
New technologies of electric energy converters and actuators

Andreas Binder

Source:

American Superconductor, USA

DARMSTADT UNIVERSITY OF TECHNOLOGY

Lecturer

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder Institut für Elektrische Energiewandlung **TU Darmstadt** 64283, Landgraf-Georg-Strasse 4, Darmstadt tel.: +49-6151-16-24181 o. 24182 fax.:+49-6151-16-24183 e-mail: abinder@ew.tu-darmstadt.de

Tutorial

M. Sc. Gael Messager Institut für Elektrische Energiewandlung **TU Darmstadt** 64283, Landgraf-Georg-Strasse 4, Darmstadt tel.: +49-6151-16-24181 o. 24182 fax.:+49-6151-16-24183 e-mail: gmessager@ew.tu-darmstadt.de

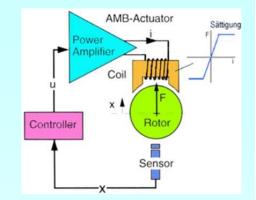
Prof. A. Binder : New technologies of electric energy converters DARMSTADT and actuators JNIVERSITY OF TECHNOLOGY

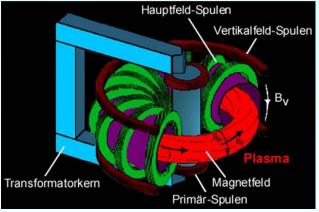
Institute of Electrical **Energy Conversion**

New technologies of electric energy converters and actuators **SS 2+1**

Lecture contents :

- Application of superconductors for electrical energy conversion
- Active magnetic bearings ("magnetic levitation")
- Magneto-hydrodynamic energy conversion
- Fusion research


DARMSTADT


TECHNOLOGY

Course language: German or English

Power point presentation (download) Paper copy: text book Tutorials, excursion to industry

Source: Siemens AG

Prof. A. Binder : New technologies of electric energy converters and actuators JNIVERSITY OF

Source: Internet

Source: Internet

Type of examination

Written examination

1 hour

Six questions with about 10 min. per question

2 dates per year

List of questions: see text book

Learning outcomes

Understanding of

- basics of superconducting physics for power engineering
- applications of superconductivity in electrical power engineering
 i.e. fault current limiters, cables, storage devices, transformers, generators

Knowledge of active magnetic bearings,

electrodynamic levitation & superconductive levitation

- basics and applications in rotary machinery
- bearingless electrical machines
- application in high speed trains

Knowledge of basics in magnetohydrodyamics

- applications as generators and satellite propulsion

Understanding of basics in nuclear fusion for power generation

Calculation examples for self-training

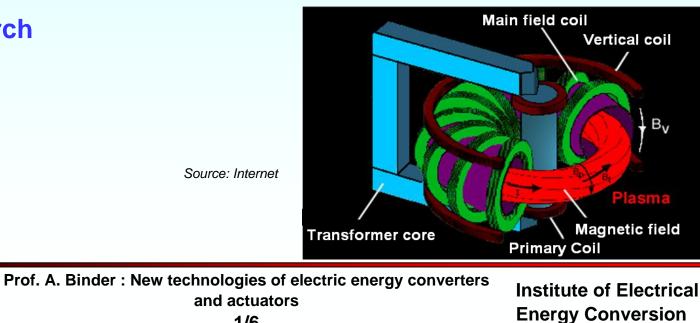
DARMSTADT

TECHNOLOGY

JNIVERSITY OF

New technologies of electric energy converters and actuators

Contents


- **1. Superconductors for power systems**
- 2. Application of superconductors for electrical energy converters
- 3. Magnetic bearings ("magnetic levitation")
- 4. *Magneto-hydrodynamic (MHD) energy conversion*

DARMSTADT

JNIVERSITY OF

TECHNOLOGY

New technologies of electric energy converters and actuators

1. Superconductors for power systems

Used literature

Komarek, P.: Hochstromanwendung der Supraleitung, Teubner, Stuttgart, 1995
Buckel, W.: Supraleitung, VHC-Verlag, Weinheim, 1994
Buckel, W.; Kleiner, R.; Superconductivity, Wiley-VCH, 2004, Weinheim
Rödel, J.: Funktionswerkstoffe, Vorlesungs-Skript, TU Darmstadt, FB Materialwissenschaften, 1997
Wilson, M. N.: Superconducting Magnets, Oxford Science Publishing, Clarendon Press, 1998
Carlsaw, H. S.; Jaeger, J. C.: Conduction of Heat in Solids. Oxford Univ. Press, 1959
Brechna, H.: Superconducting Magnet Systems. Berlin, Springer, 1973
Bhattacharya, R. N.; Paranthaman, M. P. (ed.): High Temperature Superconductors, Wiley-VCH, 2010, Weinheim
Krabbes, G.; Fuchs, G.; Canders, W.-R.; May, H.; Palka, R.: High Temperature Superconductor

