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Abstract

In recent years, the popularity of Human Pose Estimation (HPE) has grown due to research, practical
applications, and technological advancements. HPE refers to the process of estimating the pose of the human
body from an image, which is a di昀케cult task due to the possible degrees of freedom, appearance variability,
and poses. The task is currently addressed utilizing Convolutional Neural Networks (CNNs), which have
proven capable of acquiring the intricate mapping between images and poses. The CNN methodology has
contributed to numerous HPE techniques based on diverse image types. While most of these methods use
RGB images, some techniques utilize depth images or a combination of both. In this study, we investigate the
potential of thermographic images for HPE. We demonstrate the implementation of a linear transformation to
bypass the need for proprietary calibration algorithms. Several preprocessing methods are utilized to tailor
thermographic images to meet CNN input prerequisites. We address the absence of publicly accessible datasets
containing thermal images by creating a new dataset. Our procedure is evaluated using this dataset, and its
e昀昀ectiveness is established. Despite the challenges, implementing thermographic images as a part of HPE
shows to be a promising approach.
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1 Introduction

This chapter gives an overview of the work. It starts with a general introduction to the topic of human pose
estimation and its applications in the medical 昀椀eld. Then, it introduces the speci昀椀c topic of monocular human
pose estimation from thermographic images and its potential applications. Finally, it outlines the structure of
this work.

1.1 Human Pose Estimation

HPE is a computer vision task that aims to predict a person’s body con昀椀guration from images or videos
by inferring critical points, such as limb and joint positions, and generating a skeletal model. This task is
considered challenging due to the complex nature of the human body’s range of motion, potential occlusions,
and the variable factors of lighting and clothing.
HPE is of signi昀椀cant importance in the medical 昀椀eld because of its potential to serve various purposes, including
physical therapy, education, and prosthetics. During surgical simulations, HPE can analyze the surgeon’s
posture and movements compared to expected behaviors [1]. Furthermore, it can be used in prosthetics to
design more e昀昀ective and adaptable devices for patients [2]. Early diagnosis of diseases such as Parkinson’s
can be critical, especially since changes in gait and posture are often the earliest indicators. Monitoring
a person’s movements can enable the early detection of abnormalities, leading to timely intervention [3].
Physiotherapy can utilize tracking technology to monitor patients’ progress in recovery. Furthermore, it can
provide valuable recommendations for enhancing exercise routines that can facilitate the recovery process [4].
Additionally, it can accurately evaluate the performance of patients during prescribed exercise regimens by
o昀昀ering feedback to ensure precise execution [5].

1.2 Monocular Human Pose Estimation

Monocular Three-Dimensional Human Pose Estimation (M3DHPE) is a type of HPE that uses a single RGB
camera as an input source. This approach di昀昀ers from other methods that employ multiple cameras or depth
sensors. The M3DHPE approach is tasked with inferring a 3D pose from 2D images, which presents unique
challenges such as depth ambiguities and occlusions.
One of the primary obstacles of M3DHPE in comparison to simple monocular 2D HPE is the shift in domains
concerning both appearance and pose space, which typically impacts model performance detrimentally. This
challenge is signi昀椀cantly prominent as three-dimensional human data is generally gathered in a controlled
laboratory setup [6]. Another impediment is the inherent uncertainty between two-dimensional and three-
dimensional perspectives, making it arduous to estimate posture accurately from a singular viewpoint [7].
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Despite the challenges posed by complex multi-person scenarios, M3DHPE o昀昀ers numerous bene昀椀ts. One
such bene昀椀t is its robustness and functionality in real-life applications. Moreover, Liu et al. showed in their
2022 work how it can be trained using zero real 3D human pose data, which becomes advantageous when
such data is not readily available [6]. It also enhances the existing datasets with increased diversity in terms
of poses, human appearances, clothing, occlusions, and viewpoints [8].

1.3 Thermographic Imaging

Thermographic imaging utilizes specialized infrared cameras to accurately capture heat signatures passively
in the form of infrared radiation. Its extensive use in the medical 昀椀eld stems from its radiation-free and
non-invasive diagnosis and temperature measurement capabilities [9].
One of the most prominent advantages of thermographic imaging is its non-invasive character. Thermographic
imaging can be performed without physical contact, unlike other diagnostic procedures that may require
incision or touch [10]. This aspect makes it an ideal tool for patients who are sensitive to touch or 昀椀nd other
diagnostic procedures uncomfortable.
Thermographic imaging is an economical and advantageous diagnostic technique. It proves to be more
a昀昀ordable than other diagnostic imaging procedures [11, 12]. This promotes wider accessibility, enabling
early detection of various health conditions.
Moreover, thermographic imaging facilitates the mapping of disease patterns within the body. Most diseases
exhibit heat distribution patterns in the body, which can be detected for diagnosing various health issues
by medical professionals [10]. This diagnosis approach bene昀椀ts patient care and also promotes cost savings
through its reliance on inexpensive equipment.
Additionally, the digitization of thermographic imaging enables easy sharing of data among medical experts or
with patients themselves [10]. This encourages collaboration amongst healthcare professionals and promotes
patient involvement in their own healthcare.
The most commonly utilized area for medical thermography is detecting breast cancer [13–16]. Early detection
of such conditions can notably enhance treatment outcomes and elevate survival rates. Other applications
include the detection of cardiac diseases [17], in昀氀ammatory diseases [18–20], diabetes and its symptoms [21,
22], skin diseases [23, 24], and many more [25, 26].

1.4 Monocular Human Pose Estimation From Thermographic Images

Combining thermography and M3DHPE may prove to be an e昀昀ective tool in medical and health-related 昀椀elds.
Thermography allows for a detailed temperature distribution analysis of the human body, which is useful in
identifying medical conditions such as in昀氀ammation and poor circulation. When paired with M3DHPE, it can
provide a more comprehensive understanding of an individual’s physical state. For instance, the technology
can detect abnormal body postures and elevated body temperatures simultaneously, leading to early detection
of certain diseases and optimization of treatment. This application may also prove useful in sports medicine
for injury prevention and performance enhancement by identifying overheating areas and analyzing body
postures during physical activities.
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This works hence aims to provide a pipeline to perform M3DHPE on thermographic images and evaluate the
results.
The remainder of this work is organized as follows. Chapter 3 discusses related research on HPE and
Thermographic Human Recognition (THR). Chapter 4 introduces the methods for acquiring and preparing
data, evaluating results, conducting M3DHPE, and 昀椀ne-tuning. Chapter 5 analyzes the plausibility and
accuracy of the results. Finally, chapter 6 outlines the signi昀椀cance of the results and potential avenues for
advancing this research topic.
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2 Fundamentals

This chapter outlines fundamental requirements for comprehending the upcoming work. First, it describes
the technicalities and operations of the HPE frameworks considered in this work before doing the same for
thermography.

2.1 Human Pose Estimation

There are numerous frameworks and approaches for HPE. Deep learning using CNNs has become the dominant
approach in recent years, mainly due to its superior performance. As this work focuses on M3DHPE, only
approaches that can infer 3D joint locations are considered. The following three approaches are considered:
BlazePose, AlphaPose, and MotionBERT. These approaches were chosen because they are recent, State Of The
Art (SOTA) approaches o昀昀ering theoretical bene昀椀ts and promising practical applications.

2.1.1 BlazePose

BlazePose [27], a HPE model developed by Bazarevsky et al., has been incorporated into Mediapipe [28],
Google’s collection of computer vision models. The model can detect 33 keypoints on the human body, for
a superset of the ones used by BlazeFace [29], BlazePalm [30], and Coco [31]. These additional keypoints
provide essential information regarding the location, scale, and rotation of the face, hands, and feet.
BlazePose consists of two stages: a detector that identi昀椀es the location of individuals in the image and a CNN
that infers 2D and 3D human poses based on the original image and a Region of interest (ROI). The x and y
coordinates of both the 2D and 3D joint locations are given in pixel units, while the 3D depth values are on a
similar scale as the x and y coordinates. However, this similarity may not be reliable, as the depth values are
obtained by a di昀昀erent method than the x and y coordinates. Additionally, the 3D joint locations are centered
around the hip center.

Detector

BlazePose uses BlazeFace as its detector. BlazeFace is a lightweight face detector based on the Single Shot
MultiBox Detector (SSD) framework [32]. It was developed with mobile devices in mind, making it lightweight
and fast. BlazeFace is a CNN composed of one 2D 5 × 5 convolution layer with a stride of 2, followed by
昀椀ve what the authors call Single BlazeBlocks, and six Double BlazeBlocks. The Single BlazeBlock comprises a
5× 5 depthwise convolution layer with a stride of either 1 or 2, followed by a 1× 1 convolution layer with a
stride of 1. In parallel, the input is passed through a max pooling layer, and the channels are zero-padded
to match the number of output channels of the 1× 1 convolution layer. The output of both branches is then
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added together. The Double BlazeBlock comprises two Single BlazeBlocks in sequence but with only one max
pooling layer in the parallel step. The output of the Double BlazeBlock is the sum of the output of the second
Single BlazeBlock and the output of the padded max pooling layer. The output of the last Double BlazeBlock
can be interpreted as multiple overlapping bounding boxes. These are then combined into a single bounding
box by taking a weighted average of the bounding boxes’ coordinates, where the weights are the con昀椀dence
scores of the bounding boxes.
BlazeFace does not only detect faces but also the center of the hip and a bounding box around the entire body.
This bounding box is then used as the ROI for the second stage. Using a lightweight face detector as the 昀椀rst
stage of a HPE model is a common approach. However, it can lead to problems when the face is occluded. In
this case, the detector might not detect the face, and the HPE model cannot infer the pose.

Pose Estimator

The second stage of BlazePose is a CNN that infers 2D and 3D human poses given the original image and
a ROI. The exact architecture of the CNN is not speci昀椀ed in the paper. However, the authors state that it is
inspired by the Stacked Hourglass approach [33]. The Stacked Hourglass approach is a CNN that uses a
sequence of repeated pooling and upsampling steps to produce a heatmap of the input image. The heatmap is
a two-dimensional array of values representing the probability of a keypoint being at a speci昀椀c location in the
image. The Stacked Hourglass approach uses skip connections to preserve spatial information. The output of
the 昀椀rst downsampling step is passed through a series of convolution layers and then added to the output of
the 昀椀rst upsampling step. This process is repeated until the desired resolution is reached. The output of the
last upsampling step is then passed through a convolution layer to produce the heatmap.

Dataset

The authors trained BlazePose on a custom dataset consisting of 85 × 103 images of which 25 × 103 show a
single person in an 昀椀tness exercise pose. The remaining 60 × 103 images show one or few people in various
common poses. In all images the people are not occluded and both head and shoulder keypoints are easily
annotated. The images were annotated by hand with 2D and 3D keypoint locations.

Variations

BlazePose has three di昀昀erent variants: Lite, Heavy, and Full. Lite o昀昀ers the quickest inference with the least
memory usage. Heavy yields the highest precision with a longer time overhead. Full delivers an intermediate
solution between the other two versions. The variants di昀昀er in the number of connections between the layers
and the number of parameters. The Lite variant has the fewest connections and parameters with 2.7MFLOP
and 1.3million parameters. The Full variant has 6.9MFLOP and 3.5million parameters. The Heavy is not
mentioned in the paper but it can be inferred that it has more connections and parameters than the Full
variant.
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2.1.2 AlphaPose

AlphaPose [34] is another deep learning framework comprised of di昀昀erent models for HPE. These models
excels in HPE due to their ability to accurately handle occlusions and track individuals across frames in videos,
resulting in exceptional performance in crowded scenes. As this work focuses on M3DHPE, only the model for
this task is described in detail. Internally HyberIK [35] is used for M3DHPE.
AlphaPose operates with a stepwise process similar to BlazePose. First, a ROI is acquired using one of three
di昀昀erent approaches. The 昀椀rst approach is a human re-identi昀椀cation model that is used to identify individuals
across frames. This approach is recommended by the authors, but no paper on the details of the model has
been published yet. The second approach is a detector-based approach that uses a modular object detection
model, such as YOLOX [36], to acquire a ROI. The third approach uses PoseFlow [37] to track individuals
across frames. PoseFlow 昀椀rst detects all people across all frames in a video sequence. Then, it combines
spatial conjoint ROIs into a single grouping, called a pose 昀氀ow. Lastly, a non-maximum suppression algorithm
is applied to join spatially disjoint pose 昀氀ows and decide which ROI to keep per person per frame.
Secondly, given a ROI, a CNN is utilized to deduce a three-dimensional heatmap, from which essential three-
dimensional joint locations are regressed. Simultaneously, the CNN determines shape parameters and joint
rotations. Next, all of the previously generated data is processed by HyberIK to solve for the relative rotation
of each joint. Finally, utilizing simple forward kinematics allows for the computation of new joint positions,
resulting in superior quality outcomes compared to the joint positions estimated in the second phase.

