
Conversion of Convolutional Neural Networks (CNNs) into Logic Flows for E9icient
Execution on RISC-V CPUs

When CNNs are deployed on edge devices, often a huge number of dedicated hardware
multiply-accumulate (MAC) units are not available to process massive MAC operations in
CNNs. Instead, CPUs exist in nearly all these devices. CPUs themselves are not good at
executing such mathematical operations on a large scale, since they opt more to execute
control flow logic. To execute CNNs on CPUs eGiciently, it is critical to convert their MAC
operations into logic flows. In this master thesis, the execution of a convolutional neural
network (CNN) will be converted to logic flows, so that it can be executed with low latency
and low energy on CPUs.

The concept above is
illustrated in Figure 1, where a
fully-connected neural
network is used as an
example. To convert the
network execution into a logic
flow, it is converted into an
equivalent decision tree,
where the input condition I making y0 larger than 0 with ReLU as the activation is set as
the root of the tree. To trigger y3 and y4, y1 should be processed. The input condition making
y1 larger than 0 is then constructed as decision nodes, which are connected with the root
via two branches representing the true (T) and false (F) decision of the root. Similarly, the
remaining neurons can be processed to create more decision nodes. After redundant and
invalid nodes are removed, the decision tree can be represented as a logic flow, as shown
in Figure 1(c), and compiled for CPU execution.

For CNNs, consecutive convolutional layers will be fused
into fully-connected layers, which can be converted into
logic flows with the method above. Specially, a CNN first
needs to be converted to a decision tree. To avoid
exponential growth of the tree, training data is used to only
convert the relevant paths. Then either a SAT/SMT or ILP
solver is used to determine which ReLU decisions are
redundant. For this step it might be necessary to use layer
fusion and convert parts of the convolutional layers to fully
connected layers. The most used paths of the Decision
tree are then kept and combined with the original model to
form the hybrid model. At the end, C-Code is generated to
run the hybrid model on a RISC-V Simulator, as shown in
Figure 2.

If you are interested in this topic for master thesis, please contact:

Prof. Dr.-Ing. Li Zhang (grace.zhang@tu-darmstadt.de) with your CV and
transcripts.

Figure 1: The concept of hybrid execution.

