3. Magnetische Lagerung ("magnetisches Schweben")

3.1 Grundlagen der magnetischen Schwebetechnik

In (A) **elektrischen** und in (B) **magnetischen Feldern** treten Kräfte auf. Diese Kräfte wirken im Fall (A) auf ruhende und bewegte elektrische Ladungen, im Fall (B) auf magnetisierbare Stoffe und ebenfalls auf ruhende und bewegte elektrische Ladungen (stromdurchflossene Leiter). Die Energiedichte üblicher elektrischer Felder in makroskopischen technischen Anordnungen ist um den Faktor 100 000 kleiner als jene magnetischer Felder. Daher sind elektrostatische Kräfte für die Schwebetechnik nicht von Interesse, sind aber in der Mikrotechnik wichtig, da bei geringen Abmessungen wesentlich höhere E-Felder möglich sind.

Zwei Hauptgruppen der derzeit bekannten Magnetlagertypen lassen sich auf Grund der wirkenden Magnetkräfte unterscheiden:

a) Lager mit **Reluktanzkräften**,

b) Lager mit *Lorentz*-Kräften.

Die **Reluktanzkraft** ensteht an der Oberfläche zweier Materialien mit unterschiedlicher Permeabilität (z. B. Eisen und Luft). Die Richtung der Kraft ist senkrecht zur Trennfläche der beiden Materialien gerichtet. Die Kraft steigt mit dem Unterschied der Permeabilität. Ungesättigtes Eisen und Luft haben einen großen Permeabilitäts-Unterschied von ca. 5000. Daher ist diese Kombination technisch interessant. Als **Reluktanz** bezeichnet man den magnetischen Widerstand, der verkehrt proportional zur Permeabilität ist. Die Kraft wirkt so, dass sie den Reluktanzunterschied verkleinern will (*Maxwell*'scher Zug zwischen magnetisierbaren Stoffen wie Eisen, Kobalt, Nickel). Das Magnetfeld, dass an diesen Materialien wirkt, kann durch Permanentmagnete oder durch stromdurchflossene Spulen erzeugt worden sein.

Die *Lorentz*-Kraft wirkt auf stromdurchflossene Leiter, die sich in einem Magnetfeld befinden. Auch hier ist der Einsatz von Permanentmagneten oder von stromdurchflossenen Spulen zur Erzeugung des Magnetfelds möglich.

Ebenso kann man die Magnetlager in **passive und aktive Lager** unterscheiden. *Earnshaw* wies bereits 1842 nach, dass ein Pol in einem statischen Kraftfeld kein stabiles Gleichgewicht haben kann, wenn die wirkenden Kräfte umgekehrt proportional zum Quadrat der Abstände wirken (*Earnshaw*-Theorem). Die ist bei elektrostatischen und magnetostatischen Feldern der Fall. Beispielsweise kann ein zylindrischer Läufer durch Permanentmagetlager axial stabil gehalten werden, aber in der radialen Bewegungsrichtung ist er instabil. Man benötigt daher aktiv geregelte Lager, wo über Positionsmessungen Lageistwerte erhalten werden, die es gestatten, positionsgeregelte Magnetlager zu bauen (elektromagnetisches Schweben EMS).

Beim Einsatz von Supraleitern (*Meissner-Ochsenfeld*-Effekt) lässt sich passiv ein stabiles Schweben erreichen (supraleitende Lager). Ebenso ist elektrodynamisches Schweben (EDS) ohne Regelung stabil. Dabei wird durch eine zeitliche Änderung des Magnetfeldes in einem leitfähigen Material eine Wirbelstromverteilung induziert, die mit dem Magnetfeld eine abstoßende Kraft ausbildet, die zum Schweben genutzt werden kann. Da eisenbehaftete Magnetkreise auf Grund des *Maxwell*'schen Zugs anziehende Kräfte ausbilden, die den abstoßenden Kräften der Wirbelströme entgegenwirken, wird das elektrodynamische Schweben prinzipiell in der eisenlosen Anordnung ausgeführt.

<u>Bild 3.1.1:</u> Einteilung der Magnetlager in zwei Gruppen gemäß der prinzipiellen Kraftwirkung mit den acht Untergruppen mit ihrer unterschiedlichen Wirkungsweise, A: Aktive Magnetlager (geregelt), P: Passive Magnetlager (ungeregelt) [3.2]

3.2 Elektromagnetisches Schweben

Beim elektromagnetischen Schweben wirken Kräfte zufolge magnetostatischer Felder, die folglich **geregelt** sein müssen, wenn auch **einzelne Freiheitsgrade** durch **passive** (ungeregelte) Magnetlagerkomponenten stabilisiert werden können. Diese aktive elektromagnetische Lagerung ist das derzeit **am häufigsten verwendete Prinzip** unter den magnetischen Lagern (Bild 3.2-1).

Bild 3.2-1: Funktionsprinzip der aktiven magnetischen Lagerung [3.2]

Ein **Sensor** misst die Lageabweichung des schwebenden Teils (z. B. Eisen-Rotor einer elektrischen Maschine) von seiner **Referenzlage.** Ein **Regler** (z. B. ein Mikroprozessor) leitet aus der Messung ein Regelsignal ab. Dieses erzeugt über einen Leistungsverstärker (z. B. gechoppte Gleichspannung) einen Steuerstrom entsprechender Größe, der in einem **Elektromagneten** ein Magnetfeld erregt. Dieses Feld übt auf das schwebende Teil eine Magnetkraft derart aus, dass es in Schwebe bleibt. **Ungeregelt wäre kein stabiles Schweben** möglich. Entweder fällt das Teil ab (Magnetkraft zu schwach) oder es klebt an dem Elektromagneten (Magnetkraft zu stark).

3.2.1 Prinzipielle Wirkungsweise eines aktiven Magnetlagers

In Bild 3.2.1-1 ist eine zylindrische Scheibe aus magnetisierbarem Material (Eisen, Nickel, Kobalt) als Rückschluss in einem Magnetkreis – bestehend aus Eisenjoch mit Erregerspule (Windungszahl N, Spulenstrom i) - so angeordnet, dass ein Luftspalt δ unter den zwei Polflächen A des Eisenjochs entsteht.

<u>Bild 3.2.1-1:</u> Prinzipieller Aufbau eines EMS-Magnetlagers: a) Kraft eines Magneten, b) (Radial-)Lager-Geometrie [3.2]

a) Kraftberechnung aus dem Maxwell'schen Zug

Die **magnetostatische Kraft** F in vertikaler Richtung (x-Richtung) kann aus dem *Maxwell*'schen Zug p (das ist die den *B*-Feldlinien innewohnende magnetische Zugkraft je Flächeneinheit) berechnet werden. Als mechanisches Analogon können die Feldlinie durch Gummischnüre gedanklich ersetzt werden, die durch die Scheibe z. B. im Erdschwerefeld im Luftspalt gedehnt werden.

$$p = \frac{B^2}{2\mu_0}$$
(3.2.1-1)

$$F_m = 2 \cdot p \cdot A = \frac{B^2}{\mu_0} \cdot A \tag{3.2.1-2}$$

Da die **Magnetkraft je Polfläche** unter dem Winkel α zur Lotrechten wirkt, gilt für die resultierende Vertikalkraft:

$$F = F_m \cos \alpha \tag{3.2.1-3}$$

Das Magnetfeld im Luftspalt *B* wird mit dem **Durchflutungssatz** berechnet. Man erhält bei Vernachlässigung der Eisensättigung ($\mu_{Fe} \rightarrow \infty$), des Streuflusses und Annahme homogener Feldverteilung unter den Polflächen:

TU Darmstadt

Neue Technologien bei

$$B = \mu_0 \frac{N \cdot i}{2\delta} \tag{3.2.1-4}$$

und damit:

$$F_m = \mu_0 \cdot \frac{(N \cdot i)^2}{(2\delta)^2} \cdot A, \ F = \mu_0 \cdot \frac{(N \cdot i)^2}{(2\delta)^2} \cdot A \cdot \cos \alpha$$
(3.2.1-5)

Die zugehörige **Induktivität** *L* der Erregerspule ist durch $L = \Psi / i = N \cdot \Phi / i = N \cdot B \cdot A / i$ bestimmt:

$$L = \mu_0 \cdot \frac{N^2}{2\delta} \cdot A \tag{3.2.1-6}$$

Wird statt des Luftspalts δ dessen Vertikalkomponente x verwendet ($x = \delta \cdot \cos \alpha$), so gilt:

$$L = \mu_0 \cdot \frac{N^2}{2x} \cdot A \cdot \cos \alpha , \ F = \mu_0 \cdot \frac{(N \cdot i)^2}{(2x)^2} \cdot A \cdot \cos^3 \alpha$$
(3.2.1-7)

Beispiel 3.2.1-1: Luftspalt 1 mm, Polfläche 1 cm², Strom in der Spule 12 A, N = 200 Windungen, $\alpha = \pi/8$: $B = \mu_0 \frac{N \cdot i}{2\delta} = 4\pi \cdot 10^{-7} \cdot \frac{200 \cdot 12}{2 \cdot 10^{-3}} = 1.5T$

$$L = \mu_0 \cdot \frac{N^2}{2\delta} \cdot A = 4\pi \cdot 10^{-7} \cdot \frac{200^2}{2 \cdot 10^{-3}} \cdot 10^{-4} = 2.5mH$$

$$F_m = \mu_0 \cdot \frac{(N \cdot i)^2}{(2\delta)^2} \cdot A = 181N, \qquad F = 181 \cdot \cos(\pi/8) = 167 \text{ N}$$

Es kann ein Körper mit der Masse m = 17.0 kg in 1 mm Abstand vom Elektromagnet in Schwebe gehalten werden (mg = 17.9.81 = 167 N).

b) Kraftberechnung aus der Änderung der magnetischen Energie

Die Kraft F_m lässt sich auch direkt aus der Änderung der magnetischen Energie W_m des Systems berechnen. Wegen der unendlich hoch angenommenen Eisenpermeabilität ist H im Eisen Null, so dass die magnetische Energie nur im Luftspalt gespeichert ist.

$$W_{m} = \frac{B \cdot H}{2} \cdot V = \frac{B^{2}}{2\mu_{0}} \cdot 2A \cdot \delta = L \frac{i^{2}}{2}$$
(3.2.1-8)

Aus (3.2.1-8) erhält man wieder die Induktivität L gemäß (3.2.1-6). Die Änderung der Magnetenergie $dW_m/d\delta$ bei Vergrößerung des Luftspalts δ um eine kleinen (virtuellen) Wert $d\delta$ ("**Prinzip der virtuellen Verschiebung**") ist bei eingeprägtem, konstantem Spulenstrom *i* negativ; W_m wird kleiner. Die Magnetkraft F_m wirkt folglich der Luftspaltvergrößerung entgegen; sie wirkt anziehend und wird daher positiv gezählt.

$$F_m = -dW_m / d\delta \tag{3.2.1-9}$$

TU Darmstadt

Institut für Elektrische Energiewandlung

3.4

Mit (3.2.1-8) folgt (3.2.1-10) in Übereinstimmung mit (3.2.1-5):

$$F_{m} = -dL(\delta) / d\delta \cdot i^{2} / 2 = \mu_{0} \frac{(N \cdot i)^{2}}{(2\delta)^{2}} \cdot A$$
(3.2.1-10)

<u>Bild 3.2.1-2:</u> Magnetlagerkraft für die *x*-Achse: Abhängigkeit der magnetostatischen Kraft vom variablen Strom $i = i_x$ und vom Luftspalt $\delta = x$ [3.2]

Fazit:

Die magnetostatische Kraft steigt mit dem Quadrat des Stroms (bei vernachlässigter Eisensättigung) und sinkt mit Quadrat des Luftspalts.

3.2.2 Linearisierung der Lagerkraft

a) Einfache Linearisierung der Lagerkraft

Da das Lager als Aktor in einem geschlossenen Regelkreis wirkt, ist sein **linearisiertes** Verhalten um einen Arbeitspunkt (i_0 , x_0) interessant. Der Arbeitspunkt ist durch einen z. B. vorher gewünschten Luftspalt x_0 gegeben, wobei sich der Vormagnetisierungsstrom i_0 als erforderlich zur Kompensation des Gewichts des schwebenden Rotors im Erdschwerefeld ergeben hat ("**Gewichtsstrom**"). Abweichungen von diesem Arbeitspunkt Δx , Δi sollen definitionsgemäß klein sein gegenüber den Werten (i_0 , x_0) des Arbeitspunkts selbst. Dann können Produkte aus Δx und Δi gegenüber den linearen Anteilen vernachlässigt werden.

Beispiel 3.2.2-1: Arbeitspunkt: Strom $i_0 = 12$ A, $x_0 = 1$ mm, $\Delta x = 0.1$ mm, $\Delta i = 1$ A:

 $\Delta x/x = 0.1$, $\Delta i/i_0 = 0.08$: $(\Delta x/x)(\Delta i/i_0) = 0.10.08 = 0.008 << 1$

Bei allen künftigen Überlegungen soll die Änderung des Stroms Δi positiv gezählt werden, wenn der Strom zunimmt, also $i = i_0 + \Delta i > i_0$, wenn Δi positiv ist, ABER die Änderung des Luftspalts positiv sein, wenn der Luftspalt abnimmt, also $x = x_0 - \Delta x < x_0$, wenn Δx positiv ist. Daher folgt für die Linearisierung der Kraft (3.2.1-7):

$$F = \mu_{0} \cdot \frac{N^{2} \cdot (i_{0} + \Delta i)^{2}}{4(x_{0} - \Delta x)^{2}} \cdot A \cdot \cos^{3} \alpha \approx \mu_{0} \cdot \frac{N^{2} \cdot i_{0}^{2}}{4x_{0}^{2}} \cdot A \cdot \cos^{3} \alpha \cdot \left(1 + \frac{2\Delta i}{i_{0}} + \frac{2\Delta x}{x_{0}}\right)$$
(3.2.2-1)
$$F \approx \mu_{0} \cdot \frac{N^{2} \cdot i_{0}^{2}}{4\delta_{0}^{2}} \cdot A \cdot \cos \alpha \cdot \left(1 + \frac{2\Delta i}{i_{0}} + \frac{2\Delta x}{x_{0}}\right) = F_{0} + k_{i,1} \cdot \Delta i + k_{x,1} \cdot \Delta x$$
(3.2.2-2)

TU Darmstadt

Dabei ist F_0 die Kraft im Arbeitspunkt, die z. B. die Gewichtskraft balanciert, $k_{i,1}$ der "Kraft-Strom-Faktor" (N/A) und $k_{x,1}$ der "Kraft-Weg-Faktor" (N/mm).

Beispiel 3.2.2-2: Luftspalt $\delta_0 = 1$ mm, Polfläche 1 cm², Strom i_0 in der Spule 12 A, N = 200 Windungen, $\alpha = \pi/8$: $F_0 = \mu_0 \cdot \frac{N^2 \cdot i_0^2}{4\delta_0^2} \cdot A \cdot \cos \alpha = 167N$ $k_{i,1} = \mu_0 \cdot \frac{N^2 \cdot i_0}{2\delta_0^2} \cdot A \cdot \cos \alpha = 27.8N/A$, $k_{x,1} = \mu_0 \cdot \frac{N^2 \cdot i_0^2}{2\delta_0^3} \cdot A = 362N/mm$

Der Kraft-Weg-Faktor ist eine von der Windungszahl unabhängige Größe, wenn als Kenngröße die Durchflutung $\Theta = Ni$ verwendet wird, während der Kraft-Strom-Faktor stets von der Windungszahl abhängt. Je größer die Vormagnetisierung ist, bzw. je kleiner der Luftspalt ist, desto größer sind die beiden Faktoren.

Fazit:

Bei der elektromagnetischen Lagerung werden kleine Arbeitsluftspalte vorgesehen, um mit möglichst geringer Durchflutung ausreichend hohe Stellkräfte zu erreichen.

b) Differenzansteuerung der Magnetspulen

Die Linearisierung (3.2.2-2) ist stark vom Arbeitspunkt abhängig. Setzt man einen zweiten Elektromagneten so, dass er in die entgegengesetzte Richtung zieht, und steuert mit Differenzströmen gemäß Bild 3.2.2-1, so heben sich die Kräfte nahezu auf. Ihr Restbetrag hängt aber hochgradig linear von (i_0, x_0) ab, so dass ein nahezu linearer Aktor entsteht. Erst bei höheren Strömen tritt die Eisensättigung als nichtlinearer Term hinzu.

Bild 3.2.2-1: Differenzansteuerung zweier gegenüberliegender Lagermagnete [3.2]

Bei der **Differenzansteuerung** erhält der obere Magnet die Summe aus Vormagnetisierungsund Steuerstrom, der untere die Differenz der beiden. Wenn der schwebende Rotor sich nach oben bewegt, wird der Luftspalt beim oberen Magneten kleiner, beim unteren um das gleiche Maß größer.

$$F = F^{+} - F^{-} = \frac{\mu_0 N^2 A}{4} \cdot \cos^3 \alpha \cdot \left(\frac{(i_0 + \Delta i)^2}{(x_0 - \Delta x)^2} - \frac{(i_0 - \Delta i)^2}{(x_0 + \Delta x)^2}\right) \approx \frac{\mu_0 N^2 \cdot i_0^2}{x_0^2} \cdot A \cdot \cos^3 \alpha \cdot \left(\frac{\Delta i}{i_0} + \frac{\Delta x}{x_0}\right)$$
$$F \approx k_i \Delta i + k_x \Delta x \tag{3.2.2-3}$$

TU Darmstadt

$$k_{i} = \frac{\mu_{0} N^{2} i_{0} A}{\delta_{0}^{2}} \cdot \cos \alpha , \ k_{x} = \frac{\mu_{0} N^{2} i_{0}^{2} A}{\delta_{0}^{3}}$$
(3.2.2-4)

Fazit:

Durch die Differenzansteuerung steigt zwar der Aufwand (zwei Elektromagnete statt einer), aber dafür ist die Kraft vom Stellstrom bis auf die Eisensättigung linear abhängig. Diese Stellgerade wird durch unterschiedlich eingestellte Luftspalte parallel verschoben.

c) Linearisierung mit Differenzwicklungen

Bild 3.2.2.-2: Differenzwicklung für den Steuerstrom zur Linearisierung der Kraft-Strom-Charakteristik [3.2]

Werden die beiden gegenüberliegenden Elektromagnete mit je einer Vormagnetisierungswicklung, die von i_0 gleichsinnig durchflossen sind, und je einer Steuerwicklung, die vom Steuerstrom Δi gegensinnig durchflossen werden ("Differenzwicklung"), ausgerüstet, so **linearisiert sich die Strom-Kraft-Kurve** ebenfalls. Es entsteht nämlich im oberen Magneten die Durchflutung $\Theta = N(i_0 + \Delta i)$ und im unteren Magneten die Durchflutung $\Theta = N(i_0 - \Delta i)$. Daher ergibt sich bei einem um Δx z. B. nach oben verlagerten Rotor wiederum folgende resultierende Kraft:

$$F = F^{+} - F^{-} = \frac{\mu_{0}N^{2}A}{4} \cdot \cos^{3}\alpha \cdot \left(\frac{(i_{0} + \Delta i)^{2}}{(x_{0} - \Delta x)^{2}} - \frac{(i_{0} - \Delta i)^{2}}{(x_{0} + \Delta x)^{2}}\right) \approx \frac{\mu_{0}N^{2} \cdot i_{0}^{2}}{x_{0}^{2}} \cdot A \cdot \cos^{3}\alpha \cdot \left(\frac{\Delta i}{i_{0}} + \frac{\Delta x}{x_{0}}\right)$$

Daher wird die Strom-Kraft-Kennlinie wieder durch (3.2.2.-3), (3.2.2.-4) beschrieben.

d) Unterschiede zwischen Differenzansteuerung und Differenzwicklung

Es wird bei der Differenzwicklung nur ein Stromsteller für die *x*-Richtung benötigt, dafür noch eine zusätzliche Konstantstromquelle für den Vormagnetisierungsstrom, die aber i. a. deutlich kostengünstiger ist als der Steller. Daher ist die leistungselektronische Ausrüstung mit der Differenzwicklung i. a. **billiger**.

Der **Widerstand** R^* der Steuer- und Vormagnetisierungswicklung ist (bei gleichem N je Spule) doppelt so hoch wie bei Differenzansteuerung, da der Strom je Spule nur halb so hoch ist. Bei gleicher Stromdichte wird nur der halbe Drahtquerschnitt benötigt wird ($R^* = 2R$).

Allerdings treten bei **Vollaussteuerung** bei der Differenzwicklung die **doppelten** *ohm* 'schen **Verluste** auf wie bei der Differenzansteuerung. Bei Vollausteuerung ist die Kraft maximal. Die ist nur möglich, wenn z. B. die Kraft des unteren Magneten Null ist. Bei $i_0 = \Delta i$ ist dies der Fall. Bei Differenzansteuerung sind dann die *ohm* 'schen Verluste im unteren Magneten

TU Darmstadt

Null: $\Theta = N(i_0 + \Delta i) = Ni = 0, i = 0, P = R \cdot i^2 = 0$, im observe Magneten hingegen gilt: $\Theta = N(i_0 + \Delta i) = N2\Delta i, i = 2\Delta i, P = R \cdot i^2 = 4R\Delta i^2.$

Bei der Differenzwicklung sind die Verluste im unteren Magneten ebenso groß wie im oberen Magneten:

$$\Theta = N(i_0 - \Delta i) = Ni_0 - N\Delta i = 0, i_0 = \Delta i, P = 2R^* \cdot \Delta i^2 = 4R\Delta i^2, P_{res} = 2P = 8R\Delta i^2$$

	Differenzansteuerung	Differenzwicklung
Zahl der DC-Steller	4	2
Konstantstromquelle	0	1
Verluste bei Vollaussteuerung	100 %	200 %

Tabelle 3.2.2.-1: Unterschiede zwischen Differenzansteuerung und Differenzwicklung für eine x- und eine y-Achse

3.2.3 Ausführung magnetischer Lager

Bild 3.2.3-1: Radiallagerbauformen: Je zwei gegenüberliegende Magnete wirken für eine Koordinatenachse: a) Feldlinien quer zur Rotorachse, b) Feldlinien längs zur Rotorachse [3.2]

Bild 3.2.3-2: Geometrie eines Radiallagermagneten [3.2]

- d Innendurchmesser des Stators
- $d_{\rm a}$ Außendurchmesser des Stators
- *d*_i Wellendurchmesser
- b Lagerbreite (Breite des magnetisch
- A_n Nutquerschnitt (oder Wickelraum)

Mit der in 3.2.1 besprochenen Prinzipanordnung und der Verwendung von je zwei gegenüberliegenden Elektromagneten je x- bzw. y-Achse lässt sich das in Bild 3.2.3-1 a) dargestellte magnetische Radiallager realisieren. Die Feldlinien verlaufen im Rotor quer zur Achse und magnetisieren den Läufer, der daher geblecht sein muss, mit der vierfachen Drehfrequenz um. Wird gemäß Bild 3.2.3-1 b) der Verlauf der Feldlinien parallel zur Rotationsachse gewählt, so ist die Ummagnetisierung des Läufers deutlich geringer, so dass der Rotor massiv ausgeführt werden kann. Bild 3.2.3-2 zeigt die Geometrie ausgeführter Radialmagnetlager und Bild 3.2.3-3 ein typisches Messergebnis.