Detector

AlphaPose can utilize multiple object detection models, such as YOLOv3 [38] and YOLOX. YOLOv3 is a CNN
that uses a single forward pass to predict bounding boxes and class probabilities for those boxes simultaneously.
To prevent duplicate detections, YOLOv3 uses non-maximum suppression. YOLOX is a lightweight object
detection model based on YOLOv3. Instead of relying on prede昀椀ned anchor boxes and computing o昀昀sets to
predict bounding boxes, YOLOX detects bounding boxes directly. YOLOX uses the same backbone as YOLOv3,
Darknet-53 [38], a CNN composed of 53 convolution layers with a kernel size of 3× 3 and 1× 1 and residual
connections. The output of the last convolution layer is passed through a global average pooling layer and
then through a fully connected layer to produce the 昀椀nal output. YOLOX’s neck comprises a feature pyramid
network and a path aggregation network to combine features from di昀昀erent scales. YOLOX uses a decoupled
head that separately predicts the class probabilities and the bounding box coordinates. Both heads are
composed of multiple convolution layers with a size of 3× 3, followed by a 1× 1 convolution layer. With these
modi昀椀cations, the authors show that YOLOX achieves a better trade-o昀昀 between speed and accuracy than
YOLOv3 [36].

Pose Estimator

Like BlazePose, AlphaPose with the HyberIK model uses a CNN to infer basic 3D joint locations from a ROI.
Further, using fully connected layers, the CNN also predicts shape parameters and joint rotations. As a
backbone, HyberIK uses ResNet-34 [39], a CNN composed of a single 7× 7 convolution layer, followed by 34
3× 3 convolution layers with residual connections. The output of the last convolution layer is passed through
a global average pooling layer and then through a fully connected layer to produce the 昀椀nal output. HyberIK
uses two heads to separately predict the 3D joint locations, shape parameters, and joint angles. The head for
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the 3D joint locations comprises three deconvolution layers, followed by a 1× 1 convolution layer. This head
predicts a three-dimensional heatmap of the input image, from which the 3D joint locations are obtained
using a soft-argmax operation. The head for the shape parameters and joint angles comprises an average
pooling layer, followed by two fully connected layers. The shape parameters are used to generate a rest pose,
which is then algorithmically transformed using the joint angles and positions to obtain a 昀椀nal posed mesh.
The 昀椀nal 3D joint locations are obtained from this posed mesh through simple forward kinematics.

Dataset

To train and evaluate the HyberIK model, Li et al. used the 3DPW [40], MPI-INF-3DHP [8], and COCO [31]
datasets in total and parts of the Human3.6M [41] dataset each for training and evaluation. The 3DPW dataset
contains 60 outdoor video sequences of people performing various activities. The videos were automatically
annotated using the inertial measurement units and the video data. The MPI-INF-3DHP dataset comprises 8
individuals in 8 indoor and outdoor scenes performing various activities recorded from 14 di昀昀erent camera
viewpoints, resulting in 1.3 × 106 frames. The speci昀椀c details of the annotation process are not provided. The
COCO dataset contains 328 × 103 images, of which 200 × 103 were manually annotated with 2D keypoints.
The Human3.6M dataset contains 3.6 million images of 11 individuals performing 17 di昀昀erent activities. The
images were recorded from 4 di昀昀erent camera angles, from which the 3D joint locations were inferred.

2.1.3 MotionBERT

MotionBERT [42] is a deep learning model tailored for human motion analysis. It o昀昀ers a uni昀椀ed pretraining
framework that can address several sub-tasks, such as M3DHPE, action recognition based on skeletal structure,
and mesh recovery.
MotionBERT di昀昀ers from the two previous approaches. The Neural Network (NN) only takes a sequence of
2D joint locations as input and infers 3D joint locations. The 2D joint locations can be obtained from a 2D
HPE model, such as AlphaPose with the ResNet-50 backbone. This makes the full pipeline similar to the one
used by AlphaPose. At 昀椀rst, a ROI is acquired using a detector. Then, a CNN is used to infer 2D joint locations
from the image and the ROI. Finally, the 2D joint locations are passed to the MotionBERT model to infer 3D
joint locations.

Detector

MotionBERT is not concerned with the detector used for the 2D HPE model. However, when used with
AlphaPose, the same detectors as described in section 2.1.2 can be used. In this work, the YOLOX detector is
used.

Pose Estimator

In this work, AlphaPose with the FastPost model is used to infer 2D joint locations from the image and the
ROI. The FastPost model is a CNN using a modi昀椀ed ResNet-50 backbone as introduced by Dai et al. ResNet-50
is a CNN composed of a single 7× 7 convolution layer, followed by 50 3× 3 convolution layers with residual
connections. The output of the last convolution layer is passed through a global average pooling layer and
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then through a fully connected layer to extract the required features. FastPost uses deformable convolution
layers instead of a regular convolution layer in some of the stages of the ResNet-50 backbone. A deformable
convolution layer uses a set of o昀昀sets to sample the input feature map at di昀昀erent locations. The o昀昀sets are
learned during training. This allows the model to learn deformations in the input feature map. [43] The
output of the fully connected layer is passed through three Dense Upsampling Convolution (DUC) blocks.
A DUC block consists of a single convolution layer, followed by a pixel shu昀툀e layer as introduced by Shi et
al. [44]. A pixel shu昀툀e layer is a type of upsampling layer that rearranges the elements of the input feature
map to produce a feature map with a higher resolution. The output of the last DUC block is passed through a
convolution layer to produce a heatmap of the input image. The 2D joint locations are obtained from the
heatmap using a two step process. First, an element-wise sigmoid function is applied to the heatmap to obtain
the con昀椀dence scores of the keypoints. Then, the 2D joint locations are obtained using a global normalization
with the sum of the heatmap values as the normalization factor.
In contrast to other approaches, AlphaPose does not require the detector to produce a ROI with a high
con昀椀dence score. Instead, AlphaPose works around the problem of redundant detections given a low required
con昀椀dence score by using a non-maximum suppression algorithm to combine multiple overlapping predictions
into a single prediction. This allows AlphaPose to detect people even when they are heavily occluded.

3D Joint Location Lifting

The 2D joint locations are passed to the MotionBERT model to infer 3D joint locations. MotionBERT is a NN
based on the Transformer architecture proposed by Vaswani et al. [45]. The Transformer architecture is a
NN that uses attention mechanisms to process data sequences. The Transformer architecture is composed
of an encoder and a decoder. The encoder is a stack of identical layers. Each layer consists of a multi-head
attention layer and a feed-forward network. The decoder is also a stack of identical layers. Each layer
comprises a multi-head attention layer, a feed-forward network, and an encoder-decoder attention layer. The
encoder-decoder attention layer uses the encoder output as the key and value and the output of the previous
decoder layer as the query. The output of the decoder is passed through a linear layer to produce the 昀椀nal
output. [45]
MotionBERT uses a Transformer encoder to infer 3D joint locations from the 2D joint locations. The input
to the Transformer encoder is a sequence of 2D joint locations. The output of the Transformer encoder is a
sequence of 3D joint locations. The Transformer encoder is composed of a stack of 12 identical layers. Each
layer consists of a multi-head attention layer and a feed-forward network. The multi-head attention layer
uses the previous layer’s output as the key, value, and query. The output of the Transformer encoder is passed
through a linear layer to produce the 昀椀nal output. The output of the linear layer is a sequence of 3D joint
locations.

Dataset and Training

To train and evaluate the MotionBERT model, Zhu et al. used the Human3.6M dataset, as well as the
AMASS [46] dataset. The AMASS dataset is a meta dataset that combines 15 di昀昀erent motion capture datasets
into a single dataset with over 40 hours of motion capture data.
MotionBERT utilizes a novel pre-training stage to recover 3D motion from incomplete 2D observations with
noise. This confers superior insight into spatial and temporal motion patterns. Consequently, the derived data
proves highly consistent across these metrics.
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2.1.4 Thermographic Human Pose Estimation

All existing approaches are designed to achieve HPE on RGB or grayscale images. Nonetheless, thermographic
images are currently not incorporated into these methods, despite their numerous potential bene昀椀ts.

2.2 Thermography

Thermography captures long wave infrared radiation, typically in the 9–14 micron range of the electromagnetic
spectrum. In 1901, Planck published the law of black body radiation, which states that all objects emit infrared
radiation, the amount of which is dependent on the object’s temperature [47]. This allows to remotely measure
the surface temperature of objects using specialized cameras.
Because warm-blooded animals, especially humans, are easily detected by their contrast with cooler environ-
ments, thermography holds a special place in military and surveillance applications [48, 49].
Thermography cameras are based on the same principles as regular cameras. They consist of a lens, a sensor,
and a display. However, instead of capturing visible light, they capture infrared radiation. The lens focuses
the infrared radiation onto the sensor, which converts the radiation into an electrical signal. However, the
sensor does not split the incoming radiation into three distinct color channels, as is the case with regular
cameras. Instead, it converts the radiation into a single grayscale image. This is achieved by employing a
special thermographic image sensor. There are two types of thermographic image sensors: photon detectors
and thermal detectors. Photon detectors are based on the photoelectric e昀昀ect. They convert the incoming
radiation into an electrical signal by absorbing photons. To work properly, photon detectors require an active
cooling system. Thermographic sensors based on photon detectors can record images with a higher resolution,
frame rate, and dynamic range than thermal detectors. However, they are typically more expensive and
require more power due to their increased complexity and the active cooling system. Thermal detectors
are rely on so called microbolometers. A microbolometer is a thermal sensor that measures the change in
resistance of a thin 昀椀lm of typically vanadium oxide or amorphous silicon when heated by infrared radiation.
The change in resistance in the microbolometer is then measured by a readout circuit and converted into a
digital value. To ensure accuracy, each microbolometer is suspended above the readout circuit by a micro-scale
bridge-like structure. [50]
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3 Related Work

This chapter presents a comprehensive overview of THR frameworks, including their historical evolution
and conceptual approaches. Firstly, it delves into the genesis and necessity of THR. Subsequently, SOTA
approaches are explored in detail.
THR pertains to the computer vision 昀椀eld that involves the identi昀椀cation and localization of individuals in
thermographic images. It can also cover pose classi昀椀cation and pose estimation.

3.1 Algorithmic Approaches

Early algorithmic methods for detecting and localizing humans in thermographic images primarily rely on
grayscale values. In their work, “Real-time tracking of non-rigid objects using mean shift” Comaniciu et al.
developed an infrared algorithm that detects human targets using the Mean Shift algorithm. The authors
utilized the grayscale characteristics of the human body to identify targets, thereby simplifying the tracking
problem. The Bhattacharyya coe昀케cient was introduced as a measure of similarity between the current and
candidate models [51]. Nanda et al. proposed probabilistic templates for identifying pedestrians, accounting
for variations in human shape, especially in low contrast scenarios or when body parts are missing [52].
Subsequently, combining thermal features with other human characteristics became popular for human
recognition. Fernández-Caballero et al. proposes a new method for extracting human ROIs that takes motion
into account. The fusion of thermal and motion data reduces false positives and boosts system accuracy [53].
The “Mutual Guidance-Based Saliency Propagation for Infrared Pedestrian Images” paper presents pedestrian
detection method that combines two saliency types: Thermal Analysis based Saliency (TAS) and Appearance
Analysis weighted Saliency (AAS). The TAS measures pedestrian stability via maximally stable extremal regions,
while the AAS extracts pedestrian intensity and shape features. The study also introduces a mutual guidance-
based saliency propagation model to integrate saliency features and improve saliency performance [54].
These algorithmic methods were crucial in the advancement of thermal human recognition, yet they are less
pro昀椀cient when compared to their deep learning-based counterparts.

