lower your body and exhale as you rise.

• Tips:

1. Maintain a straight line with your body throughout the entire movement.

2. Engage your core muscles to stabilize your torso.

3. Ensure that your elbows are positioned at approximately a 45-degree angle to
your body.

The description of the two simulated mistakes follows.

• Mistake 1:

– Positioning the hips too high. This results in a push-up in misalignment with
the shoulders and feet and disrupts the ideal straight body line.

• Mistake 2:

– Looking upwards during a push-up instead of maintaining a downward gaze,
leading to misalignment of the spine and neck.
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(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.2.: Shows the correct movement of a squat (a); Mistake 1: not going low enough (b);
Mistake 2: having feet too wide (c).

B.2. Squat

The following describes the correct execution of a squat.

• Starting Position:

– Stand upright with your feet approximately shoulder-width apart.

– Your toes may point slightly outward.

– Keep your back straight and your shoulders pulled back.

• Lowering:

– Simultaneously bend your knees and hips as if you were going to sit down.

– Lower your body as though sitting back into a chair.

– Ensure your knees do not extend beyond your toes.

• Depth:

– Descend as deeply as possible while maintaining proper form.

– Ideally, your thighs should be parallel to the ground or lower.
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• Rising:

– Push through your heels to return to the starting position.

– Be mindful not to overextend your knees as you rise.

• Breathing:

– Inhale as you lower your body and exhale as you rise.

The description of the two simulated mistakes follows.

• Mistake 1:

– The participant does not lower themselves sufficiently, keeping their knee angle
above 90 degrees.

• Mistake 2:

– The participant positions their feet more than shoulder-width apart.

B.3. Kick-backs on all fours

(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.3.: Shows the correct movement of kick-backs on all fours (a); Mistake 1: looking upwards
(b); Mistake 2: knees too close to the hands (c).

The following describes the correct execution of kick-backs on all fours.

• Starting Position:

– Position yourself on all fours by placing your hands and knees on the ground.

– Your hands should be directly under your shoulders and your knees under your
hips.
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– Maintain a neutral spine throughout the exercise.

• Extension:

– Lift one leg and extend it backwards.

– Keep the leg straight and the sole of your foot parallel to the ground.

– Focus on activating your gluteal muscles as you move your leg back.

• Hold and Contraction:

– Hold the extended leg at its highest position for a moment to contract the
muscles.

– Feel the tension in your gluteal muscles.

• Return to Starting Position:

– Lower the leg back to the starting position in a controlled manner, without
touching the ground.

– Repeat the movement with the other leg.

• Breathing:

– Exhale as you lift your leg and inhale as you lower it.

• Tips:

– Ensure your back remains straight throughout the exercise.

– Avoid using momentum; perform the movement in a controlled manner.

– Focus on engaging the gluteal muscles for maximum effectiveness.

The description of the two simulated mistakes follows.

• Mistake 1:

– The participant looks upwards during the execution.

• Mistake 2:

– The participant positions their knees too close to their hands, disrupting the
intended alignment of hands under shoulders and knees under hips.
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B.4. Swimming

(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.4.: Shows the correct movement of swimming (a); Mistake 1: looking upwards (b);
Mistake 2: shoulder too close to the head (c).

The following describes the correct execution of swimming.

• Starting Position:

– Lie flat on your stomach on a comfortable, flat surface. Ensure there is enough
space around you for arm and leg movements.

– Extend your arms straight in front of you, palms facing each other. Your legs
should be straight and together, toes pointed.

• Head Position:

– Keep your head in a neutral position, aligned with your spine. Avoid lifting it
too high or pressing it too far down.

– Gaze should be downwards, slightly in front of you.

• Movement:

1. Raise your right arm and left leg simultaneously, lifting them a few inches off
the ground.

2. Stretch both limbs as if you are reaching forward with your hand and backwards
with your foot, elongating your body.

3. Lower your right arm and left leg, returning them to the starting position.

4. Immediately repeat the movement with your left arm and right leg.

5. Continue alternating sides in a smooth, controlled motion, simulating a swim-
ming action.

• Breathing:
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– Coordinate your breathing with your movements. Inhale as you lift your limbs
and exhale as you lower them.

The description of the two simulated mistakes follows.

• Mistake 1:

– The participant incorrectly directs their head upwards towards the ceiling
instead of towards the ground.

• Mistake 2:

– The participant pulls the shoulder too close to the head.

B.5. Push-up variant 2

(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.5.: Shows the correct movement of a push-up (variant 2) (a); Mistake 1: looking upwards
(b); Mistake 2: back is not straight (c).

The following describes the correct execution of a push-up (variant 2).

• Starting Position:

– Place your knees on the ground and set your hands slightly wider than shoulder-
width apart.

– Your arms should be extended, with your hands positioned directly under your
shoulders.

– Keep your body in a straight line from your head to your knees.

• Lowering:

– Lower your upper body by bending your elbows.

– Ensure that your body forms a straight line while descending.
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– Go as low as possible without touching the ground.

• Rising:

– Press up to return to the starting position.

– Fully extend your arms but avoid overextending your elbows.

• Breathing:

– Inhale as you lower your upper body, and exhale as you raise it.

The description of the two simulated mistakes follows.

• Mistake 1:

– Looking upwards during a push-up instead of maintaining a downward gaze,
leading to misalignment of the spine and neck.

• Mistake 2:

– The participant’s back is not straight but curved downwards.

B.6. Lunge

The following describes the correct execution of a Lunge.

• Starting Position:

– Stand upright with your feet about shoulder-width apart.

• Forward Step:

– Take a large step forward with one foot.

– Lower your body by bending the rear knee until both knees are bent at approx-
imately right angles.

– Ensure that the front knee is aligned over the ankle and does not extend past
it.

• Hold Position:

– Keep your upper body upright, back straight, and core (abdominal muscles)
engaged.
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(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.6.: Shows the correct movement of a Lunge (a); Mistake 1: Taking a step that is too small.
(b); Mistake 2: The front knee turns towards the inside (c).

• Return to Starting Position:

– Push back with the front foot to return to the upright position.

– Repeat the lunge with the other leg.

• Tip:

– Ensure your movements are controlled and stable to prevent injuries.

– Adjust the length of your stride to suit your individual needs and capabilities.

The description of the two simulated mistakes follows.

• Mistake 1:

– Taking a step that is too small.

• Mistake 2:

– The front knee turns towards the inside.
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Sit-up

The following describes the correct execution of a sit-up.

(a) Correct movement (b) Mistake 1 (c) Mistake 2

Figure B.7.: Shows the correct movement of a Sit-up (a); Mistake 1: Knees not bent enough (b);
Mistake 2: Feet leave the ground (c).

• Starting Position:

– Lie flat on your back on a suitable surface, such as a sports mat.

– Bend your knees so that your feet are flat on the ground, with the soles touching
the floor.

– Your arms can either be crossed in front of your chest or placed lightly behind
your head.

• Upward Movement:

– Engage your abdominal muscles.

– Lift your upper body by flexing forward at the abdomen.

– Aim to reach your hands towards your knees.

• Downward Movement:
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– Lower your upper body back to the mat in a controlled manner without mo-
mentum.

– Avoid fully touching the ground to maintain tension in the abdominal muscles.

• Tip:

– Perform the exercise at a controlled pace to prevent injuries.

– Exhale during the upward movement and inhale during the downward move-
ment.

– Avoid using momentum and use the abdominal muscles to lift the upper body.

The description of the two simulated mistakes follows.

• Mistake 1:

– Knees not bent enough.

• Mistake 2:

– Feet leave the ground.
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