<u>Bild 3.2.3-3</u>: Gemessene Strom-Kraft-Charakteristik eines Radiallagers in Differenzschaltung ($d = 90 \text{ mm}, b = 70 \text{ mm}, \delta_0 = 0.4 \text{ mm}$). [3.2]

Als **spezifische Tragkraft** des Magnetlagers wird die auf die projizierte Fläche $d \cdot b$ bezogene Tragkraft von Herstellern angegeben:

$$f = F/(d \cdot b) \tag{3.2.3-1}$$

Beispiel 3.2.3-1:

Abschätzung der spezifischen Tragkraft je Koordinatenachse: Es wird angenommen, dass die Polschuhbreite p und die Schlitzbreite der Wicklungsnuten etwa gleich groß sind. Dann gilt für die Polflächen:

$$A = p \cdot b = \frac{d\pi}{2 \cdot 8} \cdot b$$

Mit $B = 1.5$ T und (3.2.1-5) folgt für $\alpha = \pi / 8$:
$$f = \frac{F}{d \cdot b} = \frac{B^2}{\mu_0} \cdot \left(\frac{d\pi \cdot b}{2 \cdot 8}\right) \cdot \cos \alpha \cdot \frac{1}{d \cdot b} = 32 \text{ N/cm}^2$$

Bei kobaltlegiertem Magnetmaterial ist die Sättigungsflussdichte mit ca. 2 T höher als bei Eisen, womit etwa 60 N/cm² möglich sind.

b) Fliehkraftgrenzen der Lagerrotoren

Bei geblechten Rotoren sind die Streckgrenzen der handelsüblichen Dynamobleche etwa 300 ... 500 N/mm². Daher lassen sich Magnetlager bis ca. 200 m/s Umfangsgeschwindigkeit

TU Darmstadt

bauen, ohne dass die Fliehkräfte den Rotor zerstören. Es werden Bleche mit Dicken 0.1 mm, 0.35 mm, 0.5 mm zumeist verwendet. **Amorphe Metalle** lassen sich als dünne Folien (0.035 mm Dicke) herstellen, die allerdings nur bis ca. 450 °C eingesetzt werden können. Dank ihrer höheren Streckgrenze von ca. 1500 ... 2000 N/mm² sind Umfangsgeschwindigkeiten bis 400 m/s möglich, was einer vierfachen Fliehkraftbeanspruchung gegenüber 200 m/s entspricht.

c) Axiallagerung

Für axiale magnetische Lagerung von Rotoren (z. B. Aufnehmen des strömungsbedingten Axialschubs von Kompressoren) eignet sich das in Bild 3.3.3-4 dargestellte Axiallager. Zwei einander gegenüber liegende Ringspulen in Eisenjochen üben entgegengesetzte Kräfte auf eine Stahlscheibe aus und können sie so axial positionieren.

d Innendurchmesser des Stators

- $d_{\rm a}$ Außendurchmesser des Stators
- c_1 Stegbreite innen
- *h* Topfmagnethöhe
- d_1 Durchmesser des Wickelraums innen
- d_2 Durchmesser des Wickelraums außen
- $\bar{A_n}$ Nutquerschnitt (oder Wickelraum)
- s_0 Ruheluftspalt
- c_2 Stegbreite außen
- *l* Lagerlänge

Bild 3.2.3.-4: Geometrie des Axiallagermagneten [3.2]

3.2.4 Regelung von Magnetlagern mit Stromsteuerung

a) Instabilität von Magnetlagern im ungeregelten Betrieb

Die Kraftgleichung für den schwebenden Rotor (anteilige Rotormasse m, bei zwei Magnetlagern folglich halbe Rotormasse) lautet in der Vertikalrichtung (x-Achse):

$$m\frac{d^2x}{dt^2} + F = m \cdot g \tag{3.2.4-1}$$

Wir fragen, ob bei einer kleinen Auslenkung Δx aus dem Arbeitspunkt x_0 der schwebende Körper wieder in seinen Ausgangspunkt zurückkehrt (stabiler Arbeitspunkt) oder sich weiter von ihm entfernt (instabiler Arbeitspunkt). Daher ist die Lage x durch $x_0 - \Delta x$ zu ersetzen, da eine **positive Lageänderung** vereinbarungsgemäß eine **Luftspaltverringerung** ergibt. Die Magnetkraft ist für den einfachsten Fall eines einseitigen Magnetlagers durch (3.2.2-2) gegeben. Es folgt mit $d^2x/dt^2 = -d^2\Delta x/dt^2 = -\Delta \ddot{x}$:

$$-m\Delta \ddot{x} + F_0 + k_{i,1} \cdot \Delta i + k_{x,1} \cdot \Delta x = m \cdot g$$
(3.2.4-2)

Wenn stationär die Kraft F_0 im Arbeitspunkt die Gewichtskraft kompensiert, so verbleibt

TU Darmstadt

$$\Delta \ddot{x} - (k_{x,1}/m) \cdot \Delta x = (k_{i,1}/m) \cdot \Delta i \qquad (3.2.4-3)$$

3.11

Die homogene Gleichung lautet

$$\Delta \ddot{x} - (k_{x,1} / m) \cdot \Delta x = 0 \tag{3.2.4-4}$$

mit der homogenen Lösung

$$\Delta x(t) = C_1 \cdot \exp\left(\sqrt{k_{x,1}/m} \cdot t\right) + C_2 \cdot \exp\left(-\sqrt{k_{x,1}/m} \cdot t\right) \qquad (3.2.4-5)$$

Wegen des **positiven Exponenten** wächst die Auslenkung mit der Zeit **exponentiell an**; der Rotor kehrt nicht mehr in die Ausgangslage zurück. Der Arbeitspunkt ist **instabil**.

b) Statische Stabilisierung mit P-Regler

Bild 3.2.4-1: Geschlossener Regelkreis eines einfachen Magnetlagers [3.2]

Mit einem einfachen **Proportionalregler** lässt sich der Arbeitspunkt statisch stabilisieren. Die Lageabweichung Δx wird gemessen, dem Reger zugeführt, der ein dieser Lageabweichung proportionales Stromsignal Δi in den Elektromagneten einprägt. Es wird dabei angenommen, dass die Spannungsreserve zum Einprägen des Stroms in die Spule beliebig groß ist, so dass die Zeitkonstante T = L/R der Spule vernachlässigt werden kann. Der Stromistwert folgt damit verzögerungsfrei dem Reglersignal (**Stromsteuerung**). Bei einer positiven Lageabweichung (Luftspaltverkleinerung) muss der Strom kleiner werden, um die Kraft zu verringern, da sonst der Rotor noch stärker an den Magneten gezogen wird. Daher muss das Stromsignal entgegengesetztes Vorzeichen wie die Lageabweichung aufweisen.

$$\Delta i = -K_p \cdot \Delta x \tag{3.2.4-6}$$

$$\Delta \ddot{x} - (k_{x,1} / m) \cdot \Delta x = -(k_{i,1} / m) \cdot K_p \cdot \Delta x \quad \Rightarrow \quad \Delta \ddot{x} - \left(\frac{k_{x,1} - k_{i,1} K_p}{m}\right) \cdot \Delta x = 0 \tag{3.2.4-7}$$

Die Differentialgleichung (3.2.4-7) hat dieselbe Form wie (3.2.4-4), nur der Wert $k_{x,1}$ muss $k_{x,1} - k_{i,1}K_p$ ersetzt werden. Wenn $k_{x,1} - k_{i,1}K_p < 0$ ist, so hat (3.2.4-7) nicht eine Exponentialfunktion, sondern eine **ungedämpfte Sinusfunktion** als Lösung.

$$\Delta x(t) = C_1 \cdot \sin(\omega_e t) + C_2 \cdot \cos(\omega_e t)$$
(3.2.4-8)

TU Darmstadt

mit der Eigenkreisfrequenz

$$\omega_e = \sqrt{(K_p k_{i,1} - k_{x,1})/m} \qquad (3.2.4-9)$$

Der Arbeitspunkt ist nun stabil, aber bei jeder Störung schwingt der schwebende Rotor ungedämpft um seinen Arbeitspunkt. Selbstverständlich gelten diese Gleichungen auch für Differenzansteuerung. An die Stelle von $k_{x,l}$ tritt k_x , an die Stelle von $k_{i,l}$ tritt k_i .

Fazit:

Der instabile Arbeitspunkt kann durch einen P-Regler stabilisiert werden, dessen Proportionalverstärkung K_p mindestens den Wert k_x/k_i überschreitet. Je größer der Strom-Kraft-Faktor k_i ist, desto kleiner darf K_p sein. Wenn der Weg-Kraft-Faktor k_x groß ist, muss auch K_p groß sein.

c) Dynamische Stabilisierung mit PD-Regler

Durch Einführung eines zusätzlichen D-Anteils im Regler wird die Dauerschwingung gedämpft, so dass nun der Arbeitspunkt auch dynamisch stabil ist.

$$\Delta i = -K_p \cdot \Delta x - K_d \cdot d\Delta x / dt \tag{3.2.4-10}$$

$$\Delta \ddot{x} + \frac{K_d k_{i,1}}{m} \cdot \Delta \dot{x} - \left(\frac{k_{x,1} - k_{i,1} K_p}{m}\right) \cdot \Delta x = 0 \quad \Rightarrow \quad \Delta \ddot{x} + 2\alpha_d \cdot \Delta \dot{x} + \omega_e^2 \cdot \Delta x = 0 \quad (3.2.4-11)$$

$$\Delta x(t) = C_1 \cdot \exp(-\alpha_d t) \cdot \sin(\omega t) + C_2 \cdot \exp(-\alpha_d t) \cdot \cos(\omega t)$$
(3.2.4-12)

$$\omega = \sqrt{\omega_e^2 - \alpha_d^2} \tag{3.2.4-13}$$

Die Lösung der sich nun einstellenden Differentialgleichung (3.2.4-11) ist eine **gedämpfte Sinusschwingung** (Bild 3.2.4-2), deren Kreisfrequenz ω etwas **geringer** ist als die Eigenkreisfrequenz der ungedämpften Dauerschwingung.

Die Größe

$$k = K_p k_{i,1} - k_{x,1}$$
 bzw. $k = K_p k_i - k_x$ (3.2.4-14)

heißt **Steifigkeit** des Lagers. Sie ist durch die Reglerstellreserve **begrenzt**. Sie sollte nicht zu groß gewählt werden, da die im Messwert des Lagesignals enthaltenen Rauschanteile

TU Darmstadt

(Oberflächenrauhigkeit, Einstreuen der Pulsfrequenz der Steller) ebenfalls mit K_p verstärkt werden. Als Faustregel wählt man über K_p den Wert k ungefähr so groß wie k_x .

Die Dämpfung

$$d = K_d k_i \tag{3.2.4-15}$$

soll zwar einerseits auch ausreichend hoch sein, andrerseits verstärkt auch sie gemäß (3.2.4-10) das Messrauschen und die Einstreuungen des Lagesignalistwerts. Als Faustwert wählt man

 $d \approx \sqrt{m \cdot k}$, womit sich ein Verhältnis

$$\frac{\alpha_d}{\omega} = \frac{\frac{d}{2m}}{\sqrt{\omega_e^2 - \left(\frac{d}{2m}\right)^2}} = \frac{\frac{d}{2m}}{\sqrt{\left(\frac{k}{m}\right)^2 - \left(\frac{d}{2m}\right)^2}} = \frac{d}{\sqrt{4km - d^2}} = \frac{\sqrt{mk}}{\sqrt{4km - mk}} = \frac{1}{\sqrt{3}}$$
(3.2.4-16)

ergibt. Ein guter **Kompromiss** ist eine Wahl α_d/ω zwischen 0.1 und 1.

d) Keine statische Regelabweichung mit PID-Regler

In Bild 3.2.4-3 ist die regelungstechnische Darstellung des Magnetlagersystems mit Regler und Strecke dargestellt.

Bild 3.2.4-3: Stromgesteuertes Magnetlager mit PD-Regler und linearisierter Strecke [3.2]

Im *Laplace*-Bildbereich lauten die Systemgleichungen für den PD-Regler ($\Delta x(0) = 0$)

$$L(\Delta i) = I(s) = -K_p \cdot L(\Delta x) - K_d \cdot L(d\Delta x / dt) = -K_p \cdot X(s) - K_d \cdot s \cdot X(s)$$
(3.2.4-17)

und die Strecke (PT₂-Verhalten)

$$s^{2}X(s) - \frac{k_{x}}{m}X(s) = \frac{k_{i}}{m}I(s)$$
 (3.2.4-18)

Mit den Übertragungsfunktionen $F_{PD}(s)$ und G(s) für Regler und Strecke folgt gemäß obigem Bild 3.2.4-3 das Verhältnis von Lageist- zu Lagesollwert. Mit dem Endwertsatz der *Laplace*-Transformation ergibt sich für einen Sollwertsprung Δx_{soll} der Istwert im ausgeregelten Zustand:

$$I(s) = F_{PD}(s) \cdot X(s) \quad F_{PD}(s) = -K_p - s \cdot K_d$$
(3.2.4-19)

$$X(s) = G(s) \cdot I(s) \quad G(s) = \frac{k_i}{m \cdot s^2 - k_x}$$
(3.2.4-20)

TU Darmstadt

$$X_{ist}(s) = \frac{F_{PD}(s)G(s)}{F_{PD}(s)G(s)+1} \cdot \frac{\Delta x_{soll}}{s} \qquad \frac{\Delta x_{ist}(t \to \infty)}{\Delta x_{soll}} = \frac{s \cdot X_{ist}(s)}{\Delta x_{soll}} = \frac{F_{PD}(0)G(0)}{F_{PD}(0)G(0)+1} \quad (3.2.4-21)$$

$$\frac{\Delta x_{ist}(t \to \infty)}{\Delta x_{soll}} = \frac{F_{PD}(0)G(0)}{F_{PD}(0)G(0)+1} = \frac{K_p \cdot (k_i / k_x)}{K_p \cdot (k_i / k_x)+1} < 1 \quad (3.2.4-22)$$

3.14

Fazit:

Mit dem PD-Regler schwebt der Rotor zwar stabil, aber es bleibt eine dauernde Regelabweichung, die allerdings umso kleiner ist, je größer die Proportionalverstärkung gewählt wird.

Mit der Erweiterung des Reglers um einen integralen Anteil (PID-Regler) verschwindet diese bleibende Regelabweichung, wie (3.2.4-26) bei einem Sollwertsprung Δx_{soll} zeigt.

$$\Delta i = -K_p \cdot \Delta x - K_d \cdot d\Delta x / dt - \frac{1}{T_I} \int \Delta x \cdot dt$$
(3.2.4-23)

$$I(s) = -K_p \cdot X(s) - K_d \cdot s \cdot X(s) - \frac{1}{s \cdot T_I} \cdot X(s)$$
(3.2.4-24)

$$F_{PID}(s) = -K_p - K_d \cdot s - \frac{1}{s \cdot T_I}$$
(3.2.4-25)

k.

$$\frac{\Delta x_{ist}(t \to \infty)}{\Delta x_{soll}} = \frac{s \cdot X_{ist}(s)}{\Delta x_{soll}} = \frac{F_{PID}(0)G(0)}{F_{PID}(0)G(0) + 1} = \frac{-\frac{N_I}{T_I}}{-\frac{k_i}{T_I}} = 1$$
(3.2.4-26)

<u>Bild 3.2.4-4</u>: Stromgesteuertes Magnetlager mit PID-Regler, linearisierter Strecke und einer Störgrößenaufschaltung $\Delta F_{Last.}$ [3.2]

<u>Bild 3.2.4-5:</u> Sprungförmige Störgrößenaufschaltung in Form einer Störkraft auf den Rotor; Sprungantwort des Magnetlagers mit PD-Regler (ohne Integrator) und PID-Regler (mit Integrator). Im zweiten Fall tritt keine bleibende Regelabweichung auf. [3.2]

TU Darmstadt

elekt

Mit dem PID-Regler tritt der bemerkenswerte Zustand auf, dass trotz zusätzlicher Kraft auf den Rotor keine stationäre Lageänderung auftritt (solange die Regelreserve nicht ausgeschöpft ist), Das Lager hat damit **stationär eine unendlich hohe Steifigkeit**, da – im Gegensatz zum mechanischen Wälz- oder Gleitlager - trotz ΔF_{Last} kein Δx auftritt. Die dynamische Auslenkung während des Regelvorgangs zeigt, dass das Magnetlager eine **endliche dynamische Steifigkeit** besitzt, die i. a. kleiner ist als die Steifigkeit mechanischer Lager.

3.15

3.2.5 Spannungssteuerung

Die in Abschnitt 3.2.5 getroffene Annahme, dass der Stromistwert dem Reglersignal verzögerungsfrei folgt (**Stromsteuerung**), trifft in der Realität nur bei niedriger Aussteuerung zu (hohe Spannungsreserve, getaktete Spannung). Bei hoher Aussteuerung prägt der Gleichstromsteller der Spule im Grenzfall die Deckenspannung auf (Gleichspannung U_d des Zwischenkreises). Der Strom baut sich gemäß der Zeitkonstante T = L/R auf (**Spannungssteuerung**).

$$u = R \cdot i + \frac{d\psi}{dt} = R \cdot i + \frac{d(L(x) \cdot i)}{dt} = R \cdot i + \frac{dL}{dx} \cdot \frac{dx}{dt} \cdot i + L \cdot \frac{di}{dt}$$
(3.2.5-1)

Mit dem bekannten Ansatz $x = x_0 - \Delta x$, $i = i_0 + \Delta i$ folgt

$$u_0 + \Delta u = R \cdot i_0 + R \cdot \Delta i - \frac{dL}{dx} \cdot \frac{d\Delta x}{dt} \cdot (i_0 + \Delta i) + L \cdot \frac{d\Delta i}{dt}$$
(3.2.5-2)

und wegen $\Delta \dot{x} \cdot \Delta i \ll 1$

$$u_0 = R \cdot i_0, \qquad \Delta u = R \cdot \Delta i - \frac{dL}{dx} \cdot i_0 \cdot \Delta \dot{x} + L \cdot \Delta \dot{i} = R \cdot \Delta i + k_u \cdot \Delta \dot{x} + L \cdot \Delta \dot{i} \qquad (3.2.5-3)$$

Der **Spannungsfaktor** k_u bringt die durch Bewegungsinduktion (bewegter Rotor) in die Spule induzierte Spannung zum Ausdruck, über die eine Lageinformation (nämlich die Rotorgeschwindigkeit) erhalten werden kann. **Sensorlose Lager** benützen dies zur Messung der Läuferlageposition.

Mit der bereits erläuterten Beziehung für die Kraft

$$F(x = konst.) = -\frac{1}{2} \cdot \frac{dL}{dx} \cdot i^2 = -\frac{1}{2} \cdot \frac{dL}{dx} \cdot (i_0 + \Delta i)^2 \cong -\frac{1}{2} \cdot \frac{dL}{dx} \cdot (i_0^2 + 2i_0\Delta i) = F_0 + k_i\Delta i$$

folgt

$$k_i = -\frac{dL}{dx} \cdot i_0 = k_u \tag{3.2.5-4}$$

Die Systemgleichungen des spannungsgesteuerten Magnetlagers für die *x*-Koordinate lauten nun:

$$\Delta \ddot{x} - (k_x / m) \cdot \Delta x = (k_i / m) \cdot \Delta i$$
(3.2.5-5)

TU Darmstadt

elektrischen Energiewandlern

$$\Delta u = R \cdot \Delta i + k_i \cdot \Delta \dot{x} + L \cdot \Delta \dot{i} \tag{3.2.5-6}$$

Beide zusammen ergeben eine Differentialgleichung dritter Ordnung, so dass die Regelstrecke ein PT₃-Verhalten zeigt.

$$\Delta \ddot{x} + \frac{R}{L} \Delta \ddot{x} - \left(\frac{k_x}{m} - \frac{k_i^2}{m \cdot L}\right) \Delta \dot{x} - \frac{R}{L} \cdot \frac{k_x}{m} \Delta x = \frac{k_i}{m \cdot L} \Delta u$$
(3.2.5-7)

Im Laplace-Bildbereich gilt für die Übertragungsfunktion der Strecke:

$$X(s) = G_u(s) \cdot U(s) \quad \text{mit} \qquad G_u(s) = \frac{\frac{k_i}{m \cdot L}}{s^3 + \frac{s^2}{T} - \left(\frac{k_x}{m} - \frac{k_i^2}{m \cdot L}\right) \cdot s - \frac{k_x}{T \cdot m}}$$
(3.2.5-8)

Im Sonderfall R = 0 (unendlich große Zeitkonstante *T*) folgt mit der Beziehung $k_x - k_i^2 / L = 0$, dass die Übertragungsfunktion bei s = 0 einen dreifachen Pol hat.

$$G_{u}(s, R = 0) = \frac{\frac{k_{i}}{m \cdot L}}{s^{3}}$$
(3.2.5-9)

Hinweis: Differenzansteuerung: Zwei Induktivitäten in Serie: $L_{res} = 2L$:

$$\alpha = 0: L_{res} = 2\mu_0 \cdot \frac{N^2}{2\delta_0} \cdot A, \ k_i = \frac{\mu_0 N^2 i_0 A}{\delta_0^2}, \ k_x = \frac{\mu_0 N^2 i_0^2 A}{\delta_0^3}: \text{Es folgt: } k_x - k_i^2 / L_{res} = 0$$

Folglich ist die Strecke ungeregelt an der Stabilitätsgrenze, während die stromgesteuerte ungeregelte Strecke einen instabilen Pol bei $\sqrt{k_x/m}$ hat. Allerdings genügt nun wegen der höheren Ordnung der Strecke ein einfacher PD-Regler zur Stabilisierung nicht mehr, sondern es ist ein Regler höherer Ordnung nötig.