3.2 Deep Leaning Based Approaches

In 2017, Biswas et al. introduced a deep learning-based method to detect pedestrians using a linear support
tensor machine that depends on a Local Steering Kernel and a Histogram of Oriented Gradients as the
mid-level representation of a given input. To enhance speed and accuracy, Biswas et al. suggested utilizing
the multichannel Discrete Fourier Transform as the detection methodology instead of a sliding window-based
technique [55].
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Another prevalent task in thermographic image processing is Human Action Recognition (HAR), often with a
special focus on fall detection. Akula et al. introduced a CNN to predict one of six actions in a given 30-second
infrared video [56]. Prior to being passed to the NN, the images are transformed using an mean normalization
and scaled to a parameterized size. In 2023, Guo et al. presented a dataset on HAR by compiling data from a
preexisting set and developing three new classi昀椀ers [57]. This was done in the hope of providing a general
dataset and benchmark for future work. The newly developed classi昀椀ers are based on the popular YOLOF [58],
YOLOX [36], and TOOD [59] detectors, respectively.

3.3 In昀氀uence on This Work

However, no research has focused on the HPE task in thermographic images, which motivates this work.
Consequently, no readily available dataset for this task exists, prompting the creation of a new dataset for HPE
in thermographic images. Moreover, a benchmark for future research in the 昀椀eld of HPE in thermographic
images is also targeted, akin to the work carried out by Guo et al.
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4 Methods

This chapter explains the work and how it was carried out. Section 4.1 covers the data collection process,
while section 4.2 outlines varied techniques employed to optimally prepare data for di昀昀erent NNs. These
NNs and their use are explained in detail in section 4.3. Section 4.4 o昀昀ers detailed information on evaluating
metrics for all methods.

4.1 Data Acquisition

4.1.1 Recording

All data utilized for this work was gathered at TU Darmstadt with an ambient temperature of approximately
25 degrees Celsius. The main tool used was the Optris PI640i [60] thermal camera with the 33° x 25° lens.
Two Reolink RLC410 cameras [61] were also employed to record the participants simultaneously from two
di昀昀erent angles. Furthermore, some additional recordings were collected using a VarioCAM HD head 900 [62]
for reference. The participants were instructed to execute several physical exercises while facing the cameras
at di昀昀erent angles. Figure 4.1 provides a schematic top-down view of the camera setup.
Due to the o昀昀set of the two frontal cameras, the angle deviation towards the subject is around γ =
arcsin(0.05/2 · sin(90°)) = 1.433°. Since this has a negligible e昀昀ect on the actual data, it is ignored hereafter.

4.1.2 Collected Data

Six participants’ performance was recorded while performing 昀椀ve diverse exercises. The exercises were chosen
to capture a wide range of movements and to incorporate di昀昀erent body parts. The exercises are listed in
table 4.1. As the thermographic camera regularly calibrates itself, the participants were instructed to perform
each exercise for around 30 seconds to ensure that the camera was able to capture a complete repetition
of each exercise. The participants were also instructed to perform some exercises at di昀昀erent angles to the
cameras. The angles were chosen to be α = 0°, 45°, 90° to capture the exercises from the front, in between,
and from the side.
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Figure 4.1: Top-down view of the camera setup used for data collection.

Exercise Recorded angles in ° Description
Dips 0, 45, 90 The participant holds onto a chair with their arms behind their

back and lifts their body up and down.
Jumping jacks 0 The participant stands upright and jumps while spreading their

arms and legs.
Push-ups 45 The participant lies on their stomach on the ground and pushes

their body up with their arms.
Sit-ups 45 The participant lies on their back on the ground and lifts their

upper body until their elbows touch their knees.
Squats 0, 45, 90 The participant stands upright and bends their knees until their

thighs are parallel to the ground.

Table 4.1: Exercises performed by the participants.
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(a) Abstract model of a pinhole camera
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(b) Simpli昀椀ed model of a pinhole camera

Figure 4.2: Pinhole cameramodels project 3Dworld coordinates (x, y, z)T onto 2D image coordinates (u, v)T .

(a) undistorted image (b) barrel distortion (c) pincushion distortion

Figure 4.3: Examples of radial distortions

4.1.3 Intrinsic Sensor Calibration

Every camera can be simpli昀椀ed as a pinhole camera, as shown in Figure 4.2a. All light rays pass through
the focal point, which projects them onto the image plane. For the sake of mathematical simplicity, this can
be further abstracted by moving the image plane between the camera origin and the object. This simpli昀椀ed
model is shown in Figure 4.2b.
However, this linear camera model cannot model nonlinear distortions caused by imperfect camera lenses. The
most prevalent type of distortion in optical imaging is radial distortion, which causes non-linear changes in
magni昀椀cation with respect to an object’s distance from the optical axis. Examples for simple radial distortions
can be seen in Figure 4.3. In practice, distortions often comprise a combination of barrel and pincushion
distortions as a result of the manufacturer’s e昀昀ort to reduce the overall distortion [63].
A 昀椀rst model for these distortions along with an approach to correct them has been proposed by Heikkila et
al. [64]. For this correction a multitude of images is required to infer the intrinsic camera parameters.
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Intrinsic Calibration Using Checkerboard Patterns and OpenCV

OpenCV [65] is a popular open-source computer vision library that provides many algorithms for image
processing and computer vision. One of these algorithms is a camera calibration algorithm that can be used to
determine the camera’s intrinsic parameters. This algorithm requires a set of images of a checkerboard pattern
taken from di昀昀erent angles. The algorithm 昀椀rst automatically detects the corners of the checkerboard pattern
similar to the Harris corner detector [66]. Speci昀椀cally, the image 昀椀rst gets converted to grayscale. Then, a
gamma correction is applied as a simple histogram equalization. Next, the image is converted to a binary
image using an adaptive threshold as proposed by Otsu [67]. Then, the algorithm calculates the centroid
and corner candidates for each blob in the image. Then, the algorithm identi昀椀es the prospected corners
by matching the candidates to a set of criteria. The algorithm then re昀椀nes the corner positions using Shi
et al.’s corner re昀椀nement algorithm [68]. Next, the algorithm uses the detected corners to calculate the
camera’s intrinsic parameters. Finally, the algorithm uses the model for radial and tangential distortions
昀椀rst proposed by Brown in 1966 to 昀椀nd the distortion coe昀케cients so that the undistorted calibration grid is
minimally skewed across all images [69]. The Brown model is a simple model that assumes that the radial
distortion is proportional to the distance from the optical axis. The undistorted pixel coordinates (xu, yu)T
are calculated using the following equations, where (xd, yd)

T are the distorted pixel coordinates, (xc, yc)T is
the center of distortion, r2 = (xd − xc)

2 + (yd − yc)
2, Kn is the n-th radial distortion coe昀케cient, and Pn is the

n-th tangential distortion coe昀케cient.

xu = xd + (xd − xc)(K1r
2 +K2r

4 + · · · ) +

(

P1

(

r2 + 2(xd − xc)
2
)

+ 2P2 (xd − xc) (yd − yc)
)

(1 + P3r
2 + P4r

4 · · · )

yu = yd + (yd − yc)(K1r
2 +K2r

4 + · · · ) +

(

2P1 (xd − xc) (yd − yc)

+ P2

(

r2 + 2(yd − yc)
2
)

)

(1 + P3r
2 + P4r

4 · · · )

Intrinsic Calibration Using Checkerboard Patterns and BoofCV

The approach outlined in the previous section is a simple and e昀昀ective way to calibrate a camera. However, it
is not robust to blurry images due to the corner detection algorithm used. BoofCV [70] is another open-source
computer vision library that provides similar functionality to OpenCV. However, it uses a di昀昀erent approach
to detect the corners of the checkerboard pattern. Instead of using a corner detection algorithm, it uses a
pyramidal image processing approach to detect the corners. This approach is more robust to blurry images
because it employs multiple novel techniques to detect the corners. First, it uses a pyramidal image processing
approach to detect the corners, which implies that the image is scaled down to lower resolutions, and the
corners are then detected in the lower-resolution images. This rescaling makes the algorithm more robust
to blurry images because the corners are detected in the lower-resolution images, which are naturally less
blurry. Then, the algorithm uses a novel technique to detect the corners in the lower-resolution images. This
technique is based on the idea that the corners are the intersection of two edges. First, the algorithm 昀椀nds all
possible corners by 昀椀nding the intersection of two edges. Then, all possible corners that do not occur in the
lower-resolution images are 昀椀ltered out. Finally, all possible corners that do not follow the expected grayscale
pattern are 昀椀ltered out. This 昀椀ltering is performed to 昀椀lter out false positives. Lastly, the corners are re昀椀ned
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(a) Distorted frame as output by the camera. (b) Undistorted frame using camera intrinsics as cal-
culated using BoofCV.

Figure 4.4: Comparison of distorted and undistorted frame using a 5× 7 calibration target, the Brown model
and solving for three radial coef昀椀cients as well as tangential distortions.

using the same algorithm as OpenCV. The algorithm then calculates the camera’s intrinsic parameters using
the detected corners and the same Brown model as OpenCV.

Actual Calibration

A black and white checkerboard pattern measuring 10× 7 squares with a square size of 26.2mm was utilized
as the calibration target for the RGB cameras. The obtained data was subsequently processed using the
OpenCV implementation described above to determine the camera intrinsics.
The calibration target for the thermographic camera was created by drawing a 5× 7 checkerboard pattern
using black ink on a sheet of A4 paper as seen in Figure 4.4. The ink’s ability to retain heat longer than the
blank paper resulted in the pattern being imprinted as a thermographic signature upon being heated. The
recorded images were processed using a lossy linear grayscale transformation as outlined in section 4.2. As the
heat penetrates the paper, the edges become slightly blurred. This is a problem for the traditional algorithms
implemented in OpenCV. To circumvent these problems BoofCV was used which implements an algorithm
proposed by Abeles to handle blurry images [71].
For both the RGB and thermographic cameras, the undistorted images were cropped to remove the black
borders introduced by the calibration. This cropping was performed automatically by using the ROI calculated
by the getOptimalNewCameraMatrix function provided by OpenCV.

4.1.4 Temporal Alignment

The RGB and thermographic cameras do not synchronize, resulting in di昀昀erent frame rates. The RGB cameras
record 30 frames per second, while the thermographic camera records 32 frames per second. In order to
synchronize the data, the thermographic video’s frame rate is reduced to 30 frames per second by dropping
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(a) Linear transformed image of the
considered camera

(b) Grayscale conversion of reference
thermography camera

(c) Difference of the same image sec-
tion, both normalized

Figure 4.5: Comparison of known good temperature scale to presumed linear transformation

every 16th frame. This results in a theoretical loss of 6.25% of the data. However, the lost data is negligible
because there is no corresponding frame in the RGB data for each dropped frame.
Furthermore, the recordings were started non-simultaneously. This results in di昀昀erent starting points for
the RGB and thermographic videos. All videos are trimmed to a common starting point to align the data
temporally. This starting point is chosen so the RGB and thermographic videos show simultaneous actions
before the participants move. This alignment is achieved by manually identifying recognizable movement
changes, such as the participant reaching the lowest point of a squat. The data lost by trimming the videos is
insigni昀椀cant, as only one repetition per exercise per participant is used for the evaluation. This repetition is
chosen arbitrarily, ensuring the thermographic camera was not calibrated during the exercise.