<u>Bild 3.2.5-1:</u> Spannungsgesteuertes Magnetlagersystem mit Spannungsverstärker, einem Regler höherer Ordnung und der Spule mit der Eigenzeitkonstanten L/R [3.2]

Fazit:

Das spannungsgesteuerte Lager hat eine schwächere Instabilität der Strecke. Die Rückwirkung vom mechanischen auf das elektrische System kann im "sensorlosen" Lager

TU Darmstadt

3.17

ausgenützt werden. Der Verstärker ist als einfacher Chopper aufgebaut. Die Leistungsgrenze des Stellers kann voll ausgenützt werden.

Die Stromsteuerung ist genau genommen eine Spannungsteuerung mit unterlagerter Stromregelung, die gegenüber dem Magnetlagersystem sehr schnell ist. Bei kleinen Lagersystemen, wo eine hohe Spannungsreserve kein Problem ist, kann dies leicht realisiert werden. Bei großen Systemen wie z. B. der Magnetschwebebahn (TRANSRAPID) muss die Spannungssteuerung betrachtet werden.

3.2.6 Komponenten der aktiven Magnetlager

Neben den **Eisenjochen** mit den **Spulen** und den **Eisen-Sekundärteilen** (Rotoren bei rotierenden Anordnungen wie elektrischen Maschinen, Kompressoren etc. oder lineare Teile bei z. B. Magnetschwebebahnen) werden noch weitere Komponenten benötigt, um einen geschlossenen Regelkreis zu erhalten:

- Leistungsverstärker,
- Sensoren,
- Mikrorechner (Digitalregler) oder analoge Regler (Operationsverstärkerschaltungen).

a) Leistungsverstärker

Die Leistungsverstärker setzen die Regelsignale des Reglerausgangs in Steuerströme durch die Spulen um. Unter ca. 0.5...0.6 kVA werden Analogverstärker, darüber Schaltverstärker (Chopper) eingesetzt.

Beim **Analogverstärker** wird bei positivem Vorzeichen des Steuerstroms der Transistor T1 soweit durchgeschaltet, dass über dem Transistor die Spannungsdifferenz $u_t = U_d - u_m$ anliegt ($\pm U_d$: Zwischenkreisgleichspannung, u_m : Spannung an der Magnetlagerspule). Transistor T2 sperrt (Bild 3.2.6-1). Bei negativem Vorzeichen des Stroms ist T2 leitend und T1 sperrt.

Bild 3.2.6-1: Leistungsverstärker (Prinzip): a) Analogverstärker, b) Schaltverstärker [3.2]

Beispiel 3.2.6-1: $\pm U_d = \pm 150$ V, Spulenwiderstand $R_{Cu} = 2 \Omega$, max. Spulenstrom i = 6 A: $u_t = U_d - R_{Cu} \cdot i = 150 - 2 \cdot 6 = 138$ V, Verlustleistung im leitenden Transistor: $P = u_t \cdot i = 138 \cdot 6 = 828$ W

Fazit:

Der Analogverstärker hat sehr hohe Verluste, so dass er nur bei kleinen Leistungen zum Einsatz kommt.

TU Darmstadt

Beim **Schaltverstärker** wird mit fester, möglichst hoher Taktfrequenz f_T (z. B. 50 kHz) über die Transistoren ("Schalter" S1, S2 mit antiparallelen Freilaufdioden) die Spannung $\pm U_d$ abwechselnd positiv (S1 leitet, S2 sperrt) und negativ (S1 sperrt, S2 leitet) auf die Magnetspule geschaltet. Ist z. B. innerhalb der Taktperiode $T_T = 1/f_T$ die Spannung $+U_d$ länger eingeschaltet als die Spannung $-U_d$, ergibt sich ein positiver Strommittelwert, und der Strom steigt über mehrere Taktperioden hin an. Um den Strom zu reduzieren oder gar negativ fließen zu lassen, muss über mehrere Taktperioden hinweg die Spannung $-U_d$ länger eingeschaltet sein als $+U_d$ (**Pulsweitenmodulation PWM**). Da Transistoren voll durchgeschaltet werden, liegt bei ihnen nur die kleine Durchlassspannung u_S an (z. B. MOS-FET). Bei $u_S = 2$ V und i = 6 A sind das 12 W Durchlassverluste; hinzu kommen die Schaltverluste im Transistor, die bei sehr kurzen Schaltzeiten ausreichend klein bleiben. Allerdings ist der Steuerstrom mit einem "Rippel" der Frequenz f_T behaftet, der zusätzliche Verluste im Magnetlager bewirkt. Mit steigendem f_T sinkt dieser **Rippe**. Diese hohe Schaltfrequenz bewirkt aber durch kapazitive und induktive Einkopplungen u. U. Störungen im Lagemesssystem (Elektromagnetische Verträglichkeit EMV).

Alternativ zur Pulsbreitenmodulation sind auch Hysterese-Steller (Schaltregler) im Einsatz.

Fazit:

Der Schaltverstärker (Chopper) hat geringe Verluste, so dass er nur bei größeren Leistungen zum Einsatz kommt. Allerdings ist der Steuerstrom kein reiner Gleichstrom (Schaltrippel), der mit steigender Schaltfrequenz sinkt. Die Schaltvorgänge können elektromagnetische Störungen erzeugen.

b) Sensoren

Die **Lage-Sensoren** messen berührungsfrei die Lage des schwebenden Teils (berührungsfrei wegen der Rotation des schwebenden Rotors), wobei die Rauhigkeit der Rotoroberfläche, die Rundheit etc. das Messsignal wesentlich beeinflussen. Weitere Sensoren werden ggf. zur Geschwindigkeitsmessung, Strommessung, Temperaturmessung etc. eingesetzt.

Folgende Lagesensor-Typen finden häufigen Einsatz:

- Induktive Wegsensoren: Eine Spule auf einem Ferritkern ist Teil eines Schwingkreises 5 kHz ... 100 kHz). Bei Annäherung eines ferromagnetischen Messobjekts ändert sich die Spuleninduktivität, und der Schwingkreis wird verstimmt, so dass sich die Spannungsamplitude ändert. Dieses Signal wird demoduliert und ist (nach Linearisierung) proportional zum Abstand Sensor-Messobjekt.

- Wirbelstromsensoren: Hochfrequenter Wechselstrom (1 ... 2 MHz) in einer Luftspule erzeugt ein Magnetfeld, dass im leitfähigen Messobjekt Wirbelströme induziert, die dem Schwingkreis Energie entziehen. Mit sinkendem Abstand steigen die Wirbelströme und ändern die Amplitude der schwingenden Spannung, die damit (nach Linearisierung) dem Abstand proportional ist. Aluminium ist als Messoberfläche besser geeignet als Stahl.

- Kapazitive Wegsensoren: Der Sensor und das gegenüberliegende Messobjekt bilden einen Plattenkondensator, dessen Kapazität mit sinkendem Abstand steigt. Ein Wechselstrom konstanter Frequenz (50 kHz ... einige MHz) im Messsystem erzeugt an der Kapazität einen dem Abstand proportionalen Spannungsfall. Eine hohe Auflösung ist möglich (z. B. 0.02 μm bei 0.5 mm Messbereich).

- Magnetische Wegsensoren: Ein in eine Spule eingeprägter Gleichstrom erzeugt ein Magnetfeld, das sich über das ferromagnetische Messobjekt schließt. Bei kleinerem Abstand zum Messobjekt steigt das Feld, das mit *Hall*-Sensoren (*E. H. Hall*, 1880) oder Feldplatten gemessen wird. In Differenzschaltung ergibt sich so ein gut linearisiertes Messsignal.

- **Optische Wegsensoren:** Es werden die Prinzipien "Lichtschranke" und "variabler Reflexionswinkel" verwendet. Optische Sensoren sind verschmutzungsempfindlich.

<u>Bild 3.2.6-2:</u> Induktiver Wegsensor: a) Prinzip, b) differentielle Messung der Lage mit zwei induktiven Wegsensoren [3.2]

Bild 3.2.6-3: Wegsensor: a) Wirbelstromprinzip, b) kapazitives Prinzip [3.2]

Bild 3.2.6-4: Optische Wegsensoren: a) Lichtschranken-Prinzip, b) Reflexions-Prinzip [3.2]

3.2.7 Passive Permanentmagnetlager

Passive Magnetlager aus Permanentmagnetmaterial ermöglichen den **stabilen Schwebezustand nur in gewissen Freiheitsgraden**, während die anderen Freiheitsgrade aktiv stabilisiert werden müssen. Es lassen sich damit Axial- und Radiallager bauen. In Bild 3.3.7-1 ist erkennbar, dass z. B. bei den Axiallagern der Rotor zwar in axialer Richtung stabil schwebt, aber in radialer Richtung eine aktive Lagerung (oder passiver mechanische Lagerung) nötig ist. Trotz des Einsatzes von Hochenergiemagneten (SmCo, NdFeB) sind die Lager-steifigkeiten der passiven Lager deutlich geringer als die der aktiv geregelten Lager.

Beispiel 3.2.7-1:

Passives Radiallager Bild 3.2.7-2: SmCo-Magnetring, 28 mm Ringdurchmesser, Steifigkeit pro Ringpaar 16 N/mm.

- In radialer Richtung ist stabiles Schweben möglich.

- Die axiale Richtung ist **instabil**: Bei einem Axialversatz des Innen- zum Außenring tritt eine NEGATIVE Axialsteifigkeit von 37 N/mm auf. Gleichzeitig sinkt die Radialsteifigkeit.
- Durch Erhöhung der Anzahl der Ringpaare kann die Lagersteifigkeit erhöht werden.

Fazit:

Passive Magnetlager auf Basis von Selten-Erd-Magneten können nur in Kombination mit aktiv geregelten Lagern verwendet werden, da nicht alle Freiheitsgrade passiv stabilisierbar sind. Die Kombination passiver und aktiver Lager führt zu Magnetlagersystemen mit minimalem Energieverbrauch.

Bild 3.2.7-1: Systematik von passiven Magnetlagern mit axial magnetisierten Ringen [3.2]

<u>Bild 3.2.7-2:</u> Passives Magnetradiallager mit a) axial und b) radial magnetisierten Ringen; c) Die Anordnung von a) mit vierfach erhöhter Lagerkraft durch vier Ringpaare. [3.2]

Bild 3.2.7-3: Passives Magnetradiallager mit Nutzung der Reluktanz des Weicheisenkreises [3.2]

3.2.8 Ausführungsbeispiele magnetgelagerter Antriebe

3.2.8.1 Hi-Speed-Frässpindel für High-Speed-Cutting

Durch die **Erhöhung der Schnittgeschwindigkeit** bei der spanabhebenden Bearbeitung (Drehen, Fräsen) kann die Bearbeitungsleistung und die Wirtschaftlichkeit wesentlich verbessert werden. Das spezifische Spanvolumen, die Oberflächenqualität und der Standweg der Werkzeuge steigen bei gleichzeitiger Reduktion der Zerspanungskräfte und der Beanspruchung der Werkzeugmaschine. Die Wärme wird vor allem durch den Span abgeführt, wodurch das Werkstück kälter bleibt. Bei kleinen Schnittkräften und hohen Schnittgeschwindigkeiten lassen sich dünne Stege besser bearbeiten. Vor allem in der Flugzeugindustrie werden durch großvolumige Aluminiumbearbeitung neue Leistungsmaßstäbe mit Schnittleistungen bis 100 kW gesetzt. Dieses **High-Speed-Cutting (HSC)** erfordert hoch-

TU Darmstadt

drehende Fräsantriebe mit hoher Leistung und großer Steifigkeit. Neben der Notwendigkeit, dafür besonders geeignete Antriebe zu entwickeln, sind auch besondere Lager erforderlich. Ölminimalgeschmierte Hybridlager und aktiv geregelte Magnetlager sind hier die zur Zeit eingesetzten Technologien.

a) Ausgeführte magnetgelagerte Fräs-Spindel - Lagerbemessung

Als ein ausgeführtes Beispiel wird eine magnetgelagerte Frässpindel mit ihren Eckdaten kurz vorgestellt.

Daten:

Drehzahlbereich $n = 20\ 000\ \dots\ 40\ 000/min\ (= 333.3\ /s\ \dots\ 666.6\ /s)$ Konstante Schnittleistung in diesem Bereich: 35 kW Maximales Drehmoment bei minimaler Drehzahl: $M_{\text{max}} = P/(2\pi n_{\text{min}}) = 16.7$ Nm Maximale Schnittkraft (Hebelarm an der Spindelnase: 17 mm): F = 1000 N Leistungsverstärker als Vier-Quadranten-Steller gemäß Bild 3.2.8-1

Bild 3.2.8-1: Geschalteter Vier-Quadranten-Steller zur Speisung der Lagerwicklung [3.2]

<u>Bild 3.2.8-2</u>: Rotorkonstruktion der High-Speed-Frässpindel: Zwei Radiallager, ein Axiallager, zwei Fanglager, zwei Radial- und ein Axialsensor, High-Speed-Käfigläufer eines Asynchronmotors (geschrägter Alu-Käfig) [3.2]

Die Lager und der Motorläufer sind aus Dynamoblech gefertigt. Ihre maximal zulässige Umfangsgeschwindigkeit ist 200 m/s. Daraus ergeben sich für Motorläufer und Lagerrotoren die Blechpaketdurchmesser: $d = v_u / (\pi n_{max}) = 200 / (\pi \cdot 40000 / 60) = 96$ mm. Der Axiallagerrotor ist massiv als Teil der steifen Welle ausgebildet und daher für höhere Umfangsgeschwindigkeit bemessen. Da der Rotor des Asynchronmotors auf Grund der Nutung (Kerbwirkung!) und des Käfigs (trotz Fliehkraftabstützung der Käfigringe) einen etwas kleineren Durchmesser von 80 mm haben muss, wird das Rotorblechpaket der Magnetlager diesem Durchmesser angepasst, damit der Läufer demontierbar ist.

Der Läufer hat eine Gesamtlänge von etwa 570 mm und eine Masse von ca. 22 kg. Je Radial-Lager muss (bei Annahme symmetrischer Gewichtskraftverteilung) folglich eine Lager-Kraft von ca. $F_1 = F_2 = 110$ N übernommen werden. Gemäß Bild 3.2.8-3 ist die radial wirkende

TU Darmstadt

Schnittkraft 1000 Nm die deutlich größere Belastung. Mit dem Radiallagerabstand l und dem Abstand L des Fräskopfs vom Radiallager 1 folgt (mit L/l = 1.8) für das Kräfte- und Momentengleichgewicht des Rotors:

$$F_1 + F = F_2, \quad F \cdot L = F_2 \cdot l \implies F_2 = F \cdot (L/l) = 1000 \cdot 1.8 = 1800 \text{ N}, \quad (3.2.8-1)$$

$$F_1 = 1800 - 1000 = 800 \text{ N}$$

Die Schnittkraft kann sich sowohl im Lager 1 als auch im Lager 2 der Gewichtskraft gleichgerichtet überlagern. Mit der Überlagerung der Gewichtskraft ergibt sich für Radiallager 1 $F_1 = 800 + 110 = 910$ N, für $F_2 = 1800 + 110 = 1910$ N. Ausgelegt werden die Lager für 1000 N und 2000 N.

Bild 3.2.8-3: Schnittkraftaufteilung auf die beiden Radiallager (schematisch)

Dynamoblechlager mit einer Sättigungsflussdichte von ca. 1.5 T gestatten etwa 30 N/cm² spezifische Lagerkraft. Damit erhält man für die erforderlichen Blechpaketbreiten b der Lager:

Radial-Lager 1: $b = F/(f \cdot d) = 1000/(30 \cdot 8) = 4.1 \text{ cm}$ Radial-Lager 2: $b = F/(f \cdot d) = 2000/(30 \cdot 8) = 8.2 \text{ cm}$

Ein Lagerluftspalt $\delta_0 = 0.35$ mm wurde gewählt.

b) Eigenschwingungsformen

Nach Wahl der Lagergeometrie lassen sich die **elastischen Verformungen** des Läufers mit Hilfe der Finiten-Elemente-Methode berechnen. Bei Hochdrehzahlantrieben ist dies wichtig, da die durch unlaufende Unwuchtkräfte angeregten Schwingfrequenzen f = n hoch sind und daher mit den Biegeeigenfrequenzen des Läufers (bekanntes Analogon: schwingende Gitarrensaite!) zusammenfallen können (**Resonanz**!). Wie jede schwingende Saite schwingt auch der Läufer mit einer **Grundschwingung** (1. elastischer Mode = erste biegekritische Eigenfrequenz, zwei Schwingungsknoten) und **Oberschwingungen** (zweiter, dritter usw. elastischer Mode, drei, vier usw. Schwingungsknoten). Die Grundschwingung entspricht dem Grundton der Gitarrensaite, die Oberschwingungen deren Obertönen. Ihre Gesamtheit stellt den "Klang" der Saite dar.

Im vorliegenden Beispiel ergab die Rechnung $f_{b1} = 703$ Hz, $f_{b2} = 1758$ Hz, $f_{b3} = 2990$ Hz (Bild 3.2.8-4).

3.22

Bild 3.2.8-4: Berechnete Eigenformen und -frequenzen des Frässpindelrotors mit Werkzeug [3.2]

Bei maximaler Drehzahl n = 666.6 /s wird nahezu die erste Biegekritische angeregt. Eine weitere Anregung dieser Schwingungsform 703 Hz kann auch durch eine Schnittwechselkraft erfolgen. Im Bild 3.2.8-4 ist zu erkennen, dass die Radiallagersensoren außerhalb der Schwingungsknoten liegen und daher gegenphasig zur Rotorschwingung die Auslenkung messen (**Beobachtbarkeit der Schwingungsform**). Dies muss bei der Reglerrückführung mit Vorzeichenumkehr berücksichtigt werden, um ein Aufschaukeln der Läuferschwingung zu vermeiden. Alternativ dazu könnten die Sensoren innerhalb der Schwingungsknoten angeordnet werden (**Kollokation**). Da das Radiallager 2 selbst im Bereich der Schwingungsknoten liegt, kann es die erste Biegekritische kräftemäßig nur wenig beeinflussen (**Steuerbarkeit der Schwingungsform**).

Hinzu kommen die im Allgemeinen mit niedrigerer Frequenz auftretenden **Starrkörpermodes**. Der Rotor schwingt als STARRER, unverformter Körper in den elastischen Lagern (Federkennlinie der Feldkräfte) entweder im **Gleichtaktmode** (in beiden Lagern gleichphasig) oder **Gegentaktmode** (in den Lagern gegenphasig, "Kippen" des Läufers). Die Eigenfrequenz des Gegentaktmodes ist oft höher als die des Gleichtaktmodes, fallweise niedriger. Beide liegen aber zumeist niedriger als der erste elastische Mode.

Da der zweite und dritte elastische Mode sehr hohe Eigenfrequenz haben, brauchen sie von den Magnetlagern nicht mehr beeinflusst werden. Man kann daher die **Reglergrenzfrequenz** mit 1600 Hz unterhalb der zweiten Grenzfrequenz legen.

c) Abschätzung der Verstärkerleistung

Für welchen Frequenzbereich 0 ... f_{max} kann der Leistungsverstärker die Stellkraft im Aktuator (Lagermagnet) zur Verfügung stellen? Bei maximaler Frequenz ist die induzierte Spannung im Lager, hervorgerufen durch den schwingenden Rotor, maximal. Gegen diese Spannung muss der Leistungsverstärker mit seiner "Deckenspannung" Strom in die Spule einprägen. Wenn die Verstärker-Deckenspannung u gleich groß ist wie die induzierte Spannung u_i , kann kein Strom mehr eingeprägt werden (**Spannungsgrenze**).

$$u_i = -\frac{d\psi}{dt} = -N \cdot A \cdot \frac{dB}{dt} = -\mu_0 N^2 A \frac{1}{2} \frac{d}{dt} \left(\frac{i}{\delta_0 - x}\right)$$
(3.2.8-2)

Bei Vernachlässigung des Spulenwiderstands gilt für die Spulenspannung:

$$u + u_i = 0 \implies u = \mu_0 N^2 A \frac{1}{2} \frac{d}{dt} \left(\frac{i}{\delta_0 - x} \right)$$
 (3.2.8-3)

Mit der Lagerkraft F (gemäß der einfachen, nicht differentiellen Anordnung) und ihrer zeitlichen Änderung dF/dt

$$F = \mu_0 A \frac{N^2}{4} \cdot \left(\frac{i}{\delta_0 - x}\right)^2, \qquad \frac{dF}{dt} = \mu_0 A \frac{N^2}{4} \cdot 2\left(\frac{i}{\delta_0 - x}\right) \cdot \frac{d}{dt}\left(\frac{i}{\delta_0 - x}\right)$$
(3.2.8-4)

folgt aus (3.2.8-3):

$$\frac{dF}{dt} = u \cdot \left(\frac{i}{\delta_0 - x}\right) \qquad \text{bzw. bei Nullauslenkung } x = 0: \frac{dF}{dt} = \frac{u \cdot i}{\delta_0} \qquad (3.2.8-5)$$

Damit ist eine Dimensionierungsregel für die **maximale Verstärker-Scheinleistung** ui gefunden. In Differenzschaltung (zwei Spulen in Serie) ist dF/dt doppelt so groß (Faktor 2). Zusätzlich nimmt F mit dem $\cos \alpha$ (siehe Abschnitt 3.2.1) ab. Bei sinusförmig zeitlicher Änderung von Strom, Spannung und Kraft mit der Frequenz $f = \omega/(2\pi)$ folgt

$$\omega \hat{F} = 2 \cdot \cos \alpha \cdot \hat{U}_{\text{max}} \cdot \hat{I}_{\text{max}} / \delta_0$$
(3.2.8-6)

Soll bei maximaler Frequenz noch die halbe maximale Stromamplitude $\hat{I}_{max}/2$ eingeprägt werden können (halbe maximale Stellkraft bei Differenzwicklungsanordnung), so folgt mit $\alpha = 22.5^{\circ}$:

$$\omega_{\max} = 2 \cdot \cos \alpha \cdot (\hat{I}_{\max} / 2) \cdot \hat{U}_{\max} / (\delta_0 \cdot \hat{F}_{\max}) = 0.92 \cdot \hat{S}_{\max} / (\delta_0 \cdot \hat{F}_{\max})$$
(3.2.8-7)

Mit $\omega_{\text{max}} = 2\pi f_{\text{max}} = 2\pi \cdot 703 = 4417 / s$ und $\hat{F}_{\text{max}} = 1000 \text{ N}/2 = 500 \text{ N}$ (Radiallager 1) ergibt das $\hat{S}_{\text{max,Lager1}} = 840 \text{ VA}$ bzw. $\hat{S}_{\text{max,Lager2}} = 1680 \text{ VA}$. Je Kanal (je Freiheitsgrad) wurde ein Leistungsverstärker mit $U_d = 310 \text{ V}$, 8 A (2480 VA) mit 100 kHz Schaltfrequenz in MOS-FET-Technik gewählt: Bei zwei Radiallagern mit je zwei Freiheitsgraden (x- und y-Koordinate) und einem Axiallager sind das 5 x 2480 = 12 400 VA Scheinleistungsbedarf.

d) Reglerauslegung

An den digitalen Regler wurden folgende Anforderungen gestellt:

- Stabiles Gesamtsystem,
- gute Dämpfung des ersten elastischen Modes,
- hohe statische Steifigkeit, um eine Durchbiegung des Fräsers (Bearbeitungsungenauigkeit) zu vermeiden,
- hohe dynamische Steifigkeit (Lastwechsel am Fräser),
- robust gegen Streckeneinflüsse (Werkzeugwechsel), Signalstörungen, Stellgrößenbeschränkung.

Realisiert wurde ein 5-kanalige Regelung mit 9.4 kHz Reglertaktfrequenz, die auf einem Signalprozessor TMS320C25 mit 20 MHz Taktfrequenz implementiert wurde. Eine PID-Struktur mit höheren D- und I-Anteilen wurde optimiert und das in Bild 3.2.8-5 dargestellte Schnittkraftübertragungsverhalten erreicht. Die gute Dämpfung des 1. elastischen Modes bei 704 Hz durch die Regelung ist gut erkennbar.

3.24

<u>Bild 3.2.8-5</u>: Schnittkraftübertragungsverhalten einer 35 kW-Frässpindel: Vergleich Rechnung und Messung der Auslenkung des Läufers in den Sensormesspunkten 1 und 2 der beiden Radiallager bei sinusförmig schwingender Schnittkraft im Bereich 10 ... 1200 Hz. [3.2]

<u>Bild 3.2.8-6:</u> Rechnerisch simulierter Läufer"absturz": a) Rollende Zylinderbewegung links, Taumelbewegung rechts, b) Orbit des Läufermittelpunkts beim Absturz bis zum "Rollen" (äußerer Hüllkreis) [3.2]

In den Fanglagern ruht der Läufer, wenn die Magnetlager ausgeschaltet sind. Wenn durch eine Störung während des Betriebs die Magnetlager ausfallen (**Absturz des Rotors**), muss der Läufer in den Fanglagern auslaufen können. Daher werden diese zumeist so ausgelegt, dass Kugellager verwendet werden, deren Innendurchmesser des Lager-Innenrings um den doppelten **''Fanglagerluftspalt''** größer ist als der Wellenaußendurchmesser. Dabei muss der Fanglagerluftspalt kleiner als der Magnetlagerluftspalt (und der Motorluftspalt) sein, um die Magnetlager bei Störung zu schützen (hier: 0.2 mm < $\delta_0 = 0.35$ mm). Beim "Absturz" des

TU Darmstadt

Läufers führt der Läufer Zylinder- und Taumelbewegungen aus (Bild 3.2.8-6), die – im Orbit des Läufers betrachtet – nach dem ersten Kontakt zwischen Wellenoberfläche und Lagerinnenring aus Stoß- und Gleitvorgängen bestehen, bevor der Läufer in den Rollzustand übergeht. Fanglager sollten etwa 20 "Abstürze" überstehen können, bevor sie getauscht werden müssen.

f) Magnetlagerverluste

Bei berührungsfrei magnetisch gelagerten Rotoren entfällt die Lagerreibung. An ihre Stelle tritt ein Bremsmoment zufolge der **Ummagnetisierungsverluste** in den ferromagnetischen Lager-Rotorblechpaketen auf (Hysterese- und Wirbelstromverluste).

$$M = \frac{P_{Fe}}{2\pi n} \tag{3.2.8-8}$$

Da $f \sim n$, $P_{Fe,hys} \sim f$ und $P_{Fe,w} \sim f^2$ ist, hat das Bremsmoment einen drehzahlunabhängigen Anteil, der von den Hystereseverlusten stammt, und einen mit der Drehzahl linear zunehmenden Anteil, der von den Wirbelströmen stammt. Gemäß 3.2.3 kann der Magnetläufer massiv ausgeführt werden, wenn die Feldlinien parallel zur Drehachse geführt werden.

Luftreibungsverluste sind ebenfalls bremsend wirksam, da sowohl die Radial- wie Axiallagerrotoren zylindrische, rotierende Körper mit sie umgebenden engen Spalten (magnetische Luftspalte) darstellen. Diese engen Spalten erhöhen die Luftreibungsverluste deutlich gegenüber frei in Luft rotierenden Zylindern.

In den Spulen treten *ohm* 'sche Verluste auf. In den Eisenjochen der Elektromagnete treten zusätzliche Ummagnetisierungsverluste durch die PWM-Schaltfrequenzen auf, die ggf. auch in den Spulendrähten Wirbelstromverluste verursachen können.

In den Leistungsverstärkern treten Verluste auf, die sich bei PWM-Stellern aus **Durchlassund Schaltverlusten** zusammensetzen und sich in den analogen Verstärkern durch (deutlich) höhere Durchlassverluste bemerkbar machen. Weitere Verluste kommen durch die Gleichrichtung (Erzeugung einer Zwischenkreisspannung) und durch die Elektronikversorgung der Messglieder und Regelung zustande.

Als *Richtwert* für die Summe der Verluste P_d , die erforderlich ist, um einen Rotor (Masse *m*) gegen seine Gewichtskraft *mg* in Schwebe zu halten (Aufbringen des Gewichtstrom in den Spulen, keine Regelvorgänge, keine Rotation), gilt P/m = 1 W/kg.

Da die Bremsmomente der Magnetlager sehr klein sind, lassen sie sich nur schwer direkt messen. Für die hier betrachtete ausgeführte Spindel (80 mm Rotordurchmesser, 570 mm Länge) wurde aus dem Auslaufversuch n(t) durch Bildung von dn/dt bei bekanntem polaren Trägheitsmoment J = 0.0115 kgm² (**Drehpendelmethode zur** *J***-Messung** verwendet) auf das Drehmoment zurück gerechnet (Bild 3.2.8-7).

$$J\frac{d(2\pi n)}{dt} = M \tag{3.2.8-9}$$

Im Vakuum ergibt sich für n = 20000/min ein Bremsmoment von ca. 0.031 Nm. Mit d = 80 mm Lagerdurchmesser und einer gesamten Lagerkraft von 4000 N als Bezugswert (1000 N

TU Darmstadt

Radiallager 1, 2000 N Radiallager 2, 1000 N Axiallager) errechnet man einen äquivalenten Reibungskoeffizient von

<u>Bild 3.2.8-7:</u> Gemessene Auslaufkurven bei 1: Normalluftdruck 1atm, 2: Vakuum zur Bestimmung des Ummagnetisierungs-Bremsmoments [3.2]

<u>Bild 3.2.8-8:</u> Aus dem Auslaufversuch bestimmte Bremsmomente: volle Linien: gemessen, gestrichelte Linien: berechnet [3.2]

TU Darmstadt

3.28

3.2.8.2 Magnetgelagerte Großantriebe

a) NAM-Projekt:

Für das Erdgasfeld in der Nähe von Groningen, Niederlande, ergab sich die Möglichkeit, die ehemaligen ausgebeuteten Erdgaslagerstätten nun als Erdgasspeicher zu nutzen, um Vorräte anlegen zu können. Die Kompressoren und ihre Antriebe mussten aber ölfrei ausgeführt werden, da das Erdgasfeld mittlerweile als Naturschutzgebiet ausgewiesen war und die Grundwasserverschmutzung durch austretendes Lecköl auf jeden Fall vermieden werden musste. Anstelle ölgeschmierter Gleitlager, wie sie für Kompressorantriebe dieser Größe üblich sind, wurden daher Magnetlager im Rahmen des NAM-Projekts eingesetzt. Zweipolige drehzahlveränderbare Drehstrom-Synchronmotoren (Umrichterspeisung) mit massivem Turboläufer und elektrischer Läufererregung wurden mit einer aktiven Magnetlagerung für die Gaskompressorantriebe explosionsgeschützt ausgelegt. Der ebenfalls magnetgelagerte Kompressor enthält auch die axiale Magnetlagerung. Er erzeugt 60 bar Gasdruck bei Nenndrehzahl. Die variable Drehzahl erfolgt über Thyristor-Stromrichterspeisung: Eine 6phasige Speisung wird durch zwei 3-strängige, räumlich um 30°el. versetzte Wicklungssysteme erreicht, die aus zwei speisende Stromrichter, die um 30° el. versetzt schalten, gespeist werden. Die Antriebe sind explosionsgeschützt in der Ausführung E(Ex)p: Überdruckkapselung.

<u>Daten</u>: 23 MW, 2x3.6 kV, 2x2.03 kA, 90 Hz, $n_N = 5400/\text{min}$, $n_{\text{max}} = 7000/\text{min}$, Motormasse: 61.5 t, Rotormasse 9.2 t. Der Drehzahlbereich 5400 ... 6300/min liegt oberhalb der 1. biegekritischen Drehzahl.

Die magnetischen Radiallager wurden aus Sicherheitsgründen redundant ausgeführt, also statt 9 nun 4x4 = 16 Pole. Für die x- und die y-Achse stehen somit in Differenzschaltung je vier Wicklungssysteme zur Verfügung. Je 2 Abstandssensoren für die x- und y-Achse sind ebenfalls in Differenzschaltung angebracht, um den Lagerluftspalt von 2 mm zu messen und den Istwert der digitalen Lagerregelung zuzuführen. Neben den Abstands- wurden auch Geschwindigkeitssensoren (x- und dx/dt-Messung) im magnetischen Radiallager angeordnet, um eine höherwertige Regelgüte zu erreichen. Der Bohrungsdurchmesser der Magnetlager beträgt etwa 400 mm.

<u>Bild 3.2.8-9:</u> a) Magnetisches Radiallager für den 23 MW-Motor mit gegenüber liegenden Abstands- und Radial-Geschwindigkeitssensoren, b) Magnetgelagerter 2-poliger Synchronmotor im Prüffeld (*Siemens, Dynamowerk, Berlin*), über ein Getriebe an eine Wirbelstrombremse gekuppelt, Lüfteraufbau demontiert, Überdruckkapselung für Ex-Schutz

TU Darmstadt

<u>Bild 3.2.8-10:</u> Explosionsgeschützter magnetgelagerter 2-poliger Synchronmotor in Überdruckkapselung und gekuppelter Gaskompressor (links), Erdgasfeld *Groningen/Holland*, Projekt NAM (*Quelle: Siemens AG*)

b) Magnetgelagerte Asynchronmotoren mit massivem Rotor:

In der Öl- und Gasindustrie wurden die Kompressoren der Pipelines zur Aufrechterhaltung des Förderdrucks i. a. mit Gasturbinen angetrieben, die direkt mit dem Rauchgas des abgezweigten, verbrannten Fördermediums angetrieben wurden. Mit drehzahlvariablen, umrichtergespeisten Antrieben kann die Drehzahl des Kompressors aber stufenlos an die Druckerfordernisse in der Pipeline angepasst werden: $\Delta p \sim n^2$. Mit höherer Drehzahl werden die Kompressoren kleiner, aber der Läufer des Antriebs wird mechanisch höher beansprucht. ebenso die Lager. Mit Drehzahlen bis 15000/min / 4 MW bis 6000/min / 16 MW wird bei der Motorenreihe HS-Modyn (Siemens AG) der Kupferkäfigläufer des Asynchronmotors mit massivem Rotoreisen ausgeführt, da die Läuferfrequenz bei einem Betriebsschlupf von ca. 1% nur 1% der Ständerfrequenz beträgt, also klein ist. Ummagnetisierungsverluste im massiven Läufereisen sind daher klein. Die Fliehkräfte werden durch das massive Läufereisen besser beherrscht als bei geblechten Läufervarianten. Die Kurzschlussendringe sind mit Stahlkappen fixiert. Die Läuferverluste werden über Axialwellenlüfter aus Kevlar-Kunststoff (leicht, hochfest) mit Luftkühlung im Innenkühlkreislauf über Wärmetauscher (z.B. Luft-Wasser) abgeführt. Die IGBT-3-Punkt-Mittelspannungsumrichter für 3 kV und 6 kV versorgen die 3strängige Ständerwicklung. Der Einsatz aktiver Magnetlager als Radial- und Axiallager erlauben einen komplett ölfreien Antrieb. Für niedrigere Drehzahlen kommen alternativ konventionelle ölgeschmierte Gleitlager oder Quetschöldämpferlager zum Einsatz. Die Magnetlager verringern die Schwingungen des Antriebs und erhöhen damit die Laufruhe und Lebensdauer. Zusätzlich ist das Ständeraktivteil (Blechpaket und Wicklung) elastisch im Ständergehäuse befestigt.

Eine ähnliche Baureihe ist auch bei Alstom / Rugby, UK, in diesem Leistungsbereich mit Magnetlagerung verfügbar.

3.3 Elektrodynamisches Schweben

3.3.1 Funktionsprinzip des elektrodynamischen Schwebens

Das **elektrodynamische Schweben** basiert auf der Induktion von Wirbelströmen in einer elektrisch leitenden Platte oder kurzgeschlossenen Spule, wenn eine gleichstromerregte Magnetspule darüber hinweg bewegt wird. Ebenso kann eine ruhende, wechselstromerregte Spule über einer leitenden Platte schweben. Das magnetische Eigenfeld der Wirbelströme ist gemäß dem *Faraday*'schen Induktionsgesetz der Ursache ihrer Entstehung, nämlich der Feldänderung der Magnetspule, entgegen gerichtet (*Lenz*'sche Regel) und führt zu einer Abstoßungskraft, die als **Schwebekraft** wirkt. Bei einer bewegten Magnetspule tritt noch eine zusätzliche **Bremskraft** entgegen der Bewegungsrichtung der Magnetspule auf.

Im Unterschied zu aktiv geregelten Magnetlagern, wo der Schwebekörper eine relative Permeabilität $\mu_r > 1$ hat, so dass gemäß *Earnshaw* ungeregelt kein stabiler Schwebezustand möglich ist, haben kurzgeschlossene Spulen auf Grund des von ihnen erzeugten Gegenfelds eine feldschwächende, also **diamagnetische Wirkung**. Das resultierende Feld $B = \mu_0 \mu_r H$ ist kleiner als das Leerlauffeld *B*, folglich gilt: $0 < \mu_r < 1$. Damit ist mit kurzgeschlossenen Spulen ein rein passiv stabilisiertes Schweben möglich.

In Bild 3.3.1-1 ist das Funktionsprinzip erläutert. Eine z. B. ruhende Magnetspule 1 (Windungszahl N_l) ist von einem Wechselstrom i_l durchflossen, der den Wechselfluss Φ_l erregt, dessen Hauptflussanteil Φ_{lh} auch mit Spule 2 verkettet ist. Gemäß dem Induktionsgesetz (**Gegeninduktivität** M_{12} zwischen Spule 1 und 2)

$$u_{i,2} = -N_2 \frac{d\Phi_{1h}(i_1)}{dt} = -M_{12} \frac{di_1}{dt}$$
(3.3.1-1)

wird in der **kurzgeschlossenen Spule** 2 (Windungszahl N_2) die Spannung $u_{i,2}$ induziert. Sie treibt einen Strom i_2 , dessen Fließrichtung so orientiert ist, dass der von ihm erregte Fluss Φ_{2h} der Flussänderung d Φ_{1h}/dt entgegen wirkt. Das führt abhängig von der Größe R_2 und L_2 der Spule 2 zu einer Stromrichtung von i_2 , die jener von i_1 näherungsweise entgegen gerichtet ist.

$$u_{i,2} = R_2 i_2 + N_2 \frac{d\Phi_2}{dt} = R_2 i_2 + N_2 \frac{d(\Phi_{2h} + \Phi_{2\sigma})}{dt} = R_2 i_2 + L_{2h} \frac{di_2}{dt} + L_{2\sigma} \frac{di_2}{dt}$$
(3.3.1-2)

Mit dem Übersetzungsverhältnis $\ddot{u} = N_1 / N_2$ und der aus der Transformatortheorie bekannten Beziehung $\ddot{u}M_{12} = \ddot{u}^2 L_{2h} = L_{1h}$ folgt mit den Bezeichnungen $i'_2 = i_2 / \ddot{u}$, $L' = \ddot{u}^2 L$, $R' = \ddot{u}^2 R$ aus (3.3.1-2):

$$-M_{12}\ddot{u}\frac{di_{1}}{dt} = -L_{1h}\frac{di_{1}}{dt} = R_{2}'i_{2}' + L_{2h}'\frac{di_{2}'}{dt} + L_{2\sigma}'\frac{di_{2}'}{dt} = R_{2}'i_{2}' + L_{1h}\frac{di_{2}'}{dt} + L_{2\sigma}'\frac{di_{2}'}{dt}$$
(3.3.1-3)

Für die ideal streuungslose und widerstandslose Spule 2 ($L_{2\sigma} = 0, R_2 = 0$) ergibt sich damit:

$$L_{1h} \frac{d(i_1 + i_2')}{dt} = 0 \quad \Rightarrow \quad i_1 = -i_2' = -\frac{N_2}{N_1} \cdot i_2$$
(3.3.1-4)

TU Darmstadt

Somit liegen sich Ströme mit entgegengesetztem Vorzeichen gegenüber (Bild 3.3.1-1), die aufeinander eine abstoßende Kraft F ausüben.

Fazit:

Bei Induktion einer Spannung durch einen Fremdfluss in eine kurzgeschlossene Spule mit vernachlässigbarem Widerstand und Streufeld fließt der dort induzierte Kreisstrom entgegengesetzt zum den Fremdfluss erregenden Primär-Strom. Daher wird Spule 2 von Spule 1 abgestoßen.

<u>Bild 3.3.1-1</u>: Ein in eine kurzgeschlossene Spule 2 induzierter Wirbelstrom (Kreisstrom) i_2 erzeugt über das von ihm erregte Feld B_2 eine abstoßende Kraft F_x auf die induzierende Primärspule 1.

In Bild 3.3.1-2 ist der fundamentale Unterschied zwischen elektromagnetischem und elektrodynamischem Schweben an Hand einer einfachen Geometrie zusammengefasst.

In Bild 3.3.1-2a schwebt unter der gleichstromerregten Spule ein ferromagnetischer, nicht leitender Block, der im Idealfall $\mu_{Fe} \rightarrow \infty$ hat. Die Feldlinien treten dann senkrecht in den Block ein und ziehen ("Gummischnüre") den Block an die Spule (**instabiles Schweben**).

In Bild 3.3.1-2b schwebt die wechselstromerregte Spule über einem nicht magnetisierbaren, (ideal) leitenden Block, der im Idealfall $\kappa \to \infty$ hat. Die Feldlinien werden dann durch den Gegenfluss der im Block induzierten Wirbelströme aus dem Block verdrängt, so dass die Spule vom Block abgestoßen wird (**stabiles Schweben**).

Bild 3.3.1-2: Vergleich von a) elektromagnetischem und b) elektrodynamischem Schweben

Anmerkung:

Da auch Eisen leitfähig ist, tritt bei Anordnung einer wechselstromerregten Spule über einem Massiveisenblock eine Überlagerung von a) und b) auf. Je nach dem, welche der beiden Kräfte überwiegt (hängt vom Verhältnis μ_{Fe}/κ ab), wird die Spule entweder abgestoßen oder angezogen.

TU Darmstadt

3.31

Für die Idealfälle von Bild 3.3.1-2 (a: $\mu_{Fe} \to \infty$, b: $\kappa \to \infty$) können die Kräfte mit der Spiegelmethode einfach berechnet werden. Eine Anordnung "gespiegelter" Ersatzleiter anstelle des massiven Materialblocks erzeugt das gleiche Feldbild wie in Bild 3.3.1-2.