4.2 Data Preprocessing

This section mainly focuses on preparing the thermographic data for optimal results. As the RGB data is
already in a suitable format, and used to generate the ground truth, it does not require any further processing
apart from resizing as described in section 4.2.5. The thermographic data, however, requires a more complex
approach.
Thermographic cameras often export data in a radiometric video format, where the raw sensor values, which
are 16 bit, are encoded as a raw data stream in a suitable container. In the case of the Optris camera used in
this context, the AVI container is used with the pixel format set to YUV2 yuyv422. However, this pixel format
does not represent the data’s encoding. It is only used because it holds 16 bit per pixel. Using a regular AVI
decoder to decode such video will result in images that look correct in contrast to the human eye but have
a color tint, as seen in Figure 4.10a. This incorrect representation occurs because the 昀椀rst byte per pixel is
interpreted as luminance, while the second is interpreted as alternating blue or red chrominance for adjacent
pixels. In order to get a more precise data representation, the stream can be decoded manually using 16 bit
unsigned integers for each pixel instead of using regular AVI decoders.
A proprietary algorithm dependent on the camera, lens model, and some calibration data is required to extract
the exact temperature values per pixel. Nonetheless, it is enough to estimate this calibration because pose
extraction NNs only necessitate a visual depiction of the data, not its exact temperature. Applying a simple
linear transformation to the raw data yields a su昀케ciently accurate result. Figure 4.5c shows the di昀昀erence
between a known calibration from the reference camera and the data linearly transformed from the Optris
camera.
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The average deviation of grayscale pixel values is approximately 3.1135%, or approximately 7.9394/255. This
deviation appears to be primarily caused by slight subject movement and a minimal shift in camera angle.
Therefore, a linear transformation can be applied to the previously obtained 16-bit unsigned integers to
convert them into luminosity values for a grayscale image.

Tlossless :







{x ∈ N0 : x < 65536} → [0, 1]

x 7→

⌊pixeli,j,uint16 −MIN

MAX

⌋ (4.1)

Here, the variables MIN and MAX hold the minimum and maximum values per frame, respectively. Using
global MIN and MAX is not possible as the calibration changes on a per frame basis. However, if it was
possible, it could improve temporal consistency at a cost of processing the video in two passes, which results
in performance overhead.

4.2.1 Clipping

The further temperatures di昀昀er from the average human skin temperature, the less helpful they are in
detecting human poses. Hence, extreme temperatures might be disregarded. To implement this, the linear
transformation can bemodi昀椀ed by introducing lower and upper cuto昀昀 percentagesOFFSETL andOFFSETU ,
respectively, such that the resulting transformation is as follows:

MIN ′ := MIN + (MAX −MIN) ·OFFSETL

MAX ′ := MAX − (MAX −MIN) ·OFFSETU

Tlossy :











{x ∈ N0 : x < 65536} → [0, 1]

x 7→

⌊

min
(

1,
max (0, pixeli,j,uint16 −MIN ′

)

MAX ′

)⌋

(4.2)

The variables MIN and MAX are assigned the same as previously. The o昀昀sets are de昀椀ned such that
OFFSETL, OFFSETU ∈ [0, 1] ∧OFFSETL +OFFSETU ≤ 1.

4.2.2 Contrast Limited Adaptive Histogram Equalization

As shown in Figure 4.10b, the linear transformation results in a detailed image with low contrast. To enhance
the image further, the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm can be applied
to the linearly transformed data.
The CLAHE algorithm is a modi昀椀cation of the Adaptive Histogram Equalization (AHE) algorithm, which is
itself a modi昀椀cation of the traditional histogram equalization method. These algorithms share the objective of
enhancing the contrast of an image. Histogram equalization describes the process of shifting pixel values,
typically grayscale or luminosity, to 昀氀atten the histogram of a given image. This is performed through a simple
昀椀ve step process. Firstly, a normalized histogram of the pixel intensity values is generated for the image by
calculating the probability for each pixel intensity and dividing that by the total amount of pixels. Secondly,
the histogram is turned into a Cumulative Distribution Function (CDF) cdf so that the value for each discrete
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pixel intensity is the sum of probabilities for all lower or equal pixel intensities. Thirdly, the inverse CDF cdf−1

is computed through one of many numerical algorithms. Fourthly, the inverse CDF is used to create a lookup
table k′ for all pixel intensity values k, such that k′(k) = cdf−1 (k/(I − 1)), where I is the total number of
possible pixel intensity values. Lastly, the lookup table is applied to all pixels, resulting in a histogram with a
more uniform distribution.
As the conventional histogram equalization method only enhances the overall contrast, Ketcham introduced
what they originally called Local Area Histogram Equalization (LAHE), presently known as Adaptive Histogram
Equalization (AHE), which focuses on improving contrast locally [72]. The fundamental principle remains the
same, but the histogram is not generated for the entire image. Rather, one is generated for the area directly
surrounding each pixel. This method enhances low contrast regions that exhibit less frequent pixel intensities.
However, the AHE algorithm has the tendency to over-amplify noise in homogeneous regions. To prevent this,
Zuiderveld proposed the Contrast Limited Adaptive Histogram Equalization algorithm [73]. For e昀케ciency
reasons, the image is divided into non-overlapping segments instead of using a sliding window. These
segments are subsequently reassembled with a bilinear interpolation. The histogram is clipped at a preset
threshold, so that all pixel intensities above the threshold are evenly distributed over all pixel intensities,
before the CDF is computed. This process e昀昀ectively restricts the CDF slope, preventing previously problematic
over-ampli昀椀cation.
See Figure 4.6 for a step-by-step demonstration of how the CLAHE algorithm works.

4.2.3 Visualization

The data can be visualized either as a grayscale image or as a color image. As the NNs used in section 4.3 are
trained on color images, three color channels are required. The grayscale image is the simplest representation,
as the data is already encoded in a single channel.
Alternatively to the grayscale representation, the data can be visualized as a color image. Such colorization is
accomplished through the utilization of LUTs. This work utilizes two distinct methodologies to add color to
any grayscale image, based on two di昀昀erent concepts for enhancing the outcomes.

HSV Spiral

This approach aims to optimize the use of the 3Byte pixel values to generate a greater Absolute Basic Color
Di昀昀erence (ABCD) between comparable values while preserving proximity between close ones. The ABCD
is de昀椀ned as the Euclidean distance between two colors within a particular color model space. We do not
prioritize absolute perceptual or visual color distance, such as those suggested by Lv et al. [74]. To accomplish
an increased local ABCD, we utilize a spiral around the outside of the HSV color model to generate the LUT as
seen in Figure 4.7. The three dimensional HSV color space C is de昀椀ned as [0, 1]3.
All tuples (θ, r, h)T in the HSV color space describe points in a cylindrical coordinate system, where the hue θ

is the angle around the cylinder, the saturation r is the distance from the center of the cylinder, and the value
h is the height within the cylinder.
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To convert any HSV coordinate (θ, r, h)T to the corresponding cartesian coordinates (x, y, z)T , we use the
following mapping:

P :























C → R
3







θ

r

h






7→







r · cos(2π · θ)

r · sin(2π · θ)

h







(4.3)

To calculate the numerical absolute color distance from two colors c1 and c2 within the HSV color model, the
following term results:

∆C :

{

C × C → R

(c1, c2) 7→ ‖P (c1)− P (c2)‖2

(a) Original low contrast image (b) Split image into smaller non-overlapping segments;
typically the segments are only a few pixels in size,
this 昀椀gure only aims to illustrate the principles
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(d) Clip histogram per segment to prevent over-ampli-
昀椀cation; this shows the histogram for the bottom
left segment

Figure 4.6: Step by step visualization of the principles behind the CLAHE algorithm
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(e) Shift luminosity value per pixel to equalize the his-
togram per segment by applying the LookUp Table
(LUT) k′ based on inverse CDF cdf−1; this shows
the histogram for the bottom left segment

(f) AHE on all segments

(g) Join segments back together to one image (h) Smooth out edges using bilinear interpolation

Figure 4.6: Step by step visualization of the principles behind the CLAHE algorithm

The standard grayscale representation of any normalized temperature value x can be expressed in the HSV
color model as such:

HSVgray :

{

[0, 1] → C

x 7→ (0, 0, x)T
(4.4)

(4.3) and (4.4) yield the following function to determine ABCD per temperature value di昀昀erence x ∈ [0, 1]
such that ∃v ∈ [0, 1] ∧ v + x ∈ [0, 1]:

∆gray :

{

[0, 1] → R

x 7→ ∆C

(HSVgray(v),HSVgray(v + x)
)
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(a) Visualization of the HSV color
space at discrete positions

(b) Unrolled outer surface of the HSV color space with a white linemarking
the spiral LUT

(c) Resulting LUT

Figure 4.7: Unrolled HSV color-space surface
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The mapping for the color on the spiral LUT given a normalized temperature value x is de昀椀ned as follows:

HSVspiral :

{

[0, 1] → C

x 7→ (x, 1, x)T
(4.6)

Thus, (4.3) and (4.6) imply the following mapping for the ABCD given a normalized temperature di昀昀erence
x ∈ [0, 1] such that ∃v ∈ [0, 1] ∧ v + x ∈ [0, 1]:

∆spiral :
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[0, 1] → R

x 7→ ∆C

(HSVspiral(v),HSVspiral(v + x)
)

∆spiral(x) = ∆C

(HSVspiral(v),HSVspiral(v + x)
)

= ∆C

(

(v, 1, v)T , (v + x, 0, v + x)T
)

=
∥

∥

∥
P
(

(v, 1, v)T
)

− P
(

(v + x, 1, v + x)T
)∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥





1 · cos(2π · v)
1 · sin(2π · v)

v



−





1 · cos(2π · (v + x))
1 · sin(2π · (v + x))

v + x





∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥





cos(2π · v)− cos(2π · (v + x))
sin(2π · v)− sin(2π · (v + x))

v − (v + x)





∥

∥

∥

∥

∥

∥

2

27



0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

normalized color di昀昀erence

AB
CD

∆gray
∆spiral

Figure 4.8: Absolute color difference per value difference for ∆gray and ∆spiral.

We substitute a for 2π · v and b for 2πx.

∆spiral(x) =
√

(cos(a)− cos(a+ b))2 + (sin(a)− sin(a+ b))2 + x2

=

√

cos(a)2 − 2 cos(a) cos(a+ b) + cos(a+ b)2 + sin(a)2 − 2 sin(a) sin(a+ b) + sin(a+ b)2 + x2

=
√

1 + 1− 2 cos(a) cos(a+ b)− 2 sin(a) sin(a+ b) + x2

=
√

2− 2 cos(a) (cos(a) cos(b)− sin(a) sin(b))− 2 sin(a) (cos(b) sin(a) + cos(a) sin(b)) + x2

=
√

2− 2 cos(a) cos(a) cos(b)− 2 sin(a) cos(b) sin(a) + x2

=
√

2− 2 cos(b) (cos(a) cos(a)− sin(a) sin(a)) + x2 =
√

2− 2 cos(b) + x2

Resubstituting 2πx for b yields
√

2− 2 cos(2πx) + x2.

=⇒ ∆spiral(x) =
√

2− 2 cos(2πx) + x2 (4.7)

Plotting the functions ∆gray and ∆spiral as given by (4.5) and (4.7) can be seen in Figure 4.8. It shows that
especially for small value changes a greater absolute color change can be achieved by employing the spiral
LUT. However, it should be noted that the absolute di昀昀erence does not consistently increase. As a result,
larger value di昀昀erences may have a lower absolute color di昀昀erence compared to smaller value di昀昀erences.
This should not be a problem though, as the main focus is to increase local di昀昀erences.

Ironblack

The second approach is to employ a color map that more closely resembles common thermographic image
visualizations. As not all pre-trained neural network models utilized in this study provide their training data,
there is a possibility that this data may comprise thermographic images with a similar color map. This could
have permitted the neural network to learn the color scheme as a feature, which may have the potential to
enhance the accuracy of the neural network on images with comparable colors. Nevertheless, this is purely
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Figure 4.9: Ironblack color map

speculative and cannot be substantiated without access to the training data. To achieve this, we utilize
the ironblack color map provided by the open source project GetThermal [75]. The color map is depicted
in Figure 4.9.

4.2.4 Full Thermographic Preprocessing Pipeline

The full preprocessing pipeline consists of three distinct steps. Firstly, the raw data is normalized either
through the lossless linear transformation (4.1) or lossy linear transformation (4.2). Secondly, the CLAHE
algorithm can be applied to the normalized data. Lastly, the data can be visualized either as a grayscale
image or as a color image. The color image can be generated either through the HSV spiral LUT (4.6) or the
ironblack LUT.
These three steps result in twelve unique representations of the same input data. All twelve representations
are depicted in Figure 4.10.

4.2.5 RGB and Infrared Alignment

As the RGB images are captured with a higher 昀椀eld of view than the infrared images, the RGB images need to
be cropped and aligned with the infrared images. This is done by using the infrared image as a reference and
cropping the RGB image to the same size. The resolution is not altered, only the image section.

4.3 Pose Estimation

The pre-processed videos are fed into the respective pipelines of the considered HPE approaches, BlazePose,
AlphaPose, and MotionBERT.

4.3.1 Comparative Evaluation

For the comparison of the three methods, we use a shared subset of the preprocessed dataset from section 4.2.
The videos are processed in their entirety, leading to an obstacle in ground truth-based evaluation as synchro-
nizing inference results with ground truth data is obligatory. Regrettably, not all reference implementations of
the three methods o昀昀er feedback on missed estimates. Thus, assessment can solely rely on metrics that do not
demand ground truth data, like the Average Relative Bone Length Over Time (ARBLOT) metric. While these
metrics are insu昀케cient to comprehensively evaluate the approaches, they can compare them and identify the
most promising one. These metrics, while inadequate for complete evaluation, can compare the approaches
and determine the most promising one. The results of this comparison are presented in Section 5.1.
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(a) Incorrect representation as derived from a regular
AVI decoder

(b) (Tlossless, grayscale) referred to as Lossless Linear
Grayscale (LLGS)

(c) (Tlossless,HSVspiral) referred to as Lossless Linear
HSV (LLHSV)

(d) (Tlossless, ironblack) referred to as Lossless Linear
Ironblack (LLIRBL)

(e) (Tlossless,CLAHE, grayscale) referred to as Loss-
less CLAHE Grayscale (LCGS)

(f) (Tlossless,CLAHE,HSVspiral) referred to as Lossless
CLAHE HSV (LCHSV)

Figure 4.10: Overview of all preprocessing approaches taken. The transformation variables were set as
follows: OFFSETL = 120/255;OFFSETU = 220/255;CLAHELimit = 2;CLAHEGridSize = (8, 8)
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(g) (Tlossless,CLAHE, ironblack) referred to as Loss-
less CLAHE Ironblack (LCIRBL)

(h) (Tlossy, grayscale) referred to as Lossy Linear
Grayscale (LYLGS)

(i) (Tlossy,HSVspiral) referred to as Lossy Linear HSV
(LYLHSV)

(j) (Tlossy, ironblack) referred to as Lossy Linear Iron-
black (LYLIRBL)

(k) (Tlossy,CLAHE, grayscale) referred to as Lossy
CLAHE Grayscale (LYCGS)

(l) (Tlossy,CLAHE,HSVspiral) referred to as Lossy
CLAHE HSV (LYCHSV)

Figure 4.10: Overview of all preprocessing approaches taken. The transformation variables were set as
follows: OFFSETL = 120/255;OFFSETU = 220/255;CLAHELimit = 2;CLAHEGridSize = (8, 8)
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(m) (Tlossy,CLAHE, ironblack) referred to as Lossy
CLAHE Ironblack (LYCIRBL)

Figure 4.10: Overview of all preprocessing approaches taken. The transformation variables were set as
follows: OFFSETL = 120/255;OFFSETU = 220/255;CLAHELimit = 2;CLAHEGridSize = (8, 8)

MediaPipe BlazePose GHUM 3D

The 昀椀rst approach is the BlazePose implementation within the MediaPipe framework. Currently, the framework
utilizes BlazePose, as outlined in section 2.1.1, to deduce 2D keypoints from RGB images. Then, a separate
model based on GHUM [76] is employed to estimate the 3D pose from these 2D keypoints. The version of
MediaPipe Pose used dates back to April 16, 2021. GHUM is a sophisticated process founded on deep learning
variational autoencoders [77]. It is designed to evaluate facial expressions, as well as compute body shape
and pose estimations. MediaPipe only uses the pose estimation part of GHUM. Xu et al. mainly focus on mesh
reconstruction for the human body. The exact architecture for the pose estimation is not discussed. The model
was trained on the Human3.6M dataset [41] and the CMU [78] dataset.
For the inference, the Python implementation of MediaPipe is used. OpenCV is used to decode the video,
convert the frames into NumPY arrays [79], and transform these arrays from their native BGR form into the
required RGB format. A single PoseLandmarker instance is used to process all frames of a video. For optimal
results the heavy model of BlazePose, presented in section 2.1.1, is employed. The detect_for_video
method is used to process the frames. This method returns all inference results including the 3D keypoints.

AlphaPose

The structure of AlphaPose is explained in detail in section 2.1.2. The inference is performed using the o昀케cial
Python Demo API of AlphaPose for 3D HPE. As detector YOLOX is employed, the pretrained model for HyberIK
used in this work is provided by the authors of HyberIK.

MotionBERT

The basics of MotionBERT are detailed in section 2.1.3. Initially, all videos undergo processing via AlphaPose’s
o昀케cial Python Demo API. For this task, the YOLOX detector is employed. The pretrained model used in this
work for AlphaPose is based on the custom Halpe26 dataset introduced by the authors of AlphaPose. The

32



12

34

56

78

910 1112

Figure 4.11: Limited keypoint set used for performance analysis.

resulting 2D keypoints are then fed into the reference implementation of the MotionBERT pipeline provided
by the authors of MotionBERT.

4.3.2 Detailed Evaluation

Due to its superiority in the comparative evaluation, as presented in section 5.1, the MotionBERT approach is
selected for further evaluation. The evaluation is performed on the entire dataset, as outlined in section 4.2.
To properly handle estimation misses the videos are split into single frames and each frame is processed
individually. This potentially degrades estimation stability over time, but since the results are mainly evaluated
on a per-frame basis, this is not a problem. Furthermore, section 5.2 shows that even with this approach, the
results can still be fairly stable over time. The videos are split into individual frames using the default decoder
implementation of the VideoCapture class from the OpenCV library.
Similar to the comparative evaluation described above, the same provided pretrained model and YOLOX are
used in conjunction with the reference Python implementation of AlphaPose and MotionBERT. The results of
the evaluation are presented in section 5.3.

4.4 Analysis

The main focuses of this analysis are plausibility and correctness. Considerations regarding memory usage
and time consumption are of secondary importance.
Various methods of M3DHPE use di昀昀erent keypoint sets, but a common subset can be used to address this.
The reduced set consists of keypoints for only the shoulders, hips, knees, ankles, elbows, wrists, and excludes
other body parts. The keypoint data is sorted, as illustrated in Figure 4.11, and then encoded in a CSV 昀椀le
with one line per frame.
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4.4.1 Ground Truth Generation

The dataset produced in sections sections 4.1 and 4.2 needs to have ground truth data for some of the
evaluation metrics. Consequently, a methodology to generate said data is necessary. Our approach combines
the pose estimation 昀椀ndings from the RGB camera’s front and side views. Therefore, merging the keypoints
from both views results in a simple process. In contrast to the depth direction, the pose estimation in the
side-to-side and top-to-bottom direction is much more trivial. Therefore, the views can be merged by simply
combining the two sets of keypoints, such that the new keypoint (x, y, z)T ′ is de昀椀ned as (x1, y1, y2)T , where
(x1, y1, z1)

T is the keypoint from the front view and (x2, y2, z2)
T is the keypoint from the side view. For all

keypoints, the x coordinate describes the left-to-right direction as seen from the camera, the y coordinate
describes the top-to-bottom direction as seen from the camera, and the z coordinate describes the depth
direction as seen from the camera. The validity of this approach is veri昀椀ed in section 5.2.
Several metrics quantifying the results of pose estimation are utilized.

4.4.2 Inference Results

The 昀椀rst metric is the Percentage of Inference Results (PIR), which is the proportion of frames for which the
pose estimation was successful. This metric is not that useful on its own but can be used to compare the
performance of di昀昀erent approaches. It is also helpful to determine whether the pose estimation is stable or
whether it fails frequently. Furthermore, it is used by the following quantitative metrics to scale their results.

4.4.3 Normalization

Before calculating any metrics, both the estimated and actual values are normalized linearly using the hip
width, ensuring consistent outcomes irrespective of the camera’s distance from the subject or other factors.
Before normalization, the hip width is 昀椀rst 昀椀ltered using a one dimensional gaussian kernel with a size of
5 and a standard deviation of 1. The resulting values are then used to normalize the estimated and actual
values on a per-frame basis. This work considers two speci昀椀c metrics.

4.4.4 Keypoint Displacement

Keypoint displacement refers to various metrics based on the Euclidean norm between estimated joint positions
and their corresponding ground truth.
The 昀椀rst measure is the Percentage of Correct Keypoints (PCK), which calculates the proportion of keypoints
for which the Euclidean distance falls below a certain threshold. Evaluating with a su昀케ciently large threshold
supplies feedback on signi昀椀cantly missed keypoints, such as from obstructed body parts. The threshold is set
as a percentage of the normalized hip width, such that a threshold of 0.1 corresponds to 10% of the hip width.
The second metric utilized is the Mean Per Joint Position Error (MPJPE), which calculates the average of the
Euclidean distances across all frames and joints. This metric o昀昀ers a comprehensive means to assess overall
performance across various approaches. Due to the normalization, the MPJPE is measured in units of the hip
width.
Both of these metrics are frequently employed not just in HPE but also in analogous computer vision tasks [80–
84]. PCK, for example, can also be employed in knee surgery as proposed by Marmol et al. [85].
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4.4.5 Relative Bone Length
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Figure 4.12: Illustration of the
bone lengths used
for the ARBLOT.

In the context of HPE, bone lengths can be assumed to be constant. This
can then be utilized to assess the plausibility of the results of a particular
model and how stable it is.
On a per-frame basis, the Relative Bone Lengths (RBL) can be compared
to anatomical assumptions. For example, the length of the forearm is
approximately equal to that of the upper arm, and similarly, the length of
the thigh is roughly equal to that of the shin. It is important to note that
these proportions may vary between individuals.
Another approach is to evaluate the consistency of the estimated bone
lengths over time. However, bone length estimations may vary due to the
subject’s distance from the camera. One way to solve this issue is to use
the bone length ratios instead of the actual bone lengths, which requires
ensuring a stable per-frame RBL.
This work utilizes the average ratio of left upper arm length (L1) to shoulder
width (L2) over time, and the average ratio of right thigh length (L3) to hip
width (L4) over time to calculate the ARBLOT between two consecutive
frames (i and i+ 1), as shown below:

A1,i :=
L1,i

L2,i

∗
L2,i+1

L1,i+1

A2,i :=
L3,i

L4,i

∗
L4,i+1

L3,i+1

ARBLOT i :=
A1,i +A2,i

2

These bones are chosen because they are expected to be relatively stable over time. Apart from the shoulder
width, the other bone lengths represent actual bones in the human body and are thus expected to be constant.
The shoulder width is chosen because it is expected to be relatively stable and easy to detect from only a
silhouette.