<u>Bild 3.3.1-3:</u> Spiegelmethode mit gespiegelten Ersatzleitern zur Berechnung der Kraft bei a) elektromagnetischem und b) elektrodynamischem Schweben

Wird statt der **Kreis-Spulen** ein in axialer Richtung unendlich langes **Linienleiterpaar** (Leiterabstand 2a) angenommen, das sich im Abstand *d* über der Materialoberfläche befindet, so ergeben sich folgende Formeln für die Vertikalkraft je Längeneinheit je Leiter des Leiterpaars:

Fall a): Anziehende Vertikalkraft: + F, Fall b): Abstoßende Vertikalkraft: - F,

$$F/l = \mu_0 \frac{I^2}{4\Delta\pi} \cdot \left(\frac{\Delta}{d} - \frac{d}{\Delta}\right), \quad \Delta = \sqrt{a^2 + d^2}$$
(3.3.1-5)

Beispiel 3.3.1-1:

Die länglichen supraleitenden Spulen des elektrodynamischen japanischen Hochgeschwindigkeitszugs (7 km *Miyazaki*-Teststrecke auf der Insel *Kyushu*) haben folgende Abmessungen: Spulenlänge l = 1.7 m, Breite 2a = 0.5 m, Windungszahl N = 1167, Leiter-Strom i = 600 A, Schwebehöhe d = 10 cm: $\Delta = 0.269$ m, I = Ni = 700.2 kA

$$F = 1.7 \cdot 4\pi \cdot 10^{-7} \cdot \frac{700200^2}{4 \cdot 0.269\pi} \cdot \left(\frac{0.269}{0.1} - \frac{0.1}{0.269}\right) = 718.3 \text{ kN je Spulenseite}$$

idealisierte Gesamtkraft auf die Spule: 1436.5 kN (entspricht 146.4 Tonnen)

3.3.2 Bewegte gleichstromerregte Spulen im elektrodynamischen Schwebezustand

<u>Bild 3.3.2-1</u>: Gleichstromerregte Spule (Strom I_s) wird über eine Folge kurzgeschlossener Spulen bewegt und induziert dort einen Wirbelstrom I_p je Spule, der eine abstoßende Kraft F_z und bremsende Kraft F_x ausübt. [3.1]

TU Darmstadt

3.33

In Bild 3.3.2-1 ist eine gleichstromerregte Spule (Strom I_s) idealisiert dargestellt (z. B. supraleitender Kreisstrom), die über eine Folge kurzgeschlossener Spulen mit der Geschwindigkeit v_s in x-Richtung bewegt wird. Ihr Feld B_s induziert dort je Spule einen Kreisstrom (Wirbelstrom) I_p , der mit B_s eine abstoßende Kraft F_z hervorruft, die die gleichstromerregte Spule **stabil schweben** lässt. Gleichzeitig wird auch eine (störende) bremsende Kraft F_x auf die Spule ausgeübt. Mit (3.3.1-3) kann die Abhängigkeit der Kräfte F_x , F_z von der Geschwindigkeit v_s abgeschätzt werden. Wird die Länge der gleichstromerregten Spule mit einer Polteilung τ_p bezeichnet und der Feldverlauf von B_s längs der Spule näherungsweise sinusförmig angenommen, so ist die Frequenz der in die kurzgeschlossenen Spulen induzierten Spannung

$$f_p = \frac{v_s}{2\tau_p} \tag{3.3.2-1}$$

Von den kurzgeschlossenen Spulen aus gesehen verhält sich die bewegte gleichstromerregte Spule folglich so, als ob sie mit einem Wechselstrom i_s mit der Frequenz f_p erregt wäre. Mit Übernahme der Indizes s und p statt 1 und 2 folgt aus (3.3.1-3) für die nunmehr sinusförmig zeitlich sich ändernden Größen (in komplexer Wechselstromrechnung):

$$-j\omega_p L_{sh}\underline{I}_s = R'_p \underline{I'}_p + j\omega_p L_{sh} \underline{I'}_p + j\omega_p L'_{p\sigma} \underline{I'}_p$$
(3.3.2-2)

Daraus kann der in der kurzgeschlossenen Spule fließende Strom berechnet werden:

$$\underline{I'}_{p} = -\frac{j\omega_{p}L_{sh}\underline{I}_{s}}{R'_{p} + j\omega_{p}(L_{sh} + L'_{p\sigma})}$$
(3.3.2-3)

Bei Vernachlässigung des Streuflusses der kurzgeschlossenen Spulen ($L_{p\sigma} = 0$) ergibt sich für die Stromwärmeverluste je kurzgeschlossener Spule

$$P = R'_{p}I'_{p}^{2} = \frac{R'_{p} \cdot (\omega_{p}L_{sh}I_{s})^{2}}{R'_{p}^{2} + (\omega_{p}L_{sh})^{2}} = \frac{\left(\frac{\pi v_{s}}{\tau_{p}} \cdot \frac{L_{sh}}{R'_{p}}\right)^{2}}{1 + \left(\frac{\pi v_{s}}{\tau_{p}} \cdot \frac{L_{sh}}{R'_{p}}\right)^{2}} \cdot R'_{p} \cdot I_{s}^{2}$$
(3.3.2-4)

Wegen $L_{sh} \approx \mu_0 N_s^2 \cdot \tau_p \cdot (l/z)$ und $R'_p \approx (N_s/N_p)^2 \cdot \frac{N_p \cdot 2(\tau_p + l)}{\kappa \cdot q}$ folgt, dass der folgende Ausdruck die Dimension einer Geschwindigkeit hat (q: Spulenleiterquerschnitt, l: Spulenbreite, z: Vertikalabstand der Schwebespule).

$$v_0 = \frac{R'_p}{L_{sh}} \cdot \frac{\tau_p}{\pi} \approx \frac{2 \cdot z}{\mu_0 \kappa \pi \cdot N_p q} \cdot \left(\frac{\tau_p}{l} + 1\right)$$
(3.3.2-5)

Die in den kurzgeschlossenen Spulen umgesetzten Stromwärmeverluste P werden der Bewegungsenergie der bewegten Spule entzogen, so dass diese eine Bremskraft erleidet. Aus der Bilanzgleichung $P = F_x v_s$ folgt die **Bremskraft**

TU Darmstadt

$$F_{x} = \frac{P}{v_{s}} = \frac{1}{v_{s}} \cdot \frac{\left(\frac{v_{s}}{v_{0}}\right)^{2}}{1 + \left(\frac{v_{s}}{v_{0}}\right)^{2}} \cdot R_{p}' \cdot I_{s}^{2} \sim B_{s}^{2} \cdot \frac{v_{s}/v_{0}}{1 + \left(v_{s}/v_{0}\right)^{2}} \qquad (3.3.2-6)$$

Das Geschwindigkeitsverhältnis heißt **magnetische** *Reynolds*-Zahl $R_m = v_s/v_0$. Die bremsende Kraft F_x ist bei sehr kleinem und sehr hohem R_m nahezu Null und erreicht ihr Maximum bei $R_m = 1$.

Für das von der gleichstromerregten Spule erregte Feld gilt $B_s \sim \mu_0 I_s / z$. Die in Phase mit dem von der kurzgeschlossenen Spule aus "erlebten" Wechselfeld $\underline{B}_s \sim \mu_0 \underline{I}_s / z$ befindliche Stromkomponente $I'_{p,wirk}$ von \underline{I}_p bildet mit B_s die abstoßend wirkende Schwebekraft F_z :

$$F_z \approx 2N_s I'_{p,wirk} B_s \cdot (\tau_p + l) \tag{3.3.2-7}$$

Aus (3.3.2-3) folgt mit $L_{p\sigma} = 0$ mit

$$I'_{p,wirk} = -\operatorname{Re}\left(\frac{j\omega_{p}L_{sh}I_{s}}{R'_{p} + j\omega_{p}(L_{sh} + L'_{p\sigma})}\right) = -\frac{\omega_{p}^{2}L_{sh}^{2}I_{s}}{R'_{p}^{2} + \omega_{p}^{2}L_{sh}^{2}}$$
(3.3.2-8)

für die abstoßende Kraft

$$F_{z} \sim I'_{p,wirk}B_{s} \sim \mu_{0}I'_{p,wirk}(I_{s}/z) \sim -B_{s}^{2} \cdot \frac{(v_{s}/v_{0})^{2}}{1 + (v_{s}/v_{0})^{2}} \qquad (3.3.2-9)$$

Für sehr großes R_m strebt die Schwebekraft ihrem Maximum entgegen (unendlich gut leitfähige kurzgeschlossene Spulen). Ab einer magnetischen *Reynolds*-Zahl von $R_m = 2$ sind bereits 80% des Maximalwerts erreicht, während die Bremskraft bereits ihr Maximum überschritten hat. Um schon bei niedrigen Spulengeschwindigkeiten v_s eine hohe *Reynolds*-Zahl, also hohe Schwebekraft und geringe Bremskraft zu erreichen, muss v_0 klein sein. Folglich sollte die kurzgeschlossene Spule sehr niederohmig sein, was zu $N_p = 1$, hoher Leitfähigkeit κ (Kupfer!) und großem Spulenleiterquerschnitt q_{Cu} führt. Ebenso sollte die Gegeninduktivität groß sein, was eine geringe Schwebehöhe z erfordert.

<u>Bild 3.3.2-2:</u> Elektrodynamisches Schweben einer bewegten, gleichstromerregten Spule: a) erwünschte Schwebekraft, b) störende Bremskraft [3.1]

Fazit:

Da die Flussdichte B_s quadratisch in die Schwebekraft eingeht, hat eine hohe Spulenflussdichte (und daher eine verlustfreie supraleitende Spulenerregung) entscheidenden Vorteil. Die Federkennlinie $F_z(z)$ hat hyperbolischen Charakter 1/z. Bei kleiner Schwebehöhe

TU Darmstadt

steigt die abstoßende Kraft progressiv an, so dass eine Schwebehöhe von typisch 10 cm z. B. beim japanischen Yamanashi-Hochgeschwindigkeitszug gewählt wurde. Andrerseits ist eine gewisse Mindestgeschwindigkeit der Schwebespule erforderlich, um zu schweben. Magnetschwebebahnen mit dem elektrodynamischen Schwebeprinzip benötigen für das Anfahren und Bremsen Räder. Erst ab einer Mindestgeschwindigkeit (Yamanashi: ca. 100 km/h) erfolgt wie beim Flugzeug der "Take-off".

3.4. Hochgeschwindigkeitsbahnen in Magnetschwebetechnik

Mehrere magnetische Schwebebahnen wurden in den letzten zwanzig Jahren entweder als Versuchsstrecke oder für den täglichen Einsatz im Personenverkehr gebaut und erprobt. All diesen Bahnen ist gemeinsam, dass sie von **Linearmotoren** angetrieben werden, wobei das Lang- oder Kurzstatorprinzip zum Einsatz kommt. Die dreiphasige Wanderfeldwicklung ist in der festen Fahrbahn verlegt und wird i. a. nur in den Teilabschnitten von Umrichtern gespeist, wo sich ein Fahrzeug befindet. Im Fahrzeug befindet sich das Sekundärteil (der "Läufer"), der im Fall des Synchronlinearmotors aus einem gleichstromerregten Magnetsystem besteht.

<u>Bild 3.4-1:</u> Vergleich des elektromagnetischen Schwebens (Langstator-Synchron-Motor: TRANSRAPID, Kurzstator-Synchron-Motor: HSST) und des elektrodynamischen Schwebens (Langstator-Synchronmotor: *Miyazaki*- und *Yamanashi*-Teststrecke) [3.3]

Im Nahverkehr für niedrige Reisegeschwindigkeiten bis ca. 100 km/h wurde das elektromagnetische Schwebesystem verwirklicht, das auch Schweben bei Stillstand des Zuges gestattet. Als "People Mover" wurde ein Zubringer in *Birmingham*/England gebaut (Kurzstator-Linear-Asynchronmotor). Weitere Projekte waren Schwebebahnen in *Japan* (*HSST*), in *Südkorea* (nach dem japanischen Vorbild) und eine *chinesische* Schwebebahn. Die südkoreanische und chinesische Variante sind für den Tourismus (Freizeitparks) eingesetzt. Alle diese Schwebesysteme hatten/haben aktiv geregelte Magnetlager. In *Nagoya*, *Japan*, wurde im Rahmen der Expo2005 die nach dem HSST-System arbeitende unbemannte Magnetbahn Linimo auf einer 9 km langen Strecke installiert, um die Besucher zur Expo zu bringen. Das in Japan entwickelte High Speed Surface Transport System (HSST) basiert ursprünglich auf Patenten der *Fa. Krauss-Maffei, Deutschland*, und verwendet einen im Fahrzeug befindlichen Kurzstator-Asynchron-Motor (Bild 3.4-1). Die Strecke ist mit Aluminiumplatten als Kurzschluss-Sekundärteil für den Antrieb verlegt.

Einen Sonderfall stellte die deutsche "*Magnetbahn*" dar, die in Westberlin mehrere Jahre zum Einsatz kam und nach dem Fall der Mauer auf Grund des nun veränderten Verkehrs-

TU Darmstadt

konzepts abgebaut wurde. Passive Magnetlager aus Permanentmagneten wurden eingesetzt. Da dieses System nicht in allen Freiheitsgraden stabil ist, mussten die Fahrzeuge auf Rädern fahren. Die Schwebekraft diente nur zur Entlastung der auf die Räder wirkenden Achslast.

Eine Magnetschwebebahn für den Personennahverkehr, die auf dem elektro-dynamischen Schweben beruht, wird von General Atomic, USA, für den Einsatz in Los Angeles entwickelt. Die Strecke enthält zu beiden Seiten des Fahrzeugs die Langstator-Wanderfeldwicklung und darunter kurzgeschlossene Spulen ("litz track"). Das Magnetfeld auf dem Fahrzeug wird mit NdFeB-Permanentmagneten in Halbach-Anordnung (Remanenz-flussdichte 1.4 T, 20°C) nahezu sinusförmig verteilt erregt und greift in zwei Magnetreihen von der Seite her oberhalb und unterhalb um die kurzgeschlossenen Spulen des Fahrwegs. Eine Vorwärtsbewegung induziert in den Spulen Reaktionsströme und führt zu einer abstoßenden Kraft nach oben ("elektrodyn. Schweben EDS"). Die obere Magnetreihe ist der "Läufer" (Sekundärteil) des PM-Linear-Synchronmotors. Durch die Halbach-Anordnung kann auf einen Eisenrückschluss für das Magnetfeld im Fahrzeug verzichtet werden. Ab v = 3 m/s beginnt das auf Gummirädern rollende Fahrzeug abzuheben und schwebt ab 5 m/s vollständig bei einem Schwebeluftspalt von $\delta = 25$ mm. Die abstoßende Kraft im Versuchs-fahrzeug auf der 140 m langen Teststrecke in San Diego, Cal., beträgt 90 kN. Die tangentiale Bremskraft (Bild 3.3.2-2) hat ihr Maximum bei 3 m/s mit 32 kN und sinkt rasch auf geringere Werte bei der Betriebsgeschwindigkeit 20 m/s. Die seitliche Führungskraft wird durch die Reluktanzkraft des Eisenrückschlusses des Synchronlinearmotors erreicht. Gemäß EDS ist keine Regelung des Schwebeluftspalts erforderlich. Doch bei zu großem Luftspalt δ zwischen der "litz track" und der oberen Magnetreihe nähert sich diese zu stark dem darüberliegenden Synchronlinearmotor mit dessen Eisenrückschluss, so dass die magnetische Zugkraft durch den *Maxwell*-Zug die mit $1/\delta$ abnehmende EDS-Schwebekraft überwiegen würde. Dann muss der Motorstrom verringert werden, um den Nennluftspalt wiederherzustellen. Die Antriebsleistung für das Überwinden der 32 kN Peak-Bremskraft beträgt für 10 s etwa 1 MW Umrichterleistung, für das Fahren sind 100 kW Antriebsleistung gemessen worden. Die Normal- und Tangentialkraft des Linearmotors werden geregelt. Die Tangentialkraftregelung ist für das Fahren erforderlich, die Normalkraftregelung für das Abdämpfen der schwach gedämpften Vertikalschwingungen des Fahrzeugs. Die 3-Punkt-Spannungszwischenkreis-Wechselrichter werden aus 12-Puls-Gleichrichtern versorgt, die die Strecke abschnittsweise mit frequenzvariablem Drehstrom versorgen.

Im **Fernverkehr** sind **sowohl** das **elektromagnetische** als auch das **elektrodynamische** Schwebesystem erprobt worden. Das deutsche Schwebebahn-Schnellfahr-Projekt wurde zunächst sowohl elektrodynamisch mit supraleitenden Gleichstrom-Schwebespulen im Fahrzeug (Versuchsring *Erlangen*, 280 m Durchmesser) als auch mit elektromagnetischem Schwebesystem (TRANSRAPID) realisiert. Letzteres wurde dann für die Weiterentwicklung übernommen und auf der Erprobungsstrecke im *Emsland* serienreif entwickelt, wobei Geschwindigkeiten bis 550 km/h erreicht wurden. Dieses System ist für den Personenverkehr freigegeben. Ein kommerzieller Einsatz in *Shanghai*/China (Flughafenzubringer) ist in Betrieb.

Der **japanische Schnellverkehr-Erprobungsträger** wurde mit einem elektrodynamischen Schwebesystem (und supraleitenden Schwebespulen) ausgerüstet und zunächst auf der 7 km langen Versuchsstrecke *Miyazaki* (Kyushu) bis 517 km/h getestet. Nunmehr ist in der *Yamanashi*-Provinz in der Nähe von *Tokio* der unbemannte Hochgeschwindigkeitsverkehr auf einer 42.8 km langen Teststrecke (als Teil der geplanten Trasse *Tokio-Osaka*) bis ca. 550 km/h in Erprobung, wobei zur Zeit das Verhalten bei aerodynamischen Effekten z. B. bei Begegnungsfahrten (Differenzgeschwindigkeit bis 1100 km/h zwischen den entgegenkommenden Fahrzeugen) und Tunnelein- und –ausfahrten geprüft wird.

3.4.1 Elektromagnetische Schwebebahn TRANSRAPID

<u>Bild 3.4.1-1:</u> TRANSRAPID: Trag- und Führungssystem mit aktiv geregelten Magnetlagern und einem Langstator-Synchronlinearmotor als Antrieb (jede Seite des Fahrzeugs enthält identische Ausführungen) [3.3]

Damit elektromagnetisches Schweben in Linearausführung möglich ist, muss das Magnetsystem **unterhalb des Fahrzeugs** angeordnet sein, da es nur Zugkräfte aufbringen kann. Indem der Tragmagnet von unten das Fahrzeug an den T-förmigen Fahrweg zieht (Schwebespalt geregelt auf ca. 10 mm), hebt das Fahrzeug von der Fahrbahnoberfläche ab. Dabei ist der Abstand des Fahrzeugs von der Oberseite des Fahrwegs mit 15 cm ausreichend groß, um auch auf der Fahrbahn liegende Gegenstände zu "überfliegen". Das Fahrzeug schwebt in allen Betriebszuständen (Stillstand bis Höchstgeschwindigkeit) mit etwa gleichem geregeltem Schwebespalt von 13 mm (Stillstand bis 25 km/h) über 9 mm (ca. 40 km/h bis 200 km/h) bis 11 mm (ab 300 km/h bis Höchstgeschwindigkeit). Eine "Fanglagereinrichtung" (Räder o. ä.) ist **nicht** vorgesehen. Schweben muss **unter allen Umständen** eingehalten werden. Eine Vielzahl (150 Stück je Seite) von Tragmagneten in N-S-N-S-Anordnung (**heteropolar**) zu beiden Seiten des Fahrzeugs mit einer elektrischen Energieversorgung aus Lineargeneratoren (ab ca. 85 km/h) und einer 440V-Bordnetzbatterie (für v < 85 km/h) soll für ausreichende Redundanz sorgen. Die seitlichen Führungsmagnete üben entgegengesetzte horizontale Zugkräfte auf das Fahrzeug aus und positionieren es so in Fahrwegmitte.

Bild 3.4.1-2: Prinzipieller Aufbau des Langstators [3.4]

3.37

Ein **dreisträngiger Synchron-Langstator-Motor** mit Eisenrückschluss für die Ständerwicklung (q = 1 Nut je Pol und Strang, Einschichtwicklung, Serienschaltung aller Spulen je Strang a = 1) und offenen Ständernuten (mit Kabelwicklung mit $N_c = 1$ Windung je Spule) treibt das Fahrzeug an (Breite der Statorblechpakete $l_{Fe} = 185$ mm). Die auf dem Fahrzeug befindlichen Tragmagnete werden als "Polradwicklung" (Sekundärteil) des Linearmotors verwendet. Der geblechte Eisenrückschluss des Langstators ist jedenfalls erforderlich, damit ein magnetischer Zug zwischen Tragmagnet und Fahrbahn stattfindet.

Das Erregersystem (Polradwicklung) fährt mit konstanter Erregung, da diese gleichzeitig die Erregung des Tragsystems ist. Sie wird nur für Regelvorgänge zum Konstanthalten des Schwebespalts kurzzeitig verändert. Folglich lassen sich der Strom und damit die Schubkraft des Linearmotors nur über die variable Klemmenspannung verändern.

Bild 3.4.1-3: Aufbau des Erregersystems am Fahrzeug [3.4]

In die Polflächen der Tragmagnete sind Nuten (Nutöffnung 11 mm) eingestanzt, in denen die Wicklung des **Lineargenerators** liegt. Durch die offenen Ständernuten (Nutöffnung 43 mm) des Langstators wird das Magnetfeld gemäß Bild 3.4.1-4 statornutfrequent moduliert. Unter den Nutöffnungen ist das Feld kleiner. Das Verhältnis von Maximal- zu Mittelwert des Felds heißt *Carter*-Faktor k_c und beträgt etwa 140 %. Wenn die Spulenweite der z. B. zweiphasigen Lineargenerator-Wicklung etwa eine Ständernutteilung (86 mm) umfasst, so induziert dieses modulierte Feld eine nutfrequente Spannung in die Generatorwicklung, die – nach erfolgter Gleichrichtung – ab ca. 85 km/h so groß ist, dass sie die Batterie (440 V) laden kann. Der Strom in der Generatorwicklung bildet mit dem Luftspaltfeld eine elektromagnetische Bremskraft, die zum Fahrwiderstand (hauptsächlich Luftwiderstand des Fahrzeugs) addiert werden muss. Da die Generatorwicklung zweiphasig ist (ebenfalls mit q = 1 Nuten je Pol und Strang), müssen zwei Generatornutteilungen einer Generatorpolteilung (= Ständernutteilung) entsprechen, was auf 86/2 = 43 mm Generatornutteilung führt.

Bild 3.4.1-4: Wirkungsprinzip des Synchron-Lineargenerators [3.4]

Die offenen Nuten des Stators und die Generatornuten mindern die für die Tragkraft wirksame Polfläche ($A = 20400 \text{ mm}^2$) und erhöhen die zu magnetisierende Luftspaltweite des Tragluftspalts im Mittel um den *Carter*-Faktor, bei 10 mm geometrischen Spalt auf 14 mm. Wegen des relativ großen Luftspalts ist die Luftspaltflussdichte nur ca. 0.6 ... 0.7 T, um die erforderliche magnetisierende Durchflutung in den Tragemagneten zu begrenzen (Windungszahl je Magnet: $N_{f,Pol} = 230$). Die Pulsation des Luftspaltfelds zufolge der großen Stator-Nutöffnungen führt zu einer unerwünschten Schwankung der Tragekraft. Dies wird eliminiert, indem die Polteilung der Tragemagnete (266 mm) geringfügig größer als die des Langstators (258 mm) gewählt ist. Dadurch mittelt sich die Kraftpulsation über die vielen Tragemagnete längs des Fahrzeugs aus.

Bild 3.4.1-5: Ansicht des Trag- und Führungsmagnetsystems des TR07 [3.3]

Bild 3.4.1-6: Energieversorgung des TRANSRAPID im Wechselschrittverfahren [3.4]

Für die Stromversorgung des Linearstators wird bei der Versuchsanlage im Emsland aus dem 50 Hz/110 kV-Netz über 110/20 kV-Transformatoren längs der Strecke – aufgeteilt in einzelne Abschnitte – ein System aus spannungseinprägenden PWM-Stromrichtern mit GTO-Modulen versorgt. Stromrichtertransformatoren mit 20kV/1120V erzeugen zwei um 30°el phasenversetzte Spannungssysteme, die eine zwölfpulsige gesteuerte Gleichrichtung über Thyristoren ermöglichen. Damit wird die Zwischenkreisspannung 2.6 kV konstant geregelt. Mit synchroner PWM-Taktung (z. B. 3-fach, 5-fach, 7-fach, ...) versorgen die GTO-Wechselrichter die links und rechts des Fahrwegs parallel geführten Langstator-Abschnitte bis 55 Hz (ca. 102 km/h) mit 1170 V Strangspannung (effektiv). Im Wechselschrittverfahren sind diese Abschnitte zueinander räumlich versetzt. Über eine Fahrzeuglageerfassung werden die jeweiligen aktiven Streckenabschnitte ermittelt und bestromt. Über 55 Hz wird die Spannung mittels vier Ausgangstransformatoren auf 4x1170 = 4675 V hoch gesetzt, so dass bis etwa 370 km/h konstante Schubkraft möglich ist. Wegen der für GTOs relativ hohen Grundschwingungsfrequenz von maximal 270 Hz wird ab 55 Hz nicht mehr PW-moduliert, sondern durch eine versetzte Ansteuerung der vier Ausgangstransformatoren eine Verringerung der Stromoberschwingungen in der Linearmotorwicklung bewirkt.