4.4.6 Joint Angle Changes

The 昀椀nal metric examined is changes in joint angles. A graph can be created by calculating the angle between
two potentially constructed bones and tracking changes in this angle between frames. This graph can then be
used to assess the plausibility of a given approach. For instance, a video of a participant performing squats is
expected to display a sinusoidal knee angle, while a static knee angle, is to be expected when analyzing sit
ups. However, since this method does not yield measurable numerical outcomes, it can only be applied to
provide a general assessment of di昀昀erent approaches.
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4.4.7 Mirror Error

As thermographic images do not show signi昀椀cant three dimensional features in bodies with a uniform
temperature, it is di昀케cult to make out the orientation of the body. This is especially true for movements
that are performed in the sagittal plane. To assess the this shortcoming, the mirror error is introduced. It is
de昀椀ned as the percentage of frames in which the estimation 昀氀ipped across the frontal plane demonstrates a
lower MPJPE than the original estimation. All ground truth based metrics are also evaluated on the corrected
estimation. This is done to assess the impact of the mirror error on the estimation quality.
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5 Results

This chapter presents the results of the experiments conducted in this work. First, in section 5.1 a single
M3DHPE pipeline is selected from the three candidates presented in section 2.1. Then, in section 5.2 the
ground truth generation methodology is veri昀椀ed. Finally, in section 5.3 the results of the di昀昀erent preprocessing
methods are compared.

5.1 Model Selection

Limited tests were conducted on the LLGS data of the Squat 0° scene to select the most promising M3DHPE
pipeline among the three candidates presented in section 2.1: BlazePose, AlphaPose, and MotionBERT. The
objective of this test was to identify the most promising pipeline given the same non-optimized data. The
LLGS data was chosen for this test because it is the closest to the raw thermal data.
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Figure 5.1: Illustration of the
bones used for the
change in the knee
angle.

For each M3DHPE pipeline, the the knee angle from was calculated for
each frame of the video of one participant for the Squat 0° scene. The video
was processed as a whole and not frame by frame as the concerns raised
in section 4.3.2 do not apply to the evaluation of the metric employed in
this test. Furthermore, the video contained six repetitions of the exercise.
The knee angle is de昀椀ned as the angle between the line from the hip joint
to the knee joint and the line from the knee joint to the ankle joint for the
left and right knee respectively. Figure 5.1 shows the bones used for the
calculation of the knee angle. A calibration sequence can be seen in all
estimations from around frame 280 to 300. The calibration sequence is
a sequence of identical frames. It shows as an unchanged knee angle in
the graphs with a sudden change at the end of the calibration sequence.
Figure 5.2 shows the knee angle from per frame as inferred by MediaPipe
using BlazePose. It shows the general trend of the knee angle decreasing
during the downward movement and increasing during the upward move-
ment. However, the change in the knee angle is not smooth but rather
jittery.
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Figure 5.2: Knee angle over time for the Squat 0° scene of one participant as inferred by MediaPipe using
BlazePose in radians.

Figure 5.3 shows the knee angle from per frame as inferred by AlphaPose. In contrast to MediaPipe, the knee
angle shows no recognizable pattern. The angle is mostly wholly random and has no visible correlation with
the actual movement of the participant. Furthermore, the changes in the angle between frames regularly
exceed 1 rad, which is physically possible but does not 昀椀t the actual movement of the participant as it exceeds
the expected speed of the movement.
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Figure 5.3: Knee angle over time for the Squat 0° scene of one participant as inferred by AlphaPose using
HyberIK in radians.

Figure 5.4 shows the knee angle per frame as inferred by MotionBERT. The knee angle exhibits the most
substantial relationship to the subject’s actual movement. The change in knee angle is consistently smooth
and closely matches the subject’s actual movement. Furthermore, there are mostly no unexpected sudden
changes in the knee angle, which 昀椀ts the actual movement of the participant.
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Figure 5.4: Knee angle over time for the Squat 0° scene of one participant as inferred by MotionBERT in
radians.
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Figure 5.5: Illustration of the
bones used for stabil-
ity analysis

Figure 5.6 shows the ratio of the hip width to the thigh length for the
Squat 0° scene of one participant as inferred by MediaPipe using BlazePose,
AlphaPose, and MotionBERT. The ratio of the hip width to the thigh length
is calculated as the ratio of the distance between the left and right hip joint
to the average distance between the left knee joint and the left hip joint
and the right knee joint and the right hip joint. Figure 5.5 shows the bones
used for the calculation of this ratio. The ratio is calculated for each frame
of the video. Due to the di昀昀erent types of annotations used by the di昀昀erent
frameworks, the ratio is not directly comparable. However, the stability of
the ratio is comparable. The ratio of the hip width to the thigh length as
inferred by MediaPipe is the least stable. AlphaPose is the most stable, and
MotionBERT performs better than MediaPipe but worse than AlphaPose.
The remarkable stability of AlphaPose is likely due to the architecture of
the HyberIK model it employs. As explained in section 2.1.2, HyberIK
initially transforms a base skeleton to generate a rest pose skeleton based
on estimated shape parameters. Joint angles estimated are then estimated.
This approach results in an extremely stable skeleton structure that is utilized for all video frames. The ratio
of hip width to thigh length as inferred by AlphaPose cannot be directly compared to other frameworks due to
this reason.

MotionBERT AlphaPose MediaPipe

0.5

1

1.5

Figure 5.6: Boxplot of the ratio of hip distance to thigh length for the Squat 0° scene of one participant as
inferred by MediaPipe using BlazePose, AlphaPose using HyberIK, and MotionBERT.
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Due to its superior performance in M3DHPE, MotionBERT is the only HPE framework considered in the
remainder of this work.

5.2 Ground Truth Generation

To verify that the ground truth generated in section 4.4.1 is valid, the ARBLOT is calculated for each participant
and each setting from the front, side, and merged views from the RGB recordings. The quartiles shown in
Figure 5.7 directly correlate to the mean and the variance of the three considered estimators of the skeletal
stability. The front view has a mean of 1.0045 , the side view has a median of 1.0093 , and the merged view
has a median of 1.0026 Since all three means are close enough to the expected value of 1 that they can be
assumed to be 1, the ARBLOT metric is an mean-unbiased estimator. Thus, the quality of an estimator can be
quanti昀椀ed solely by the variance of the ARBLOT. The front view has a variance of 5.4 × 10−4, the side view
has a variance of 1.61 × 10−3, and the merged view has a variance of 3.4 × 10−4. As the merged view has
the lowest variance, it is the best estimator of skeletal stability, suggesting that it estimates the joint locations
most accurately. This superior performance makes the merged view the best choice to represent the ground
truth generation.
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Figure 5.7: Boxplot for the ARBLOT of the front, side, and combined view across all settings and participants.
The expected ratio is 1.

5.3 Preprocessing Comparison

For the comparison of the di昀昀erent preprocessing methods, all videos are processed on a per-frame basis. This
is in contrast to the proceedings in section 5.1 to address the concerns raised in section 4.3.2.
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The results are compared using the PIR, MPJPE, PCK, and ARBLOT metrics. The PIR is calculated as the
proportion of frames for which the pose estimation was successful. The MPJPE is calculated as the mean of
the Euclidean distance between the estimated and actual key points for each frame. The PCK is calculated as
the proportion of key points for which the Euclidean distance between the estimated and actual key point is
below a certain threshold. The ARBLOT is calculated as the ratio of the average of two bone length ratios in
two consecutive frames. The exact de昀椀nition of all metrics is given in section 4.4.
Table 5.1 shows the Percentage of Inference Results (PIR), as introduced in section 4.4.2, for each scene and
preprocessing method. The PIR is calculated for each scene and participant individually, and then averaged
over all scenes and participants. Upon examination of the data, it is clear that the grayscale representation
consistently yields the highest average score, and largely the lowest uncertainty. Both colorization methods
introduced in section 4.2.3, based on the HSV color spiral and the IronBlack color map, yield worse results.
There is no explicit pattern in the degradation of the PIR across the two colorization methods. In most scenes,
both approaches yield similar results, in others, one approach is superior to the other. The scenes involving
Push Ups and Sit Ups have a signi昀椀cantly lower PIR compared to all other scenes. This is likely because these
are the only scenes where the participant is not standing upright, which is a pose that is not commonly present
in most datasets, including the one used to train HyberIK. This also results in a high degree of self-occlusion,
which poses a challenge for most M3DHPE pipelines.

Dips 0° Dips 45° Dips 90° Jumping jack Push ups Sit ups Squat 0° Squat 45° Squat 90°
LLGS 100 98 ± 4 100 100 ± 1 28 ± 22 78 ± 22 99 ± 2 100 ± 1 100 ± 1
LLHSV 100 51 ± 47 87 ± 4 83 ± 12 8 ± 8 8 ± 10 90 ± 13 88 ± 12 93 ± 11
LLIRBL 96 ± 6 75 ± 25 99 ± 1 88 ± 9 24 ± 14 34 ± 27 86 ± 24 100 ± 1 97 ± 8
LCGS 100 100 ± 1 100 100 39 ± 24 82 ± 17 100 100 ± 1 100
LCHSV 100 29 ± 33 43 ± 3 75 ± 11 0 ± 1 0 74 ± 23 59 ± 13 65 ± 22
LCIRBL 98 ± 3 36 ± 43 53 ± 26 73 ± 14 0 0 71 ± 26 82 ± 13 57 ± 19
LYLGS 100 100 ± 1 100 99 ± 2 53 ± 29 88 ± 17 100 100 ± 1 100
LYLHSV 79 ± 29 30 ± 33 31 ± 18 72 ± 25 3 ± 8 2 ± 4 79 ± 29 72 ± 26 70 ± 29
LYLIRBL 99 ± 2 49 ± 40 45 ± 2 63 ± 15 1 ± 3 11 ± 13 82 ± 21 82 ± 28 71 ± 29
LYCGS 100 100 ± 1 100 100 ± 1 60 ± 23 83 ± 20 100 100 ± 1 100
LYCHSV 94 ± 9 28 ± 33 21 ± 4 70 ± 19 0 ± 1 0 85 ± 15 71 ± 22 64 ± 33
LYCIRBL 92 ± 12 52 ± 48 41 ± 15 54 ± 7 1 ± 2 8 ± 9 79 ± 24 83 ± 23 61 ± 27

Table 5.1: Mean Percentage of Inference Results (PIR) and standard deviation between participants per
scene and preprocessing; higher is better

The Mean Per Joint Position Error (MPJPE) per scene and preprocessing method is shown in table 5.2. The
same averaging procedure as for the PIR is applied. The results mostly a昀케rm the 昀椀ndings of the PIR metric
in that the two colorization methods decrease the accuracy of the pose estimation. In some cases, notably
the from the LLGS to the LLHSV representation in the Squat 90° scene, the MPJPE is signi昀椀cantly increased
with a tighter uncertainty. Although the pose estimation for the Push Ups and Sit Ups scenes is successful for
only a small proportion of frames, a good MPJPE does not necessarily follow. On the contrary, the MPJPE is
signi昀椀cantly higher than in other scenes, which con昀椀rms the 昀椀ndings of the PIR metric. It is worth noting
that the MPJPE is consistently lowest for the 0° view of the Squats scenes, where the participant is facing the
camera, among the three di昀昀erent angles. Similarly, less pronounced results are observed for the di昀昀erent
angles of the Dips scenes.
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Dips 0° Dips 45° Dips 90° Jumping jack Push ups Sit ups Squat 0° Squat 45° Squat 90°
LLGS 0.7 0.5 ± 0.2 1.5 ± 0.5 0.4 ± 0.1 4.0 ± 1.5 1.7 ± 0.5 0.5 ± 0.2 1.1 ± 0.5 1.9 ± 2.3
LLHSV 0.7 1.3 ± 1.4 2.1 0.8 ± 0.3 4.2 ± 1.7 1.9 ± 0.2 0.6 ± 0.3 1.3 ± 0.7 0.9 ± 0.3
LLIRBL 0.7 0.7 ± 0.5 1.6 ± 0.6 0.6 ± 0.2 4.6 ± 2.7 2.1 ± 0.8 0.9 ± 1.2 1.6 ± 1.0 2.3 ± 3.5
LCGS 0.5 ± 0.1 0.4 ± 0.1 1.6 ± 0.5 0.4 ± 0.1 4.0 ± 1.4 1.6 ± 0.3 0.5 ± 0.4 1.1 ± 0.8 1.4 ± 1.0
LCHSV 0.8 ± 0.2 2.1 ± 0.2 2.1 ± 0.6 0.7 ± 0.2 4.3 1.1 ± 0.7 1.3 ± 0.2 1.4 ± 0.6
LCIRBL 0.8 ± 0.1 1.1 ± 0.7 1.6 ± 0.2 1.0 ± 0.5 1.2 ± 1.2 1.6 ± 0.9 1.4 ± 0.5
LYLGS 0.6 ± 0.1 0.7 ± 0.5 1.4 ± 0.6 0.7 ± 0.3 3.2 ± 1.4 1.7 ± 0.4 0.7 ± 0.3 1.5 ± 1.2 1.9 ± 2.5
LYLHSV 0.8 1.1 ± 0.4 2.1 ± 1.0 1.3 ± 0.8 4.4 ± 2.7 2.6 1.3 ± 0.6 1.4 ± 1.1 1.5 ± 0.9
LYLIRBL 1.3 ± 0.8 1.8 ± 0.6 1.5 ± 0.7 1.6 ± 0.8 2.9 2.3 ± 0.4 0.9 ± 0.4 1.7 ± 1.0 1.5 ± 1.1
LYCGS 0.6 ± 0.1 0.6 ± 0.4 1.5 ± 0.3 0.6 ± 0.2 3.4 ± 1.7 1.7 ± 0.4 0.7 ± 0.4 1.5 ± 1.2 1.8 ± 2.2
LYCHSV 1.0 ± 0.5 1.2 ± 0.8 2.0 ± 0.9 1.3 ± 0.8 4.8 1.3 ± 0.7 1.4 ± 0.9 1.7 ± 1.6
LYCIRBL 1.2 ± 0.8 1.9 ± 0.4 1.3 ± 0.5 1.6 ± 0.6 5.7 2.2 ± 0.2 0.8 ± 0.3 1.9 ± 0.9 1.4 ± 0.6

Table 5.2: Mean Per Joint Position Error (MPJPE) and standard deviation between participants per scene
and preprocessing; in units of hip width; lower is better

As the Percentage of Correct Keypoints (PCK) metric is derived from the same data as the MPJPE, the results
are comparable. The metric is calculated per scene and preprocessing method, with an average computed
over all participants. Table 5.3, displays the PCK values given a threshold of 0.5. The outcomes demonstrate a
resemblance to the 昀椀ndings of the PIR and MPJPE metrics. Again, the accuracy of pose estimation reduces
with colorization methods, though minor improvements are evident in some scenes. However, for all cases
where the PCK is improved by colorization, the improvements lie within the uncertainty of the PCK of the
grayscale data.

Dips 0° Dips 45° Dips 90° Jumping jack Push ups Sit ups Squat 0° Squat 45° Squat 90°
LLGS 49 ± 2 73 ± 8 34 ± 9 72 ± 9 8 ± 4 19 ± 6 71 ± 17 43 ± 26 49 ± 20
LLHSV 43 35 ± 39 27 ± 13 61 ± 11 5 ± 6 6 ± 7 60 ± 25 28 ± 24 47 ± 17
LLIRBL 44 ± 3 67 ± 11 31 ± 12 66 ± 11 11 ± 4 10 ± 10 69 ± 21 26 ± 26 46 ± 23
LCGS 68 ± 4 77 ± 11 28 ± 6 72 ± 8 10 ± 3 20 ± 6 73 ± 17 50 ± 19 49 ± 20
LCHSV 38 ± 9 10 ± 16 20 ± 9 65 ± 10 0 0 56 ± 20 16 ± 18 34 ± 17
LCIRBL 40 ± 8 21 ± 29 26 ± 14 56 ± 11 0 0 58 ± 27 21 ± 19 38 ± 14
LYLGS 52 ± 5 65 ± 17 33 ± 15 62 ± 14 7 ± 4 17 ± 6 59 ± 16 30 ± 25 46 ± 21
LYLHSV 36 ± 5 30 ± 28 22 ± 9 38 ± 27 2 ± 4 0 35 ± 24 26 ± 30 38 ± 21
LYLIRBL 24 ± 31 14 ± 23 27 ± 17 32 ± 17 0 5 ± 6 45 ± 21 22 ± 27 47 ± 20
LYCGS 55 ± 7 66 ± 15 34 ± 8 66 ± 11 8 ± 4 17 ± 7 63 ± 17 31 ± 24 49 ± 23
LYCHSV 30 ± 20 19 ± 30 20 ± 17 40 ± 28 1 ± 4 0 37 ± 26 23 ± 25 39 ± 20
LYCIRBL 25 ± 29 11 ± 13 32 ± 14 37 ± 10 0 4 ± 5 47 ± 21 21 ± 25 44 ± 16

Table 5.3: Mean Percentage of Correct Keypoints (PCK) and standard deviation between participants per
scene and preprocessing; threshold of 0.5, as described in section 4.4.4; higher is better

Furthermore, the PCK given a variable threshold is demonstrated in Figure 5.8. It is evident from this graph
that, on average, the performance of the two colorization methods is signi昀椀cantly worse than that of the
grayscale methods when disregarding the uncertainties. Additionally, the LCGS technique yields the most
satisfactory results regardless of what is deemed acceptable.
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Figure 5.8: Mean PCK across all settings and participants, using a variable threshold for accepting keypoints
as correct. All preprocessings with a grayscale representation are shown in a solid line, all
those with the HSV color spiral in a dashed line, and all those with the IronBlack color map in
a dotted line. The colors correspond to the combination of the other two preprocessing steps.
The lossless linear representation is shown in blue, the lossless representation with the CLAHE
algorithm is shown in orange, and the corresponding lossy representations are shown in green
and red respectively. Frames without detection are not considered in this calculation.

The Average Relative Bone Length Over Time (ARBLOT) results for the di昀昀erent preprocessing methods are
shown in Figure 5.9. The ARBLOT is calculated for each scene and each participant individually, and then
averaged over all scenes and participants. Similar to the ARBLOT calculated in section 5.2, the results show
a mean close to the expected value of 1, making these estimators mean-unbiased. Thus the preprocessing
techniques are comparable by solely their variance. However, the variances only di昀昀er slightly, suggesting that
the preprocessing techniques do not introduce signi昀椀cant errors in the skeleton structure.
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Figure 5.9: Boxplot for the ARBLOT of the different preprocessing approaches. The expected ratio is 1.

5.3.1 Mirror Error Corrected

The mirror error is calculated the same way as all other metrics, as the average of the mirror error for each
scene and participant. As de昀椀ned in section 4.4.7 a frame is considered mirrored if the MPJPE of the mirrored
pose estimation is lower than the MPJPE of the original pose estimation. Table 5.4 shows the percentage
of frames where a mirror error is detected. The mirror error does not necessarily indicate that the pose
estimation, other than being mirrored, is correct. The highest mirror error over all preprocessings is detected
in the Dips 90° and the Push Ups scenes. Both scenes show motion where the silhouette is not ambiguous.
This suggests that these scenes may infer joint angles that are impossible for a human to achieve.

Dips 0° Dips 45° Dips 90° Jumping jack Push ups Sit ups Squat 0° Squat 45° Squat 90°
LLGS 3 ± 4 3 ± 5 43 ± 29 4 ± 5 43 ± 30 15 ± 12 1 ± 1 11 ± 11 8 ± 12
LLHSV 3 ± 4 16 ± 27 35 ± 16 10 ± 9 28 ± 37 40 ± 25 15 ± 21 30 ± 26 6 ± 4
LLIRBL 0 0 56 ± 9 7 ± 7 26 ± 26 36 ± 27 7 ± 9 22 ± 23 11 ± 12
LCGS 0 1 ± 3 68 ± 10 2 ± 2 37 ± 30 9 ± 13 4 ± 8 17 ± 16 8 ± 19
LCHSV 14 ± 20 31 ± 42 62 ± 30 6 ± 4 65 17 ± 16 57 ± 33 27 ± 18
LCIRBL 4 ± 5 9 ± 12 59 ± 8 11 ± 13 9 ± 12 22 ± 20 18 ± 14
LYLGS 6 ± 8 12 ± 24 53 ± 3 13 ± 13 32 ± 18 19 ± 21 17 ± 11 21 ± 24 8 ± 11
LYLHSV 11 ± 5 11 ± 19 4 ± 6 42 ± 37 2 ± 1 73 ± 12 50 ± 25 47 ± 36 37 ± 18
LYLIRBL 49 ± 70 66 ± 39 44 ± 9 44 ± 22 72 53 ± 31 41 ± 17 39 ± 35 13 ± 13
LYCGS 3 ± 4 12 ± 23 60 ± 4 8 ± 7 33 ± 16 16 ± 19 16 ± 11 18 ± 20 8 ± 14
LYCHSV 32 ± 45 36 ± 51 13 ± 6 39 ± 37 1 50 ± 24 45 ± 32 32 ± 11
LYCIRBL 44 ± 62 73 ± 23 56 ± 25 36 ± 7 84 58 ± 19 34 ± 19 37 ± 34 15 ± 14

Table 5.4: Mirror error in percentage of frames where the 昀氀ipped pose estimation has a lower MPJPE
compared to the original estimation.

44



Since the mirror error can only be accounted for in ground truth-based metrics, only MPJPE and PCK metrics
can be adjusted and compared. The corrected MPJPE is displayed in table 5.5. It suggests that correcting the
mirror error improves the accuracy of pose estimation in all scenarios, albeit only marginally in most cases.
However, this is expected, as the mirror error correction aims to simply lower the MPJPE per frame, thus
lowering the average MPJPE.

Dips +0° Dips +45° Dips +90° Jumping jack Push ups Sit ups Squat +0° Squat +45° Squat +90°
LLGS +0.0 ± 0.0 +0.0 ± 0.3 −0.1 ± 0.6 +0.0 ± 0.2 −0.1 ± 2.1 +0.0 ± 0.6 +0.0 ± 0.3 +0.0 ± 0.7 +0.0 ± 3.2
LLHSV +0.0 ± 0.0 +0.0 ± 1.9 −0.1 ± 0.1 −0.1 ± 0.3 −0.1 ± 2.5 −0.1 ± 0.3 −0.1 ± 0.4 +0.0 ± 1.0 +0.0 ± 0.4
LLIRBL +0.0 ± 0.1 +0.0 ± 0.7 −0.1 ± 0.8 +0.0 ± 0.3 −0.1 ± 3.9 −0.1 ± 1.1 +0.0 ± 1.6 +0.0 ± 1.4 +0.0 ± 5.0
LCGS +0.0 ± 0.1 +0.0 ± 0.2 −0.2 ± 0.7 +0.0 ± 0.1 −0.1 ± 1.8 +0.0 ± 0.4 +0.0 ± 0.6 +0.0 ± 1.1 −0.1 ± 1.3
LCHSV −0.1 ± 0.2 −0.1 ± 0.2 −0.2 ± 0.9 +0.0 ± 0.3 +0.0 ± 0.0 −0.1 ± 1.0 −0.1 ± 0.3 −0.1 ± 0.8
LCIRBL +0.0 ± 0.2 +0.0 ± 0.9 −0.1 ± 0.4 −0.1 ± 0.7 +0.0 ± 1.8 +0.0 ± 1.3 +0.0 ± 0.7
LYLGS +0.0 ± 0.1 +0.0 ± 0.7 −0.1 ± 0.9 −0.1 ± 0.4 −0.1 ± 1.9 −0.1 ± 0.5 −0.1 ± 0.5 +0.0 ± 1.6 +0.0 ± 3.4
LYLHSV −0.1 ± 0.1 −0.1 ± 0.6 +0.0 ± 1.4 −0.3 ± 0.9 +0.0 ± 3.8 −0.2 ± 0.0 −0.2 ± 0.9 −0.1 ± 1.5 −0.1 ± 1.2
LYLIRBL −0.2 ± 1.0 −0.2 ± 0.8 −0.1 ± 1.1 −0.3 ± 1.0 +0.0 ± 0.0 −0.1 ± 0.5 −0.2 ± 0.6 −0.1 ± 1.4 +0.0 ± 1.6
LYCGS +0.0 ± 0.2 +0.0 ± 0.6 −0.1 ± 0.5 +0.0 ± 0.3 −0.1 ± 2.4 +0.0 ± 0.5 −0.1 ± 0.6 +0.0 ± 1.7 +0.0 ± 3.1
LYCHSV −0.2 ± 0.5 −0.2 ± 1.0 +0.0 ± 1.3 −0.3 ± 1.0 +0.0 ± 0.0 −0.2 ± 0.9 −0.1 ± 1.3 −0.1 ± 2.3
LYCIRBL −0.2 ± 0.9 −0.2 ± 0.5 −0.1 ± 0.7 −0.2 ± 0.9 −0.1 ± 0.0 −0.2 ± 0.4 −0.2 ± 0.4 −0.1 ± 1.3 +0.0 ± 0.9

Table 5.5: Difference in the Mean Per Joint Position Error (MPJPE) and standard deviation corrected for the
mirror error introduced in section 4.4.7; in units of hip width; lower is better

Table 5.6 depicts the corrected PCK given a threshold of 0.5. In contrast to the corrected MPJPE results, the
corrected PCK is not always recti昀椀ed by correcting the mirror error. Especially in the Dips 90° and Push Ups
scenes, where the rate of mirror errors is exceptionally high, the PCK decreases after correcting the mirror
error. This is likely caused by keypoint estimations that are relatively far from the actual keypoint location, but
still closer than the mirrored keypoint estimation that they skew the MPJPE in favor of the mirrored keypoint
estimation. However, the PCK only considers whether the keypoint is within a certain threshold of the actual
keypoint location, which does not take outliers into account. Thus, the PCK is not skewed by outliers and is
not recti昀椀ed by correcting the mirror error.