Eine wesentliche Frage zur **Dimensionierung des Antriebs** ist die Wahl der **Polteilung** τ_p . Bei **kleiner Polteilung** sinkt bei konstanter Flussdichte von z. B. 0.7 T der Fluss pro Pol, womit auch die Rückenhöhe (Eisenjoche) von Langstator und Erregersystem sinken. Ebenso werden die Stirnverbindungen der Ständerspulen kürzer. Beides hat wesentliche **Materialersparnis** zur Folge. Dafür steigt bei fest vorgegebener Maximalgeschwindigkeit (= maximale Synchrongeschwindigkeit v_{syn} des Wanderfelds) die erforderliche Grundschwingungsfrequenz f_s , die das Umrichtersystem erzeugen muss.

$$v_{syn,max} = 2f_{s,max}\tau_p = 500 \text{ km/h} \qquad \Rightarrow \qquad f_{s,max} = 269 \text{ Hz}$$
(3.4.1-1)

Bei einer Fahrzeuglänge von 46 m ergeben sich 46/0.258 = ca. 180 Polteilungen (90 Polpaare), die vom Fahrzeug gleichzeitig überdeckt werden. Die Windungszahl der Ständerwicklung je Strang in diesem Bereich beträgt

$$N = p \cdot q \cdot N_c / a = 90 \cdot 1 \cdot 1 / 1 = 90$$
(3.4.1-2)

Der Nennstrom je Strang beträgt 1200 A (Effektivwert).

Beispiel 3.4.1-1: TRANSRAPID: Versuchsfahrzeug TR07: **Vortriebssystem:**

Strombelag des Linearstators: $A_s = \frac{2mNI_s}{2p\tau_p} = \frac{2 \cdot 3 \cdot 90 \cdot 1200}{2 \cdot 90 \cdot 25.8} = 139.5 \text{ A/cm}$

Kabel-Leiterbündel-Durchmesser: 18 mm: Stromdichte: $J = \frac{I_s}{q_{Cu}} = \frac{1200}{18^2 \cdot \pi / 4} = 4.7 \text{ A/mm}^2$

Das Produkt $A \cdot J = 660$ A/cm⁻A/mm² ist ausreichend niedrig, um einen Kurzzeitbetrieb mit Luftkühlung in natürlicher Konvektion zuzulassen.

Elektromagnetischer Schub/Fläche:
$$\tau = k_w \frac{A_s B}{\sqrt{2}} = \frac{13950 \cdot 0.64}{\sqrt{2}} = 6313 \text{ N/m}^2$$

Schubkraft je Fahrzeug bei 2x150 Tragmagneten als Polrad:

$$F = \tau \cdot 2p \tau_p l_{Fe} \cdot 2 = 6313 \cdot 150 \cdot 0.258 \cdot 0.185 \cdot 2 = 90.4 \text{ kN}$$

Speisung mit 1170 V (Strang, eff.): konstante Schubkraft bis $v_{max} = 70$ km/h,

TU Darmstadt

3.41

Speisung mit 4675 V: konstante Schubkraft bis $v_{max} = 370$ km/h: $P_{max} = F \cdot v_{max} = 9.3$ MW

Beispiel 3.4.1-2:

TRANSRAPID: Versuchsfahrzeug TR07:

Tragsystem:

Fahrzeugmasse: m = 100 Tonnen, erforderliche Gewichts-Tragkraft: $m \cdot g = 981$ kN

Tragkraft je Magnet: $F_{Trag} = \frac{B^2}{2\mu_0} \cdot A = \frac{0.64^2}{2 \cdot 4\pi \cdot 10^{-7}} \cdot 20400 \cdot 10^{-6} = 3.3 \text{ kN}$

Die Gesamttragkraft je Fahrzeug ist $F_{Trag,ges} = 150 \cdot 2 \cdot 3.3 = 990$ kN somit ausreichend, die Masse des Fahrzeugs zu tragen.

Erregerbedarf je Tragmagnet (keine Eisensättigung):

$$V_f = N_{f,Pol} I_f = \frac{B}{\mu_0} \delta \cdot k_C = \frac{0.64}{4\pi \cdot 10^{-7}} \cdot 0.01 \cdot 1.4 = 7133 \,\mathrm{A},$$

Erregerstrom je Tragmagnet: $I_f = \frac{V_f}{N_{f,Pol}} = \frac{7133}{230} = 31 \text{ A}$

Mit dem Modell TRANSRAPID TR07 hat dieses System Serienreife erlangt und ist für den Personenverkehr zugelassen.

Daten:

TRANSRAPID: serienreifes Anwendungsfahrzeug:

Fahrzeug: Länge Endsektion: 27 m, Mittelsektion: 24.8 m, Breite: 3.7 m, Höhe: 4.2 m *Leergewicht* je Sektion: ca. 53 Tonnen, Personenzahl: 92/126 End-/Mittelsektion Erforderliche *Querschnittsfläche* der Trasse im Tunnel (Länge > 150 m, v = 450 km/h): einspuriger Tunnel: 120 m², doppelspuriger Tunnel: 225 m²

Die Motoren sind ausgelegt für eine *maximale Steigung* von 10% (Vergleiche: ICE: max. Steigung ca. 4 %).

Geräusche sind ab 250 km/h hauptsächlich aerodynamisch bestimmt, da Roll- und Antriebsgeräusche (Getriebe o. ä.) entfallen. In 25 m Abstand sind bei v = 200/300/400 km/h und aufgeständerter Trasse (ungehinderte Schallausbreitung) im *Emsland* auf der Versuchsstrecke folgende Schalldruckpegel gemessen worden: $L_{pA} = 73/80/88.5$ dB(A). Zum Vergleich: normaler Straßenverkehr: 70 dB(A), LKW in 5 m Abstand: 90 dB(A).

Auf Grund der niedrigen Flussdichten im Schwebeluftspalt und der Eisenrückschlüsse sind die **Magnetfelder** im Fahrgastraum mit 100 μ T sehr gering (Erdmagnetfeld ca. 50 μ T, Elektroherd: 1000 μ T). In der Umgebung der Trasse sind sie wegen der größeren Abstände vom Vortriebssystem noch sehr viel geringer.

Das Fahrzeug ist prinzipiell **dreifach gefedert**. Die Primärfederung zwischen Fahrzeugrahmen und Magnetsystem, sowie die Sekundärfederung zwischen Fahrzeugrahmen und Fahrgastraum ist mechanisch ausgeführt. Hinzu kommt das aktiv geregelte Magnetlagersystem selbst, dass als dritte Federung wirkt und so Stöße vom Fahrgast fernhält.

3.4.2 Japanisches Projekt: Elektrodynamische Schwebebahn Yamanashi

Die Spulensysteme müssen so angeordnet werden, dass neben dem Tragen auch die Spurführung der Fahrzeuge gesichert ist. Die Fahrbahn enthält dazu als kurzgeschlossene Spulen seitlich Magnetspulen in Form einer kurzgeschlossenen "Acht". Das entspricht einer einfachen "Verdrillung" der Spulen. Diese Spulen sollen sowohl das Tragen als auch das Führen ermöglichen. Die seitliche Anordnung erlaubt es, die Fahrbahn unter dem Fahrzeug für den Rollbetrieb mit Rädern unterhalb der "Take-off"-Geschwindigkeit freizuhalten.

<u>Bild 3.4.2-1:</u> Kombination der Funktionen "elektrodynamisches Schweben" und "Führen" beim japanischen Hochgeschwindigkeits-Bahnprojekt [3.2]

Befände sich das Fahrzeug mit seinen seitlich angebrachten gleichstromerregten Schwebespulen genau in der Mittelachse der "Achter"-Spulen, so ist die totale Flussverkettung der "Achter"-Spulen Null (**vertikale "Nullfluss-Anordnung**"). Es wird keine Spannung induziert, so dass kein Strom fließt und keine Kraft erzeugt wird. Befindet sich das schwebende Fahrzeug unterhalb der Mittelachse, so ist die Flussverkettung der unteren Spulenschleife größer als in der oberen, so dass eine resultierende Flussverkettung auftritt. Gemäß der *Lenz*'schen Regel fließt der Spulenkreisstrom so, dass er der Ursache - nämlich der Spulen-Flussverkettung – entgegenwirkt. Das heißt, dass der Strom mit dem Primärfeld eine hebende Kraft bildet, so dass die Spulenflussverkettung wieder Null wird. Damit schwebt das Fahrzeug. Es stellt sich ein Gleichgewicht zwischen Gewichtskraft und magnetischer Hebekraft ein, so dass das Fahrzeug etwas unterhalb der Mittelachs-Stellung stabil schwebt. Die typische Schwebehöhe ist etwa 10 cm.

In einem zweiten Schritt werden die "Achter"-Spulen zu beiden Seiten des Fahrwegs elektrisch so miteinander verbunden, dass die Flussverkettung in der linken und in der rechten "Achter"-Spule bei im Fahrweg mittiger Fahrzeugposition sich gegenseitig aufheben (**transversale "Nullfluss-Anordnung**"). Im Fall einer seitlichen Verschiebung (Fahrzeug gerät "aus der Spur") z. B. zur linken Seite hin erhöht sich dort die Flussverkettung, weil der Abstand zwischen "Achter"-Spule und Schwebespule kleiner wird. Auf der anderen Seite nimmt die Flussverkettung durch die dort gelegene "Achter"-Spule ab. Wieder bildet sich eine resultierende Flussverkettung, die eine Spannung induziert. Der dadurch getriebene Kreisstrom ist so orientiert, dass die von ihm mit dem erregenden Primärfeld gebildete Kraft das Fahrzeug in die Mitte zurück treibt.

Die Schwebespulen im Fahrzeug sind Supraleiter-Gleichstrommagnete mit

- langgestreckter, ovaler Spulenform (1.07 m x 0.5 m)
- kompakter Spulenwicklung (1167 Windungen) und geringem Matrix-Stabilisierungsanteil (Cu/NbTi-Verhältnis $\alpha = 1$) zwecks Verringerung der Masse (75 kg),
- verlustarmem Kryostaten (Außenbehälter aus Aluminium, Innenbehälter aus austenitischem Stahl, Kraftübetragung von innen nach außen mit zylinderartigen Kohlefaser-Epoxidverbundwerkstoff von 4 K auf 80 K zum Strahlungsschild Glasfaser-Epoxidverbundwerkstoff von 80 K auf 273 K,
- integrierter Kleinkälteanlage (5 W bei 4.4 K Wärmeabfuhr), indem die Anlage auf den Kryostaten gemeinsam mit einem LHeI-Reservoir aufgesetzt ist,

- Kurzschlussstrombetrieb der Supraleiter-Spule.

Spulenleiterdaten:

NbTi-Vielkernleiter, $q = 1 \ge 2.1 \text{ mm}^2$, $I_s = 600 \text{ A}$, $I_s/q = J_s = 243 \text{ A/mm}^2$, $B_s = 5.9 \text{ T}$.

Bei hohen Fahrgeschwindigkeiten von ca. 500 km/h treten horizontale und vertikale **Vibrationsbewegungen** auf, die im Bereich von 1 ... 10 Hz und Amplituden bis 30 mm (rechnerischer worst-case) liegen. Diese Eigenbewegung des Kryostaten im hohen Spulenfeld führen zu induzierten Wirbelströmen und damit parasitären Verlusten und Kräften, die besonders den dünnwandigen Strahlungsschild rechnerisch mit bis zu 200 N/m belasten. Die Kräfte wirken der Ursache, nämlich der Schwingungsbewegung entgegen und dämpfen diese daher. Aus diesem Grund wird der äußere Kryostatbehälter aus gut leitfähigem Material (Aluminium) gefertigt, da das Eigenfeld der dort kräftig fließenden Wirbelströme auch das Innere (und damit die Supraleiterspulen) gegen transiente Fremdfelder wirkungsvoll abschirmt.

<u>Bild 3.4.2-2:</u> Spulensystem der japanischen elektrodynamischen Magnetschwebebahn: 1: Supraleitermagnete, 2: Levitationsspulen ("Achter"-Spulen), 3: Linearmotorspulen, 4: Räder für das Anfahren/Bremsen, 5: Fahrweg, 6: Supraleiterwicklung, 7: Kraftübertragungszylinder, 8: supraleitender Kurzschlussschalter für Kreisstrombetrieb, 9: Kryostat, 10: LHe-Tank, 11: Kleinkälteanlage, 12: Stromzuführung zum Aufladen der Spule, 13: Strahlungsschild, 14: Superisolation gegen Wärmeverluste, 15: Vakuumraum [3.2]

Angetrieben wird das Fahrzeug durch einen **Synchronlinearmotor**. Die dreiphasige Zweischicht-Wanderfeldwicklung liegt links und rechts des Fahrwegs hinter den "Achter"-Spulen. Die Supraleiter-Schwebespulen bilden das Sekundärteil ("Polrad"). Die Speisung der Wanderfeldwicklung erfolgt aus GTO-Stromrichtern mit variabler Grundfrequenz. Wegen der hohen Flussdichte von über 5 T wären Eisenjoche hoch gesättigt und werden daher nicht verwendet. Außerdem würde die magnetische Anziehungskraft zwischen Eisenjoch und Schwebespule die Schwebekraft verringern. Aus beiden Gründen ist die gesamte Spulenanordnung eisenlos. Dies hat aber zur Folge, dass die Magnetfelder weit in die Umgebung "vagabundieren". Um im Fahrgastraum Flussdichten unter 5 mT einzuhalten, wird das Gleichfeld B_s durch hochpermeable Bleche magnetostatisch abgeschirmt. Gleichfelder sind zwar für Herzschrittmacher ungefährlich, aber es treten hohe Kräfte auf magnetisierbare Teile (Schlüsselbund, Metallwerkzeug,) auf. Auch im Einstiegsbereich in der Station müssen die Fahrzeuge durch magnetisch geschirmte Schleusen bestiegen und verlassen werden. Das Abschalten der hohen Felder im Haltestellenbereich ist wegen der supraleitenden Spulen nicht möglich.

TU Darmstadt

Der Nachteil der **erforderlichen magnetischen Schirmung** wird bewusst in Kauf genommen, um den **Vorteil der relativ großen Schwebehöhe** von 100 mm nutzen zu können. Die häufigen Erdbeben auf den japanischen Inseln führen regelmäßig zu Verwerfungen in der Fahrbahn. Der Hochgeschwindigkeitszug mit Rad-Schiene-System *Tokaido Shinkansen*, der in Hauptverkehrszeiten etwa im 5 Minuten-Takt zwischen den Ballungszentren Osaka und Tokio verkehrt, ist wesentlich empfindlicher gegen diese Störungen. Die hohe Verkehrsaus-lastung von Bahn, Flugzeug und Autobahn erfordert folglich ein robustes Schnellverkehrs-system.

Bild 3.4.2-3: Supraleitermagnet der japanischen Magnetschwebebahn auf der Miyazaki-Teststrecke [3.2]

<u>Bild 3.4.2-4:</u> Unbemannte Versuchsfahrzeuge auf der *Yamanashi*-Teststrecke – Begegnung bei 1003 km/h Relativgeschwindigkeit auf der *Ogatayama*-Brücke[3.9]

3.5 Supraleitende magnetische Lager

3.5.1 Funktionsweise supraleitender magnetische Lager

Passive magnetische Lager werden aus schmelztexturierten HTSL-Supraleitern (YBCO = Y(123)), die als massive Scheiben hergestellt werden und bei 77 K (LN2) bereits supraleitend sind, hergestellt. Dieses Lagerkonzept befindet sich noch in der Erprobungsphase bei mehreren privaten und öffentlichen Forschungsstellen. Werden die Supraleiter im Feld der

TU Darmstadt

Permanentmagnete abgekühlt, so wird beim Übergang in den supraleitenden Zustand der magnetische Fluss in der gegebenen Konfiguration **eingefroren**. Wegen der geringen kritischen Flussdichte B_{cl} des HTSL ist das Magnetfeld der Permanentmagnete B_M größer als dieser Wert. Der HTSL befindet sich somit in der *Shubnikov*-Phase. Jede Verschiebung der Magnete gegenüber den HTSL-Scheiben, die eine Änderung der Flussverkettung bewirken, ruft in den HTSL-Scheiben durch zusätzliche **Abschirmströme** hervor, die eine rückstellende Kraft auf die Magnete bewirken. Lediglich bei Rotation der Anordnung gemäß Bild 3.5.1-1 tritt keine Feldänderung in den HTSL-Scheiben auf, da der Permanentmagnetring (im idealen Fall) rotationssymmetrisch aufmagnetisiert ist. Wenn also der Rotor im normalleitenden Zustand über der HTSL-Anordnung in Schwebe gehalten war, **so bleibt er auch im supraleitenden Zustand nun von selbst in dieser Schwebe**.

<u>Bild 3.5.1-1:</u> Prinzip eines einfachen magnetischen Axiallagers mit schmelztexturierten HTSL-Volumenkörpern, geeignet zum verlustarmen Betrieb eines Schwungrads: 1: Schwungrad, 2: axial magnetisierter Ringmagnet aus Selten-Erd-Permanentmagnet-Material, NdFeB oder SmCo, 3: HTSL-Volumenkörper (Scheiben), 4: Tragkörper, 5: LN₂-Badkühlung, 6: thermisch isolierende Wanne [3.2]

Im Unterschied zu aktiv geregelten Magnetlagern, wo der Schwebekörper eine relative Permeabilität $\mu_r > 1$ hat, so dass gemäß *Earnshaw* ungeregelt kein stabiler Schwebezustand möglich ist, haben diamagnetische Substanzen $0 < \mu_r < 1$ (SL: *Meissner*-Phase: $\mu_r = 0$, HTSL in der *Shubikov*-Phase: typisch $\mu_r = 0.5$). **Damit sind mit Supraleitern rein passiv** stabilisierte Magnetlager möglich.

Die Größe der Rückstell- bzw. Schwebekraft *F* ist proportional den Reaktionsströmen im HTSL, somit proportional der eingefrorenen Magnetisierung *M* im Volumen *V*, und der Feldänderung beim Verschieben des Magneten, also dem räumlichen Gradienten des Permanentmagnetfelds $H_M = B_M/\mu_0$.

$$F \sim V \cdot (\vec{M} \cdot grad) \cdot \vec{H}_{M} \quad : \quad F_{x} \sim V \cdot (M_{x} \frac{\partial H_{Mx}}{\partial x} + M_{y} \frac{\partial H_{Mx}}{\partial y} + M_{z} \frac{\partial H_{Mx}}{\partial z}) \quad (3.5.1-1)$$

$$F_{y} \sim V \cdot (M_{x} \frac{\partial H_{My}}{\partial x} + M_{y} \frac{\partial H_{My}}{\partial y} + M_{z} \frac{\partial H_{My}}{\partial z}) \quad F_{z} \sim V \cdot (M_{x} \frac{\partial H_{Mz}}{\partial x} + M_{y} \frac{\partial H_{Mz}}{\partial y} + M_{z} \frac{\partial H_{Mz}}{\partial z})$$

TU Darmstadt

Die Magnetisierung M wiederum folgt aus dem resultierenden Abschirm-Kreisstrom im HTSL-Volumenkörper, ist also proportional der kritischen Stromdichte J_{c2} und dem Durchmesser D des Kreises, in dem dieser Strom fließt. Das magnetische Moment m eines Kreisstroms (dessen Kreisbahn (Durchmesser D) die Kreisfläche $D^2\pi/4$ einschließt) ist als

$$\vec{m} = I \cdot (D^2 \pi / 4) \cdot \vec{e}_4 \tag{3.5.1-2}$$

definiert, wobei der Einheitsvektor \vec{e}_A rechtwinklig auf die Kreisfläche steht und rechtswendig ("Rechtsschraubenregel") dem Kreisstrom zugeordnet ist. Die Summe aller magnetischer Momente im HTSL, bezogen auf des Volumen $V = D^2 \pi / 4 \cdot l$ der Scheibe (Scheibenhöhe *l*), ist die Magnetisierung $\vec{M} = \sum_i \vec{m}_i / V$. Im Fall des HTSL fließt die Strom-

dichte gemäß dem *Bean*-Modell in einer Schichttiefe *x*, so dass gilt: $I = J_{c2} \cdot x \cdot l$. Daraus folgt, dass $M = m/V = J_{C2}xl \cdot (D^2\pi/4)/V = J_{c2} \cdot x$ maximal ist, wenn *x* den halben Durchmesser *D*/2 erreicht.

$$M \sim J_{c2} \cdot D \tag{3.5.1-3}$$

Fazit:

Eine hohe kritische Stromdichte J_{c2} des Supraleiters ist für große Schwebekräfte erforderlich. Ebenso ist eine hoher Feldgradient des Permanentmagneten nötig (Einsatz von Selten-Erd-Magneten). Die HTSL-Lager sind bereits bei 77 K betreibbar und ohne Regelung stabil.

Spezifische Lagerkräfte $f = 5 \dots 10 \text{ N/cm}^2$ und **Lagersteifigkeiten** 10 … 50 N/mm sind realisierbar. Konventionelle Magnetlager haben Werte $f = 30 \dots 60 \text{ N/cm}^2$, während die dynamische Lagersteifigkeit auch vom Regler abhängt. Gemessen an mechanischen Lagern sind die Werte der HTSL-Lager gering, aber dafür sind die Reibungsverluste deutlich niedriger. Während bei Wälzlagern der Reibungsfaktor auf Grund des dünnen Schmierfilms zwischen Wälzkörpern und Laufbahn sehr von der Ausführung der Lager, deren Temperatur, von der Drehzahl etc. abhängt und etwa $\mu = 0.001$ beträgt, aber auch deutlich höher sein kann, wird bei HTSL-Lagern ein Wert $\mu = 10^{-6}$ erreicht. Aktiv geregelte Magnetlager haben auf Grund der Ummagnetisierungsverluste im Rotor typische Werte $\mu = 10^{-5}$. Die Luftreibungsverluste sind bei Hochdrehzahlanwendungen ein zusätzlicher Bremsfaktor, können aber durch Evakuierung z. B. bei **Schwungradspeicheranwendung** deutlich verringert werden.

Problematisch ist zur Zeit noch, dass die HTSL-Volumenkörper auf Grund der Materialsprödigkeit zu Rissen neigen. Damit werden die Kreisstrombahnen unterbrochen bzw. auf einen kleineren Durchmesser *D* eingeschränkt.