Dips +0° Dips +45° Dips +90° Jumping jack Push ups Sit ups Squat +0° Squat +45° Squat +90°
LLGS +1 ± 3 +0± 12 −4 ± 14 +1 ± 13 +0 ± 5 +0± 9 +0± 24 −1 ± 37 +0 ± 28
LLHSV +1 ± 1 +1± 54 −5 ± 18 +2 ± 15 +0 ± 8 +3± 9 +5± 33 +1 ± 33 −1 ± 24
LLIRBL +0 ± 4 +0 ± 15 −6 ± 17 +1 ± 16 −1 ± 6 +2± 13 +0 ± 29 +1 ± 37 +0 ± 32
LCGS +0 ± 5 +0± 16 −8 ± 7 +0± 11 −1 ± 4 +0± 8 +0± 24 +0 ± 27 +1± 27
LCHSV +3 ± 11 +1 ± 22 −7 ± 10 +1 ± 13 +0 ± 0 +0± 0 +4± 28 +3± 24 −1± 25
LCIRBL +1 ± 10 +0 ± 42 −6 ± 18 +3 ± 14 +0 ± 0 +0± 0 +2± 37 +1 ± 27 −1 ± 20
LYLGS +0 ± 7 +1± 23 −7 ± 20 +3 ± 19 +0 ± 5 +1± 7 +4± 22 +1 ± 35 +0 ± 29
LYLHSV +1 ± 7 +2± 39 +0± 13 +11 ± 32 +0 ± 6 +2± 3 +11 ± 31 +1 ± 41 −2 ± 29
LYLIRBL +7 ± 37 +5± 31 −6± 22 +11 ± 22 +0± 1 +5± 8 +11 ± 27 +2 ± 37 −1 ± 27
LYCGS +0 ± 10 +1 ± 20 −7 ± 11 +1 ± 16 +0 ± 6 +1± 9 +2± 24 +0 ± 34 +0 ± 32
LYCHSV +5 ± 23 +3 ± 43 −2 ± 22 +11 ± 33 +0 ± 5 +0± 0 +11 ± 34 +2± 34 −2 ± 28
LYCIRBL +7± 35 +4± 19 −6 ± 21 +9 ± 15 +0± 1 +3± 8 +9± 28 +2 ± 34 −1 ± 22

Table 5.6: Difference in the mean Percentage of Correct Keypoints (PCK) and standard deviation corrected
for the mirror error introduced in section 4.4.7; threshold of 0.5, as described in section 4.4.4;
higher is better

Figure 5.10 presents the average corrected PCK per preprocessing method with a variable threshold. The
results suggest that correcting the mirror error mainly a昀昀ects preprocessings that perform poorly regardless.
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The top-performing preprocessings, which are based on grayscale representation, do not signi昀椀cantly bene昀椀t
from correcting the mirror error but, in some cases, even perform worse.
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Figure 5.10: Difference of the mean PCK across all settings and participants corrected for the mirror error,
using a variable threshold for accepting keypoints as correct. The colors and line styles corre-
spond to the speci昀椀c preprocessing in the same way as in Figure 5.8. Frames without detection
are not considered in this calculation.
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6 Discussion

This chapter discusses the results presented in chapter 5 and provides an outlook on interesting avenues for
future work.
The results of the ARBLOT metric show that no matter the preprocessing technique, MotionBERT always has a
relatively high temporal stability in the skeleton. The PIR suggests that given a suitable preprocessing, the
M3DHPE pipeline can at least 昀椀nd a person in close to 100% of all frames. However, the PIR does not provide
any information on the quality of the pose estimation. The MPJPE results suggest that the M3DHPE pipeline
is able to estimate the pose of a person to a reasonable degree of accuracy, especially in scenes with minimal
self-occlusion. The results of the PCK metric con昀椀rm the high dependence of the quality of the pose estimation
on the complexity of the problem. High self-occlusion and inadequate preprocessing techniques can lead to a
signi昀椀cant decrease in the quality of the pose estimation. The corrections applied to account for the suspected
mirror error only marginally improve the results. This suggests that the mirror error is only a minor issue for
the accuracy of the pose estimation.
Overall, the results of the entire M3DHPE pipeline demonstrated in chapter 5 for thermographic images show
less success than their RGB counterparts, but they still exhibit promise. The 昀椀ndings demonstrate that current
M3DHPE work昀氀ows have the capability to estimate a person’s pose from thermographic images. However,
their current state does not meet the necessary standards for medical use. Comparative preprocessing results
suggest that implementation of preprocessing techniques on input data can enhance the performance of
the M3DHPE pipeline if done correctly. As such, there is signi昀椀cant potential for further enhancing the
performance of M3DHPE on thermographic images in future work.

6.1 Future Work

To ensure accurate HPE performance and generalizability of results, the ground truth generation methodology
was limited to methods that do not require the human to wear any additional equipment. This was done due
to concerns regarding the impact of active electronics or infrared re昀氀ecting materials in the image on HPE
performance. As such, the ground truth generation methodology presented in section 4.4.1 is not ideal. Future
work should investigate the impact of active electronics and infrared re昀氀ecting materials on HPE performance
and the generalizability of the results. If the impact is negligible, the ground truth generation methodology
can be improved by utilizing for example a motion capture suit to generate the ground truth. This would
allow for a more accurate ground truth and thus a more accurate evaluation of the M3DHPE pipeline.
Some assumptions were made on the negligibility of the impact of perspective distortion on the M3DHPE
pipeline in section 4.1.1. Further research is necessary to investigate the validity of these assumptions. If the
impact is signi昀椀cant, future work could investigate the usage of a beam splitter rig to simultaneously capture
the RGB and thermographic images from the same perspective to reduce the impact of perspective distortion,
similar to the work proposed by Zhang et al. [86].
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Another aspect not yet investigated is the performance of thermographic M3DHPE on multiple people in the
same image. Future research should investigate whether SOTA approaches to multi-person HPE perform
similarly on thermographic images as they do on RGB images. If not, further investigation should be conducted
to determine the reasons for this discrepancy and propose a solution.
The results presented here are limited to less challenging situations. The entire dataset consists of only one
person in the image; the person is not occluded, and any movement is at a moderate pace. The recordings
were also done in a controlled environment with consistent lighting conditions, a static background and
camera, and a strong separation between the person and the background. As such, the results presented
here do not represent the performance of M3DHPE on thermographic images in real-world scenarios. Further
research is needed to evaluate the performance of M3DHPE on thermographic images in more challenging
situations. These include but are not limited to occlusions, low light, and fast movements. The impact of low
light on M3DHPE performance is exciting, as thermographic images are not a昀昀ected by low light in the same
way as RGB images.
With MotionBERT working by predicting movement patterns it is interesting to investigate the impact of small
unexpected movements, like those exhibited by patients with Parkinson’s disease, on the performance of
the M3DHPE pipeline. Furthermore, another interesting avenue for future work is to compare this impact
of unexpected movements to the performance of di昀昀erent M3DHPE pipelines that infer positions without
movement patterns.
As MotionBERT uses AlphaPose for the initial 2D pose estimation in their reference implementation, it is
interesting to investigate the impact of using a di昀昀erent 2D pose estimation model. Section 5.1 shows that the
AlphaPose framework does not perform well on thermographic images.
Lastly, there are two main avenues for major improvements to M3DHPE pipeline on thermographic images.
The 昀椀rst is the improvement of the preprocessing pipeline. The results presented in section 5.3 show that
preprocessing can have a signi昀椀cant impact on the performance of the M3DHPE pipeline. As such, future work
should investigate the impact of further preprocessing techniques, as well as the possibility of reconstructing
RGB images from thermographic images to allow for the usage of pre-trained HPE models. The second avenue
for major improvements is to transfer the M3DHPE pipeline to the target domain. This should not only be done
to models that perform relatively well on thermographic images, but also to ones using a di昀昀erent backbone
architecture. This would allow for the usage of M3DHPE pipelines on thermographic images without the need
for preprocessing. Furthermore, it would allow for the usage of M3DHPE pipelines on thermographic images
in real-time applications, as the inference time of the M3DHPE pipeline would be signi昀椀cantly reduced.
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AAS Appearance Analysis weighted Saliency 15
ABCD Absolute Basic Color Di昀昀erence 24, 26–28
AHE Adaptive Histogram Equalization 23, 24, 26
ARBLOT Average Relative Bone Length Over Time 29, 35, 40, 41, 43, 44, 47

CDF Cumulative Distribution Function 23, 24, 26
CLAHE Contrast Limited Adaptive Histogram Equalization 23–26, 29, 43
CNN Convolutional Neural Network 5, 9–12, 16

DUC Dense Upsampling Convolution 13

HAR Human Action Recognition 16
HPE Human Pose Estimation 5, 6, 8–12, 16, 29, 32, 34, 35, 40, 47, 48

LAHE Local Area Histogram Equalization 24
LCGS Lossless CLAHE Grayscale 30, 41–46
LCHSV Lossless CLAHE HSV 30, 41–46
LCIRBL Lossless CLAHE Ironblack 31, 41–46
LLGS Lossless Linear Grayscale 30, 37, 41–46
LLHSV Lossless Linear HSV 30, 41–46
LLIRBL Lossless Linear Ironblack 30, 41–46
LUT LookUp Table 24, 26–29
LYCGS Lossy CLAHE Grayscale 31, 41–46
LYCHSV Lossy CLAHE HSV 31, 41–46
LYCIRBL Lossy CLAHE Ironblack 32, 41–46
LYLGS Lossy Linear Grayscale 31, 41–46
LYLHSV Lossy Linear HSV 31, 41–46
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LYLIRBL Lossy Linear Ironblack 31, 41–46

M3DHPE Monocular Three-Dimensional Human Pose Estimation 6–9, 11, 12, 33, 37, 40, 41, 47, 48
MPJPE Mean Per Joint Position Error 34, 36, 41, 42, 44, 45, 47

NN Neural Network 12, 13, 16, 17, 22, 24

PCK Percentage of Correct Keypoints 34, 41–43, 45–47
PIR Percentage of Inference Results 34, 41, 42, 47

RBL Relative Bone Lengths 35
ROI Region of interest 9–13, 15, 21

SOTA State Of The Art 9, 15, 48
SSD Single Shot MultiBox Detector 9

TAS Thermal Analysis based Saliency 15
THR Thermographic Human Recognition 8, 15
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