Eine **alternative Methode** zum Erzeugen von Supramagneten ist die impulsförmige Aufmagnetisierung bereits supraleitender Proben. Sie beruht darauf, dass in der *Shubnikov*-Phase ein Magnetfeld (Fremdfeld B_f) in die Probe eindringen kann. Beim Anstieg des Feldes (in *z*-Achse = Zylinderachse) (positive Impulsflanke des aufmagnetisiereden Feldimpulses) fließen Abschirmströme in Kreislinien in der Zylinderprobe, die sich dem Eindringen des Feldes widersetzen. Sie erregen ein Eigenfeld B_e so, dass das resultierende Feld B_{res} im SL-Inneren Null bleibt. Gemäß dem *Bean*-Modell wird vereinfacht angenommen, dass diese Abschirmströme mit der kritischen Stromdichte J_{c2} bis zu der Eindringtiefe R- R_c fließen, dass im Inneren des SL ($r < R_c$) das Feld weiterhin Null bleibt. Bei der darauf folgenden Feldabnahme (negative Impulsflanke) kehren sich die Abschirmströme um, um den Feldabbau zu verhindern. Es verbleibt eine Dauerstromverteilung in der Probe, die zwar weiterhin die Bedingung erfüllt, dass das SL-Innere feldfrei ist, aber im Randbereich ist nun Feld **"eingefroren"** (Bild 3.5.1-2).

<u>Bild 2.5.1-2</u>: Schematische Darstellung des Feldauf- und –abbaus nach dem *Bean*-Modell in einem harten Supraleiter, a) Eindringen des Fremdfelds B_f bis zum Radius R_c in eine Zylinderprobe, b) Verbleibende Dauerstromverteilung nach dem Abschalten des Fremdfelds, c) wie b), jedoch bei erhöhter Fremdfeldamplitude

In Bild 3.5.1-3 sind Messergebnisse an Supramagneten (Zylinderscheiben, Zylinderachse z) dargestellt, die im supraleitenden Zustand durch Magnetfeldimpulse H_z (positive Sinushalbschwingung) aufmagnetisiert worden sind. Die Höcker im Feldverlauf sind durch die Abschirmströme im Inneren der Probe gemäß Bild 2.5.1-2c) bedingt.

<u>Bild 3.5.1-3:</u> Gemessene remanente Flussdichteverteilung z = 4 mm oberhalb einer Zylinderscheibe (\emptyset 29.5 mm, h = 16 mm) aus schmelztexturiertem Y(123)-HTSL bei 60/70/80 K nach einer Aufmagnetisierung mit Feldimpulsen $H_{z,max} = 1.0/1.5/1.9$ T (30 ms Pulsdauer). Bei 1.9 T wurde mehrfach gepulst. [3.5]

Werden mehrere Pulse nacheinander auf den SL "geschossen", wobei von "Schuss" zu "Schuss" der SL weiter abgekühlt und die Fremdfeld-Amplitude gesenkt wird (H_{max} sinkt), so steigt J_{c2} mit sinkender Temperatur (z. B.: $T_2 < T_1$: $J_{c2,2} > J_{c2,1}$). Es ergibt sich für eine Folge von vier Impulsen eine Folge von Abschirmkreisströmen mit abwechselnder Stromflussrichtung gemäß Bild 3.5.1-4. Dadurch wird eine über die Scheibendicke annähernd gleichmäßige eingefrorene Flussdichteverteilung erzielt, wobei die Vergleichmäßigung durch Relaxationseffekte in der Stromdichteverteilung im SL unterstützt wird.

<u>Bild 3.5.1-4</u>: *Bean*-Modell für eine Folge von vier Fremdfeldimpulsen bei vier aufeinander folgenden niedrigeren Temperaturwerten $T_1 > T_2 > T_3 > T_4$. Der erste Impuls ($H_{max} = 2H^*$) ist nicht dargestellt. Stromdichteverteilung J(r) und resultierendes Eigenfeld $B_e(r)$ [3.5]

3.5.2 HTSL-Lager in Schwungradspeichern

Die niedrigen Reibungsverluste empfehlen den Einsatz der HTSL-Lager in Schwungradspeichern. Für diese Anwendung reichen auch die niedrigen spezifischen Lagerkräfte und Lagersteifigkeiten aus. Die in Form kinetischer Energie in den rotierenden Massen (polares Trägheitsmoment *J*) gespeicherte Energie

$$W_{kin} = J \frac{(2\pi n)^2}{2}$$
(3.5.2-1)

ist umso größer, je höher die Drehzahl n ist. Für eine einfache Kreisscheibe (Dichte ρ , Höhe L, Radius R, Masse m) gilt

$$J = m \cdot R^2 / 2 = \rho \cdot \frac{\pi}{2} \cdot L \cdot R^4 \qquad (3.5.2-2)$$

Der "äquivalente Trägheitsradius" ist somit $i = R / \sqrt{2}$. Je mehr Masse am Radius R konzentriert wird, desto größer wird J. Das entspricht einer Vergrößerung des Trägheits-

TU Darmstadt

radius, wobei der maximal mögliche Wert i = R ist. Grenzen ergeben sich durch die Fliehkraftbelastung. Ein Massenelement $\Delta m = \rho \cdot L \cdot r \Delta \varphi \cdot \Delta r$ der Scheibe im Abschnitt $\Delta \varphi$ des Umfangswinkels im Abstand *r* vom Drehmittelpunkt erfährt die Fliehkraft

$$\Delta F_f = \Delta m \cdot r \cdot (2\pi n)^2 \qquad (3.5.2-3)$$

und wird in der Scheibe durch die Tangentialzugkräfte F_t festgehalten (Bild 3.5.2-1).

$$\Delta F_f = 2 \cdot F_t \cdot \sin(\Delta \varphi / 2) \approx F_t \cdot \Delta \varphi \tag{3.5.2-4}$$

$$\sigma = \frac{F_t}{A} \approx \frac{\Delta F_f / \Delta \varphi}{L \cdot \Delta r} = \frac{(\rho L r \Delta \varphi \Delta r \cdot r \cdot (2\pi n)^2) / \Delta \varphi}{L \cdot \Delta r} = \rho \cdot r^2 \cdot (2\pi n)^2 = \rho \cdot v_u^2 \qquad (3.5.2-5)$$

Die mechanische Zugspannung in Umfangsrichtung σ , die das Material auf Zug beansprucht und folglich unterhalb der Zugfestigkeit des Werkstoffs liegen muss, ist dem Quadrat der Umfangsgeschwindigkeit v_u proportional.

Fazit:

Die Umfangsgeschwindigkeit ist ein Maß für die Höhe der mechanischen Belastung eines rotierenden Zylinders. Kohlefasern haben eine hohe Zugfestigkeit je nach Faserart von z. B. 2000 N/mm². Eingebettet und verfestigt in einer Epoxidarzmatrix (deren Zugfestigkeit vernachlässigbar klein ist), sinkt die Zugfestigkeit des Kohlefaser/Epoxidverbunds im Verhältnis des Volumenverhältnisses Faseranteil/Gesamtvolumen (ca. 0.6) auf ca. 1200 N/mm².

Beispiel 3.5.2-1:

Kohlefaser: Dichte: $\rho = 3.5 \text{ kg/dm}^3$, Abschätzung der zulässigen Umfangsgeschwindigkeit eines C-Faser-Epoxid-Verbunds mit $\sigma_{max} = 1200 \text{ N/mm}^2$:

 $v_{u,\text{max}} = \sqrt{\sigma_{\text{max}} / \rho} = 585 \,\text{m/s}$

Zum Vergleich: Aktive Magnetlagerrotoren:

a) Hochfestes Dynamoblech: $\sigma_{max} = 500 \text{ N/mm}^2$: Dichte: $\rho = 7.85 \text{ kg/dm}^3$, $v_{u,max} = 250 \text{ m/s}$ b) Amorphe Metallfolien: $\sigma_{max} = 1500 \text{ N/mm}^2$: Dichte: $\rho = 7.85 \text{ kg/dm}^3$, $v_{u,max} = 440 \text{ m/s}$

Beispiel 3.5.2-2:

Energiedichte w = W/m (J/kg) von Schwungradspeichern mit einfachen zylindrischen Scheiben als Rotorkörper:

TU Darmstadt

Neue Technologien bei

3.50

elektrischen Energiewandlern

$$w = W / m = \frac{J \cdot (2\pi n)^2 / 2}{m} = \frac{m \cdot (R^2 / 2) \cdot (2\pi n)^2 / 2}{m} = \frac{v_u^2}{4}$$
(3.5.2-6)

Fazit:

Die Energiedichte eines Schwungradspeichers hängt nur von der Umfangsgeschwindigkeit ab.

Mit $v_{u,max} = 585$ m/s folgt w = 85556 m²/s² = 85556 Ws/kg = 25 Wh/kg. Durch eine Erhöhung der Massenverteilung am Außenradius der Scheibe lässt sich die Energiedichte erhöhen. Für eine gelochte Kreisscheibe (Innenradius R_i) folgt:

$$m = \rho L \pi (R^2 - R_i^2), \ J = \rho L \pi (R^4 - R_i^4) / 2: \ w = \frac{v_u^2}{4} \cdot (1 + \frac{R_i^2}{R^2})$$
(3.5.2-7)

Im Grenzfall ist $R_i = R$, wodurch die Energiedichte auf 50 Wh/kg steigt. Stahlscheiben haben wegen der geringeren zulässigen Umfangsgeschwindigkeit eine geringere Energiedichte. Hochfeste C-Faser/Verbundwerkstoffe erlauben nahezu eine Verdopplung der Umfangsgeschwindigkeit auf ca. 1000 m/s, was einer Vervierfachung von *w* auf ca. 200 Wh/kg entspricht. Die zugehörigen **Hochdrehzahl-Motor-Generatoren** sind Spezialmaschinen, die als Asynchron-, Permanentmagnet-Synchron- oder Homopolarmaschinen ausgeführt sind.

Wesentlich für den Speicherbetrieb ist die **Minimierung der Reibungsverluste**, die vor allem bei hohen Drehzahlen infolge der Luftreibung hohe Werte annimmt. Für die **Luftreibungsverluste** P_{Luft} eines in einem Gehäuse (Abstand Zylinderoberfläche zum Gehäuse: δ) rotierenden Zylinders gilt für turbulente Strömung (*Reynolds*-Zahl Re > 1000), wenn nur die Reibung an der Zylindermantelfläche berücksichtigt wird:

$$P_{Luft} = 1.7 \cdot \rho_{Luft} \cdot n^3 \cdot (2R)^4 \cdot L \cdot \frac{1}{\text{Re}^{0.15}}$$
(3.5.2-9)

$$\operatorname{Re} = \frac{(2R) \cdot \pi \cdot n \cdot \delta}{v_{Luft}}$$
(3.5.2-10)

Beispiel 3.5.2-3:

C-Faser/Epoxid-Verbund-Zylinderscheibe als Schwungradspeicher:

Luftdichte (140 °C): $\rho_{Luft} = 0.826 \text{ kg/m}^3$, kinematische Zähigkeit der Luft (140 °C) : $v_{Luft} = 26.5 \cdot 10^{-6} \text{ m}^2/\text{s}$, R = 300 mm, L = 100 mm, $v_u = 600 \text{ m/s}$, $\rho = 3500 \text{ kg/m}^3$, $\delta = 100 \text{ mm}$ $m = \rho \cdot R^2 \pi \cdot L = 44 \text{ kg}$, $J = 2 \text{ kgm}^2$, $n = v_u / (2\pi R) = 318.5/\text{s} = 19100 \text{ /min}$, a) Gespeicherte Energie: $W = 2 \cdot (2\pi \cdot 318.5)^2 / 2 = 4004780 = 4 \text{ MJ}$ b) Energiedichte: $w = 4 \ 004 \ 780/44 = 91017 \text{ Ws/kg} = 25 \text{ Wh/kg}$ c) Luftreibungsverluste:

$$Re = \frac{(2 \cdot 0.3) \cdot \pi \cdot 318.5 \cdot 0.1}{26.5 \cdot 10^{-6}} = 2.26 \cdot 10^{6} > 1000: \text{ turbulente Strömung}$$
$$P_{Luft} = 1.7 \cdot 0.826 \cdot 318.5^{3} \cdot 0.6^{4} \cdot 0.1 \cdot \frac{1}{(2.26 \cdot 10^{6})^{0.15}} = 65.5 \text{ kW}$$

Vernachlässigt man, dass bei sinkender Drehzahl die Luftreibungsverluste proportional n^3 sinken, so ist bereits nach der Zeit $T = W/P_{Luft} = 61$ s (1 Minute !) die gespeicherte Energie aufgezehrt.

Fazit:

Will man Schwungräder als Energiespeicher einsetzen, so müssen vor allem die Reibungsverluste minimiert werden. Da das Schwungrund daher im Vakuum betrieben werden sollte, eignen sich am besten für die Lagerung magnetische Lager, die keinerlei Schmiermittel benötigen und bei den der Luftspalt zwischen Lagerschale und Welle evakuiert sein kann. Aktive magnetische Lager benötigen Lagegeber, Regler und Energie für die Bestromung der Spulen (und für die Deckung der Rotor-Ummagnetisierungsverluste), so dass HTSL-Magnetlager eine interessante Alternative darstellen. Allerdings benötigen sie Energie für die Bereitstellung des Kühlmittels LN₂.

Bild 3.5.2-2: Prototyp-Schwungradspeicher mit HTSL-Y(123)-Magnetlagern und Homopolarantrieb [3.6]

Beispiel 3.5.2-3:

Demonstrator-Einheit eines Schwungradspeichers mit SL-Magnetlagern (Bild 3.5.2-2): Speicherkapazität 300 Wh bei 50 000/min, max. Lade-/Entladeleistung: 10 kW Rotorgesamtgewicht (2 Schwungräder, Homopolarrotor): 10 kg, 2 HTSL-Lager, LN₂-Kühlung, Betrieb bei Vakuum 0.21 Pa Restdruck, Gemessen Lagerverluste bei 10000/min: 3.5 W, daraus hochgerechnet für 50 000/min: 55 W Lagerverluste, Motor-/Generatorwirkungsgrad: 97 %, Umrichterwirkungsgrad: 97%

Weiterführende Planung:

Bau einer größeren Stationäranlage: 100 kWh/1 MW aus 2 Modulen (Gesamtgewicht 10 Tonnen),

je Modul: 1 Rotor mit: 1 Motor/Generator, 4 Schwungräder, 8 HTSL-Lagereinheiten

TU Darmstadt

3.6 Lagerlose Drehfeldmaschinen

Alternativ zur elektromagnetischen Lagerung von Rotoren mittels Radial- und Axialmagnetlagern können die Radialmagnetlager durch eine zweite Drehfeldwicklung in den Nuten des Ständerblechpakets als zusätzliche Tragwicklung ersetzt werden. Diese zweite Wicklung liegt in denselben Nuten wir die Drehfeldwicklung für die Erzeugung des Drehmoments (Arbeitswicklung), erzeugt aber ein Drehfeld mit 2 Polen mehr oder weniger als die Arbeitswicklung. So kommt es in Wechselwirkung zwischen dem Drehfeld der Arbeits- und Tragwicklung zu einer resultierenden Radialkraft als magnetische Tragkraft im Luftspalt. deren Lage und Größe mit einer feldorientierten Regelung, wie sie auch für die Momentenregelung der Arbeitswicklung üblich ist, eingestellt werden kann. Durch das Aufteilen des Motors in zwei Halbmotoren entstehen zwei Radialmagnetlager, nämlich die beiden Halbmotoren, die direkt im Motor integriert sind. Der Motor übernimmt die Radiallagerung ("lagerloser" Motor, Bild 3.6-2a) und bei kleinen axialen äußeren Kräften auch die Axiallagerung, da der Eisenläufer durch die Magnetkraft in die Ständerbohrung gezogen wird (axiale Selbstzentrierung durch den magnetischen Axialzug). Nur bei größere Axialkräften (Pumpen, Kompressoren, ...) muss ein zusätzliches konventionelles Axialmagnetlager vorgesehen werden. Die beiden Halbmotoren müssen wegen der vergrößerten Nutfläche einen höheres Blechpaket haben als Motoren ohne Tragwicklung, sind aber in Summe axial kürzer als ein konventioneller Motor mit zwei Radialmagnetlagern. Nachteilig bei den konventionellen Magnetlagern sind nämlich

- a) die vergrößerte axiale Länge (Bild 3.6-1) durch die beiden Radialmagnetlager und
- b) die Erfordernis, neben der dreiphasigen Antriebselektronik noch eine mehrkanalige Gleichstromelektronik für die Magnetlager zur Verfügung stellen zu müssen.

Hier bringt der **"lagerlose Motor"**, bei dem die Krafterzeugung zur Lagerung in den Aktivteil des Motors integriert ist, echte Vorteile. Anstelle der Gleichstromsteller können zusätzliche konventionelle dreiphasige Umrichter für jedes Radiallager verwendet werden. Die Regelung der Läuferlage erfolgt über das aus der Antriebsregelung bekannte Konzept der feldorientierten Regelung. Es werden keine gesonderten Ständerblechpakete und Rotoreisenteile für die Lagerkrafterzeugung benötigt, sondern der Motor selbst wird für die Radiallagerung verwendet. Bei geringer erforderlicher Axialkraft und geringen Anforderungen an eine axiale Positionierung kann wie bei der konventionellen Magnetlager erforderlich (Bild 3.6-2a). Eine Ausnahme hiervon bildet das Prinzip des **lagerlosen Scheibenläufers**, der ohne Axiallager auskommt (Bild 3.6-2c). Durch die Lagerkraftintegration in die Maschine selbst kann die Baulänge des Antriebs im Vergleich zu konventionell magnetgelagerten Antrieben wieder etwas verkürzt werden.

<u>Bild 3.6-1</u>: Links: Mechanisch gelagerter Motor, rechts: Axiale Verlängerung eines konventionell magnetisch gelagerten Rotors durch zwei Radialmagnetlager (Radialkraft vertikal und horizontal)

<u>Bild 3.6-2:</u> Bauformen lagerloser Motoren: a) Radiale Zweipunktlagerung mit zwei lagerlosen Halbmotoren und koventionellem Axialmagnetlager, b) Kombimotorkonzept: Radiale Zweipunktlagerung mit einem Radial- und Axialmagnetlagerlager (links) und lagerlosem Motor (rechts), c) lagerloser Scheibenläufermotor, einpunktige Lagerung, großer Luftspalt ermöglicht Taumeln des Läufers ohne Statorberührung

3.6.1 Funktionsprinzip lagerloser Motoren

Wird in eine Drehfeldmaschine mit der Polzahl $2p_1 = 2$ eine zusätzliche dreiphasige Wicklung in dieselben Nuten integriert, die die Polzahl $2(p_1+1) = 4$ erzeugt, so entsteht durch Wechselwirkung zwischen den beiden Magnetfeldern unterschiedlicher Polzahl eine seitliche Kraft (Bild 3.6.1-1). Diese ist zeitlich konstant, wenn die elektrische Frequenz der Ströme f_1 in der Antriebswicklung ($2p_1 = 2$) identisch ist mit der Frequenz der Ströme in der Tragwicklung f_2 ($2p_2 = 4$). Das kann mathematisch so verstanden werden: Die Radialkomponente des **Antriebsfelds** mit $2p_1 = 2$ im Luftspalt

$$B_1(t,\alpha) = B_1 \cos(p_1 \alpha - \omega_1 t - \varphi_1')$$

und des Tragfelds

 $B_2(t,\alpha) = \hat{B}_2 \cos(p_2 \alpha - \omega_2 t - \varphi'_2)$

(mit $2p_2 = 4$) werden beschrieben durch

- den Umfangswinkel α (in mech. Graden, gezählt im Gegenuhrzeigersinn),
- die Kreisfrequenz der Sinus-Drehstromstromsysteme in der Arbeits- und Tragwicklung $\omega_1 = 2\pi f_1$, $\omega_2 = 2\pi f_2$ und
- durch die relative räumliche Phasenlage der Flussdichteamplituden \hat{B}_1 , \hat{B}_2 , bestimmt durch die Phasenwinkel φ'_1, φ'_2 .

Diese Phasenwinkel werden durch die Phasenverschiebung $\varphi'_1 - \varphi'_2$ zwischen den beiden Stromsystemen in der Arbeits- und Tragwicklung bestimmt. Dieses "lagerlose Prinzip" kann für alle Drehfeldmaschinen umgesetzt werden und wird hier am Beispiel der PM-Synchronmaschine erläutert. Das Antriebsfeld wird in einer PM-Synchronmaschine erregt durch die Überlagerung der Luftspaltfelder der Rotorpermanentmagnete und der Ständerströme der Arbeitswicklung. Das Tragfeld wird erregt durch die Ständerströme der Tragwicklung (A_2). Auf Grund der Verteilung der Wicklung in Nuten und der dreisträngigen Anordnung sind die Felder annähernd sinusförmig verteilt. Hier wird nur die Sinusgrundwelle betrachtet. Abweichungen von der Sinusform (Oberwellen) stören die Funktion, müssen daher vor allem bei Hi-Speed-Antrieben gesondert betrachtet werden und werden hier vernachlässigt. Daher kann die Verteilung der Ströme der Arbeits- und Tragwicklung am Umfang durch einen sinusförmig verteilten Strombelag A ersetzt werden (in A/m), z. B. in der Tragwicklung $A_2(t, \alpha) = -\hat{A}_2 \cdot \sin(p_2 \alpha - \omega_2 t - \varphi_2) \sim (\delta/\mu_0) \cdot dB_2/d\alpha$ mit

$$\hat{A} = \sqrt{2} \cdot k_w \cdot \frac{2 \cdot m \cdot N \cdot I}{2p\tau_p} \qquad (3.6.1-1)$$

Dabei ist k_w der Wicklungsfaktor der Grundwelle ($k_w \approx 0.95$), m die Strangzahl (m = 3), N die Windungszahl je Strang, I der Effektivwert des Strangstroms, p die Polpaarzahl und τ_p die

TU Darmstadt

Polteilung, also $2p\tau_p$ der Maschinenumfang an der Ständerbohrung. Da die Permeabilität μ_{Fe} im Eisen von Stator und Rotor ca. 5000-mal größer als die von Luft und in den Oberflächenmagneten μ_0 ist, wird die magnetische Feldstärke H_{Fe} im Eisen gegenüber jener in Luft H_{δ} vernachlässigt ($H_{Fe} = (\mu_0 / \mu_{Fe}) \cdot H_{\delta} = \text{ca. 0}$). Es muss nur der magnetisch wirksame Luftspalt δ_{mag} magnetisiert werden (hier: Summe aus mechanischen Luftspalt δ , Bandagendicke d_B und Magnethöhe h_M). Über den Durchflutungssatz $\oint_C \vec{H} \cdot d\vec{s} = \Theta$ (Θ : elektrische

Durchflutung der Ströme in den Nuten) und der am Umfang verteilten Durchflutung $\Theta(\alpha,t) = V(\alpha,t) = (p \cdot \tau_p / \pi) \cdot \int A(\alpha,t) \cdot d\alpha$ wird die magnetische Feldstärke H_{δ} im Luftspalt und daraus die Flussdichte $B_{\delta} = \mu_0 H_{\delta}$ berechnet. Der Umfangswinkel α entspricht der Umfangskoordinate ξ gemäß $\xi / \alpha = 2p\tau_p / (2\pi)$! Für die Feld-Radialkomponente ergibt das Integral entlang einer geschlossenen Kurve C_1 um die Nutdurchflutung, die zweimal radial den Luftspalt kreuzt (Weg δ_{mag}) und sonst im Eisen verläuft (Weg s_{Fe}):

$$\oint_{C_1} \vec{H} \cdot d\vec{s} = -H_{\delta}(\alpha = 0, t) \cdot \delta_{mag} + H_{Fe} s_{Fe} + H_{\delta}(\alpha, t) \cdot \delta_{mag} = H_{\delta}(\alpha, t) \cdot \delta_{mag} = V(\alpha, t)$$

Dabei wurde angenommen, dass wegen $H_{\delta}(\alpha = 0, t) = 0$ an der Stelle $\alpha = 0$ die Feldstärke H_{δ} einen Nulldurchgang hat. Es folgt für die Radialkomponente der Flussdichte:

$$B(\alpha,t) = \mu_0 \frac{(p \cdot \tau_p / \pi) \cdot \int A(\alpha,t) \cdot d\alpha}{\delta_{mag}}$$
(3.6.1-2)

Somit ist die Amplitude der Radialkomponente-Feldwelle $\hat{B} = \mu_0 \tau_p \hat{A} / (\pi \cdot \delta_{mag})$. Für die Tangentialkomponente wird die geschlossene Kurve C_2 so gewählt, dass sie im Luftspalt als Wegstück $r \cdot d\alpha = (d_{si}/2) \cdot d\alpha = (p\tau_p/\pi) \cdot d\alpha$ tangential neben dem Strombelag verläuft und im Statoreisen wieder tangential zurück verläuft. Die Radialabschnitte sind infinitesimal kurz, da die Nutdurchflutungen durch den Strombelag an der Statoroberfläche ersetzt wurden, und werden vernachlässigt.

$$\oint_{C_2} \vec{H} \cdot d\vec{s} = \int_{0}^{d\alpha} (H_{t,\delta}(\alpha,t) \cdot (p\tau_p / \pi) d\alpha - H_{t,Fe}(\alpha,t) \cdot (p\tau_p / \pi) d\alpha) = (p\tau_p / \pi) \int_{0}^{d\alpha} A(\alpha,t) \cdot d\alpha$$

Mit $H_{\text{Fe}} = 0$ folgt für die magnetische Tangentialfeldstärke im Luftspalt:

$$H_{t,\delta}(\alpha,t) = A(\alpha,t) \tag{3.6.1-3}$$

Der *Maxwell*'sche Spannungstensor gibt die magnetische Kraft pro Fläche F/A_{δ} an, wobei A_{δ} die Läuferoberfläche im Luftspalt ist. Es ergibt sich daraus der Vektor \vec{f} der mechanischen Spannungen durch die magnetischen Felder im Luftspalt mit den Komponenten f_r (lokale Radialkraft pro Fläche) und f_t (lokale Tangentialkraft pro Fläche) an der Stelle α mit der Radialkomponente der Flussdichte $B_r = B_1 + B_2$ und der Tangentialkomponente der Feldstärke H_t :

$$\vec{f}(\alpha,t) = \begin{pmatrix} f_r(\alpha,t) \\ f_t(\alpha,t) \end{pmatrix} = \frac{1}{2\mu_0} \begin{pmatrix} B_r^2 - (\mu_0 H_t)^2 \\ 2\mu_0 B_r H_t \end{pmatrix} = \frac{1}{2\mu_0} \begin{pmatrix} (B_1 + B_2)^2 - (\mu_0 A_2)^2 \\ 2\mu_0 (B_1 + B_2) A_2 \end{pmatrix}$$
(3.6.1-4)

TU Darmstadt

Der Radialspannungs-Vektor \vec{f}_r ist am Ort α um den Winkel α gegen die Waagrechte (x-Achse) geneigt, der Tangentialspannungsvektor \vec{f}_t um 90° nach links orientiert und daher um den Winkel α gegen die Lotrechte (y-Achse) geneigt. Aus beiden ergeben sich die Komponenten des Spannungsvektors in die x- und y-Richtung:

$$f_x = f_r \cdot \cos \alpha - f_t \cdot \sin \alpha, \qquad f_y = f_r \cdot \sin \alpha + f_t \cdot \cos \alpha$$
(3.6.1-5)

Die Kraft in x- und y-Richtung ergibt sich durch Integration von f_x , f_y über die Luftspaltoberfläche des Läufers (Flächenelement $l_{Fe} \cdot r \cdot d\alpha = l_{Fe} \cdot (p_1 \tau_{p1} / \pi) \cdot d\alpha$).

$$F_{x} = \frac{l_{Fe} p_{1} \tau_{p1}}{2\pi\mu_{0}} \int_{0}^{2\pi} \left\{ \left((B_{1} + B_{2})^{2} - (\mu_{0}A_{2})^{2} \right) \cos \alpha - 2\mu_{0} (B_{1} + B_{2})A_{2} \sin \alpha \right\} d\alpha$$

$$F_{y} = \frac{l_{Fe} p_{1} \tau_{p1}}{2\pi\mu_{0}} \int_{0}^{2\pi} \left\{ \left((B_{1} + B_{2})^{2} - (\mu_{0}A_{2})^{2} \right) \sin \alpha + 2\mu_{0} (B_{1} + B_{2})A_{2} \cos \alpha \right\} d\alpha$$

Die Terme B_1^2 , B_2^2 , A_2^2 , B_2A_2 mit cos- und Sin-Funktionen ergeben integriert Null, da ein magnetisierter Körper auf sich selbst keine Kraft ausüben kann, die ihn bewegt. Die beiden Terme B_1B_2 und B_1A_2 sind integriert nur dann ungleich Null, wenn die Bedingung

$$p_2 - p_1 = \pm 1 \tag{3.6.1-6}$$

erfüllt ist, also die Polzahl der Tragwicklung um 2 Pole größer oder kleiner ist als die Polzahl der Arbeitswicklung. Die Integrale ergeben mit der Läuferoberfläche $A_{\delta} = 2p_1\tau_{p1}l_{Fe}$ die resultierenden Kräfte (+ für $p_2 - p_1 = +1, -$ für $p_2 - p_1 = -1$).

$$F_{x}(t) = \frac{A_{\delta}}{2} \cdot \left(\frac{\hat{B}_{1}\hat{B}_{2}}{2\mu_{0}} \pm \frac{\hat{B}_{1}\hat{A}_{2}}{2}\right) \cdot \cos((\omega_{1} - \omega_{2})t + \varphi_{1}' - \varphi_{2}')$$
(3.6.1-7)
$$F_{x}(t) = -\left(\pm \frac{A_{\delta}}{2}\right) \cdot \left(\frac{\hat{B}_{1}\hat{B}_{2}}{2} \pm \frac{\hat{B}_{1}\hat{A}_{2}}{2}\right) \cdot \sin((\omega_{1} - \omega_{2})t + \varphi_{1}' - \varphi_{2}')$$
(3.6.1-7)

$$F_{y}(t) = -\left(\pm \frac{A_{\delta}}{2}\right) \cdot \left(\frac{B_{1}B_{2}}{2\mu_{0}} \pm \frac{B_{1}A_{2}}{2}\right) \cdot \sin\left((\omega_{1} - \omega_{2})t + \varphi_{1}' - \varphi_{2}'\right) \quad .$$
(3.6.1-8)

Um eine zeitlich konstante Kraft zu erhalten, müssen die Ströme in der Arbeits- und Tragwicklung dieselbe Frequenz aufweisen: $\omega_1 = \omega_2$. Es stellt sich wie bei einem konventionellen Radialmagnetlager eine zeitlich konstante Kraft in Vertikal- und Horizontalrichtung ein. Dies wurde erstmals von *H. Sequenz* publiziert. Wird bei der Winkeldifferenz ein Offset $\pi/2$ eingeführt ($\varphi'_1 - \varphi'_2 = \varphi_1 - \varphi_2 - \pi/2$), so gilt:

$$F_x = \frac{A_\delta}{2} \cdot \left(\frac{\hat{B}_1 \hat{B}_2}{2\mu_0} \pm \frac{\hat{B}_1 \hat{A}_2}{2}\right) \cdot \sin(\varphi_1 - \varphi_2)$$

$$A_\delta \left(\hat{B}_1 \hat{B}_2 - \hat{B}_1 \hat{A}_2\right)$$
(3.6.1-7a)

$$F_{y} = \pm \frac{A_{\delta}}{2} \cdot \left(\frac{B_{1}B_{2}}{2\mu_{0}} \pm \frac{B_{1}A_{2}}{2}\right) \cdot \cos(\varphi_{1} - \varphi_{2})$$
(3.6.1-8a)

Aus der Wechselwirkung des Radialfelds von Antriebswicklung B_1 und Tragwicklung B_2 , die beide mit gleicher Frequenz gespeist werden, aber um +/- 2 unterschiedliche Polzahlen haben,

TU Darmstadt

entsteht eine resultierende einseitige *Maxwell*'sche Zugkraft, die eine Komponente in Vertikal- und Horizontalkraft hat:

$$F_{x1} = \frac{A_{\delta}}{2} \cdot \frac{\hat{B}_1 \hat{B}_2}{2\mu_0} \cdot \sin(\varphi_1 - \varphi_2) \qquad F_{y1} = \pm \frac{A_{\delta}}{2} \cdot \frac{\hat{B}_1 \hat{B}_2}{2\mu_0} \cdot \cos(\varphi_1 - \varphi_2) \qquad (3.6.1-9)$$

In Bild 3.6.1-1 links ist durch die Überlagerung der Grundwelle des 2-poligen Arbeitsfelds mit dem 2-poligen Tragfeld die Radialkomponente der Flussdichte im Luftspalt links größer als rechts, deshalb wirkt F_{x1} nach links als Zug auf den Läufer. Der Magnetzug in vertikaler Richtung hebt sich nach oben und unten auf. Aus der Wechselwirkung des Radialfelds von Antriebswicklung B_1 mit dem Strombelag der Tragwicklung A_2 entstehen tangentiale *Lorentz*-Kräfte, deren Resultierende ebenfalls eine Komponente in Vertikal- und Horizontalkraft hat:

$$F_{x2} = \pm \frac{A_{\delta}}{2} \cdot \frac{\hat{B}_1 \hat{A}_2}{2} \cdot \sin(\varphi_1 - \varphi_2) \qquad F_{y2} = \frac{A_{\delta}}{2} \cdot \frac{\hat{B}_1 \hat{A}_2}{2} \cdot \cos(\varphi_1 - \varphi_2)$$
(3.6.1-10)

In Bild 3.6.1-1 rechts ergeben sich durch die Stromrichtung des Strombelags A_2 , der das 4polige Tragfeld erregt, und dem 2-poligen Arbeitsfeld *Lorentz*-Kräfte, die im Ständer eine Kraft nach rechts, auf den Läufer (actio = reactio) stets eine Komponente nach links haben. Deshalb wirkt F_{x2} nach links auf den Läufer. Im Bild hat das Tragfeld $\varphi'_2 = \pi$, das Läuferfeld $\varphi'_1 = 0$. Gemäß (3.6.1-9) tritt nur eine horizontale Kraft F_x auf; die Vertikalkraft F_y ist Null. Für $p_2 - p_1 = +1$ addieren sich *Maxwell*- und *Lorentz*-Kraft, was erwünscht ist.

<u>Bild 3.6.1-1</u>: Entstehung von *Maxwell*- (links) und *Lorentz*-Kräften (rechts) im Luftspalt lagerloser Motoren. Arbeitsfeld 2-polig, Tragfeld 4-polig. Phasenlagendifferenz $\varphi'_1 - \varphi'_2 = -\pi$. Es tritt nur eine Kraft in *x*-Richtung auf, während die Kraft in *y*-Richtung Null ist (*Quelle: R. Schöb, ETH Zürich*)

$$\begin{pmatrix} F_{x} \\ F_{y} \end{pmatrix} = \begin{pmatrix} F_{x1} \\ F_{y2} \end{pmatrix} + \begin{pmatrix} F_{x2} \\ F_{y1} \end{pmatrix} = \vec{F}_{Maxw.} + \vec{F}_{Lorentz} = \frac{A_{\delta}}{2} \left[\frac{\hat{B}_{1}\hat{B}_{2}}{2\mu_{0}} \pm \frac{\hat{B}_{1}\hat{A}_{2}}{2} \right] \cdot \begin{pmatrix} \sin(\varphi_{1} - \varphi_{2}) \\ \pm \cos(\varphi_{1} - \varphi_{2}) \end{pmatrix} (3.6.1-11)$$

Wegen $B_2 \sim A_2 \sim I_2$ ergibt sich ein linearer Zusammenhang zwischen der Kraft *F* und dem Tragstrom I_2 mit dem Proportionalitätsfaktor k_I :

$$\begin{pmatrix} F_{\rm x} \\ F_{\rm y} \end{pmatrix} = k_{\rm I} \cdot I_2 \cdot \begin{pmatrix} \sin(\varphi_1 - \varphi_2) \\ \pm \cos(\varphi_1 - \varphi_2) \end{pmatrix} = k_{\rm I} \cdot \begin{pmatrix} -I_{\rm 2d} \\ \pm I_{\rm 2q} \end{pmatrix} \leftarrow d \text{-Komponente des Tragstroms}$$

$$\leftarrow q \text{-Komponente des Tragstroms}$$

Durch Verändern der Phasenwinkeldifferenz $\varphi_1 - \varphi_2$ werden bei konstanter Gesamtgröße der Kraft $F = \sqrt{F_x^2 + F_y^2}$ die beiden Komponenten in ihrer Größe verändert, während über I_2 die Kraftamplitude F verändert wird. Dies entspricht einer feldorientierten Regelung bezüglich

TU Darmstadt

des Arbeitsfelds B_1 . Wird dessen Phasenlage mit $\varphi_1 = 0$ definiert, ergeben sich die *d*- und *q*-Stromkomponente in der Tragwicklung mit $I_{2d} = I_2 \cdot \sin \varphi_2$ und $I_{2q} = I_2 \cdot \cos \varphi_2$. Bei PM-Synchron-Maschinen ist die Phasenlage des Läuferfelds durch die Winkelmessung der Läuferlage bekannt.

Fazit:

Die Richtung der magnetischen Tragkraft hängt nur von der relativen Lage (φ_1 - φ_2) von B_1 und A_2 ab. Über eine feldorientierte Regelung lassen sich die Horizontal- und Vertikalkraft separat über die d- und q- Komponenten des Tragstroms justieren.

Anschaulich kann man das Zustandekommen der Tragkraft anhand der anziehenden Kräfte zwischen den Nord- und Südpolen von Stator- und Rotorfeld verstehen (Bild 3.6.1-2). Das zweipolige Rotorfeld B_1 der Rotorpermanentmagnete erzeugt mit dem zweipoligen Drehfeld des Stroms in der Antriebswicklung (Strombelag A_1) das Drehmoment M. Dasselbe Rotorfeld erzeugt mit dem vierpoligen Feld des Stroms in der Tragwicklung (Strombelag A_2), abhängig von dessen räumlicher Orientierung, eine horizontale Kraftkomponente F_x oder eine vertikale Kraftkomponente F_y . Bei Rotation dreht das Tragfeld in diesem Beispiel halb so schnell wie das Antriebsfeld und sorgt so dafür, dass die Kräfte F_x und F_y trotz weiterdrehendem Rotor nach Betrag und Richtung konstant bleiben.

<u>Bild 3.6.1-2:</u> Anschauliche Erklärung der Querkräfte im lagerlosen PM-Synchron-Motor (*Quelle: TU Darmstadt, T. Schneider*)

Fazit:

Das Prinzip des lagerlosen Motors funktioniert für Polpaarzahlkombinationen $p_2 = p_1 \pm 1$. Die Kraft wirkt radial am Umfang; die Lage der Kraft über dem Umfangswinkel α wird durch die relative Phasenlage von Antriebs- und Tragstrom zueinander eingestellt. Diese Kraft ist proportional dem Produkt aus Magnetfeld mit der Polpaarzahl p_1 (Rotorfeld und Antriebswicklung) und Strom bzw. Strombelag der Tragwicklung A_2 .

3.6.2 Regelung der Magnetkraft und Motorgestaltung bei lagerlosen Motoren

Durch eine feldorientierte Regelung des Tragstroms relativ zum Feld der Antriebswicklung wird die Größe der Kraft und ihre Richtung, also die beiden Komponenten F_x und F_y , so über eine feldorientierte Regelung (*d*- und *q*-Stromregelung) geregelt werden, dass der Läufer stabil schwebt. Für das stabile Schweben des Läufers muss dessen Lage so geregelt werden, wie bei konventionellen Magnetlagern auch. Dazu sind Abstandssensoren zur Lagemessung des Läufers erforderlich. Der Lageregelung ist die feldorientierte Regelung der Kraft unterlagert. Aus Sicherheitsgründen sind mechanische Fanglager vorzusehen. Die

TU Darmstadt

Institut für Elektrische Energiewandlung

3.57

Gleichstromsteller entfallen. Da die Kraft pro Motor nur in einer Ebene wirkt, stellt der Motor ein Radiallager dar. Eine Möglichkeit ist der Einsatz zweier lagerloser Halbmotoren, um bei Läufern üblicher Länge die erforderliche Zweipunktlagerung zu realisieren (Bild 3.6-2a). Große Axialkräfte müssen durch ein gesondertes Axiallager herkömmlicher Bauart beherrscht werden. Für hohe Drehzahlen und Leistungen kann anstelle von zwei Halbmotoren ein Kombimotorkonzept verwendet werden, bei dem ein magnetisches Radiallager, kombiniert mit einem Axiallager, zusammen mit einem lagerlosen Motor die Zweipunktlagerung realisiert (Bild 3.6-2b). Dieser lagerlose Kombimotor ist axial kürzer als die Bauweise mit zwei Halbmotoren, daher mechanisch steifer (höhere Biegeeigenfrequenzen) und somit besser für höhere Drehzahlen geeignet. Bei scheibenförmigen Läufern (axial sehr kurz) ist bei entsprechend großem Luftspalt und Permanentmagneterregung im Läufer auch eine Einpunktlagerung möglich. Wegen des großen Luftspalts ist dies nur bei kleinen Motoren wirtschaftlich. Das Kippen und der Axialversatz werden dann durch den axialen magnetischen Zug der Permanentmagnete beherrscht (Bild 3.6-2c).

3.6.3 Ausführungsbeispiele

Im Bereich kleiner Läuferumfangsgeschwindigkeiten ist der lagerlose PM-Scheibenläufermotor als Pumpenantrieb in mehreren Ausführungen am Markt erhältlich. Anwendungen sind hermetisch gekapselte Pumpen und Gebläse, die ohne rotierende Dichtungen, ohne Leckage, ohne Verunreinigung des Mediums und ohne Verschleiß der Lager betrieben werden können. Sie werden daher als Pumpen für sensible Medien (z.B. Blut), für Rührwerke in der Bio- und Medizintechnik oder Reinraumantriebe in der Halbleitertechnik eingesetzt. Der Läufer besteht aus Permanentmagnet und Pumpenrotor in einem. Er wird z. B. bei Blutpumpen für jeden Patienten ausgewechselt. Ähnlich wie beim konventionellen Magnetlagerantrieb lässt sich auch hier das Lagersystem als Diagnoseeinrichtung für die Arbeitsmaschine (z.B. Durchfluss und Druckbestimmung) verwenden. Diese Motoren sind im unteren Leistungsbereich (< 4 kW) angesiedelt (Bild 3.6.3-1).

Bild 3.6.3-1: Lagerlose Synchron-PM-Scheibenläufermotoren als Blutpumpenabtriebe [3.22], [3.23]

Für größere Leistungen ist der lagerlose Kombimotor oder das Konzept mit zwei Halbmotoren zu verwenden (z. B. als Antrieb für Spaltrohrpumpen, 30 kW, 3 000 /min, Bild 3.6.3-2). Diese Konzepte sind allerdings bis dato nur als Prototypen in Kooperation der Industrie mit unterschiedlichen Universitäten verwirklicht worden. Es wurden dabei in den letzten 10 bis 15 Jahren alle gängigen Drehstrommotorprinzipien theoretisch und experimentell untersucht: Asynchronläufer mit Kupferdrahtwicklung oder Sonderkäfig-wicklung, Permanentmagnetläufer, Synchron-Reluktanzläufer sowie Switched Reluctance Läufer. Für **Hochdrehzahlantriebe** ist der lagerlose Kombimotor wegen seiner kompakten Bauweise prädestiniert. In Bild 3.6.3-3 ist ein PM-Synchronmotor als Kombimotor für 500 W, 60 000 /min als Kompressorantrieb dargestellt. Er umfasst einen zweipoligen PM-Rotor, der mit einer vierpoligen Tragwicklung gelagert wird. Die zweite Lagerstelle übernimmt ein kombiniertes Radial/Axiallager mit Permanentmagnet-Grunderregung. In Bild 3.6.3-4 ist die mit den Positionssensoren im Leerlauf gemessene radiale Auslenkung des Rotors in *x*- und *y*-

TU Darmstadt

Richtung aus dem Zentrum bei einer Drehzahl von 60 000 /min dargestellt. Man erkennt, dass der Rotor erfolgreich in der Mitte des Fanglagerspiels von $\pm 150 \,\mu\text{m}$ gehalten wird.

<u>Bild 3.6.3-2:</u> Lagerlose Spaltrohrpumpe mit Kombimotor, 30 kW, 3000 /min, bestehend aus Pumpenrotor, Radiallager (in der Sonderform des Unipolarlagers mit permanentmagnetischer Grunderregung), lagerlosem Motor (Asynchronmotor mit Tragwicklung) und einem Axiallager zur Kompensation des Pumpenaxialschubs [3.24]

Bild 3.6.3-3: Lagerloser High-Speed-PM-Synchronmotor als Kombimotor für 60 000 /min, 500 W mit den Motorkomponenten [3.21]

<u>Bild 3.6.3-4</u>: Radiale Auslenkung der Welle des lagerlosen High-Speed-Motors von Bild 3.6.3-3 in *x*- und *y*-Richtung, gemessen bei einer Drehzahl von 60 000 /min. Die Welligkeit ist drehfrequent, und die Messsignale von *x* und *y* um eine Viertelperiode versetzt. Der Läufer rotiert somit auf einem kreisförmigen Orbit von 40 μ m Durchmesser, hervorgerufen durch die Restunwucht.