DARMSTADT

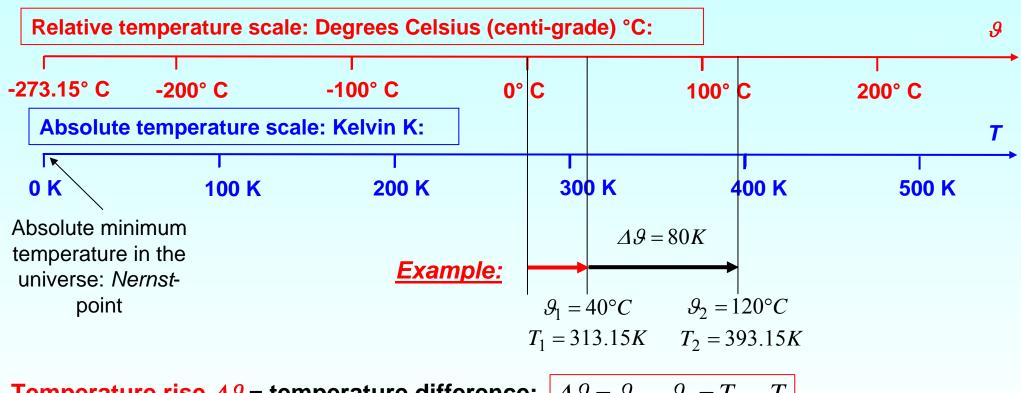
TECHNOLOGY

JNIVERSITY OF

New technologies of electric energy converters and actuators

1. Superconductors for power systems

- 1.1 Fundamentals of superconductivity
- 1.2 Technical design of superconductors
- 1.3 Superconductors for technical use
- Cooling procedures 1.4
- 1.5 Cryostats
- 1.6 Cryogenic technology



JNIVERSITY OF

Temperature scales – Temperature rise

Temperature rise $\Delta \mathcal{G}$ = temperature difference: $\Delta \mathcal{G} = \mathcal{G}_2 - \mathcal{G}_1 = T_2 - T_1$ (It is measured ALSO in K!)

Low-temperature superconductors – overview

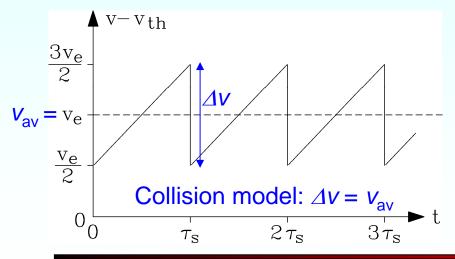
- Good electrical "normal conductors" are NOT superconductors: Cu, Ag, Au, Al,...
- Ferromagnets are NOT superconductors: Fe, Ni, Co
- Superconductor 1st type: Pure elements (metals): Hg, Pb, Sn, Nb, Ta, V, La, Ga...
 - Below <u>critical temperature</u> T_c: <u>Meissner-phase</u>: interior B-field-free,
 - lossless current transport: for resistance unmeasurably small
- Superconductor 2nd type: Metal alloy (mixed crystal): Pb-In, Nb-Ti...
 - Below T_{c1}: Meissner phase;
 - above, up to T_{c2}: Shubnikov phase: interior not B-field-free, no lossless current transport, but considerably higher currents and magnetic fields
- "Hard" (technical) superconductors: artificial PINNING centres prevent fluxtube movement: lossless DC transport; but with AC losses

JNIVERSITY OF

High-temperature superconductors – overview

- Low-temperature superconductors: Transition temperature T_c below 20 K, He cooling for high *B*-fields necessary
- **High-temperature superconductors:** ceramic (brittle) materials: LaCu oxide, BaCu oxide, Bi-Al-Ca-Sr-Cu oxide, YBaCu oxide, ...,
 - Transition temperature between 30 K and 160 K
 - Cooling with LN₂ and LH₂ possible
- **Ceramic material:** Anisotropy in crystal structure! In "preferred" axis about 5 times higher external field strength B possible!
- High-temperature wire conductor: Bi-AI-Ca-Sr-Cu oxide
- **High-temperature solid & tape conductor: YBaCu oxide: Production as conductor tapes is promising future technology**

DARMSTADT


JNIVERSITY OF

1.1 Fundamentals of superconductivity **Mobility law for "free" electrons in metal crystal lattice** NEWTON's law: $\vec{F} = m_e \cdot d\vec{v} / dt \Rightarrow (-e) \cdot \vec{E} = m_e \cdot d\vec{v} / dt$ P. DRUDE: Collisions with oscillating atoms of crystal: mean time τ_s between two collisions $\vec{F} = m_e \cdot d\vec{v} / dt \approx m_e \cdot \Delta \vec{v} / \tau_s = m_e \cdot \vec{v} / \tau_s = (-e) \cdot \vec{E} \Rightarrow \vec{v}_{av} = \vec{v}_e = \mu_e \cdot \vec{E}$ $\vec{v}_e = \mu_e \vec{E}, \quad \mu_e = (-e) \cdot \tau_s / m_e$ Free electron mobility: $\mu_e < 0$ v_e : Average thermal velocity of the free electrons due to their kinetic energy $W_{el} \approx kT$ at

 v_{th} : Average thermal velocity of the free electrons due to their kinetic energy $W_{\text{kin}} \sim k \cdot T$ at a given temperature T of the metal (k: BOLTZMANN's constant)

Due to the collisions the force *F* is on average not proportional to the electron acceleration, but to (average) electron velocity! **This constitutes OHM's law for metals!**

1.1 Fundamentals of superconductivity OHM's law for pure metals

- Current density of free electrons in the metal: $\vec{J}_e = (-e) \cdot n_e \cdot \vec{v}_e$ $\vec{J}_e \uparrow \downarrow \vec{v}_e$ *n*_e: number of free electrons/volume

- OHM's law:
$$\vec{J}_e = (-e) \cdot n_e \cdot \vec{v}_e = (-e) \cdot n_e \cdot \mu_e \cdot \vec{E} = \kappa_T \cdot \vec{E} = \frac{1}{\rho_T} \cdot \vec{E}$$

Temperature dependent electrical conductivity κ_{T} determined by electron parameters:

$$\kappa_T = \frac{1}{\rho_T} = \mu_e \cdot n_e \cdot (-e) = \frac{e^2 \cdot n_e \cdot \tau_s}{m_e}$$

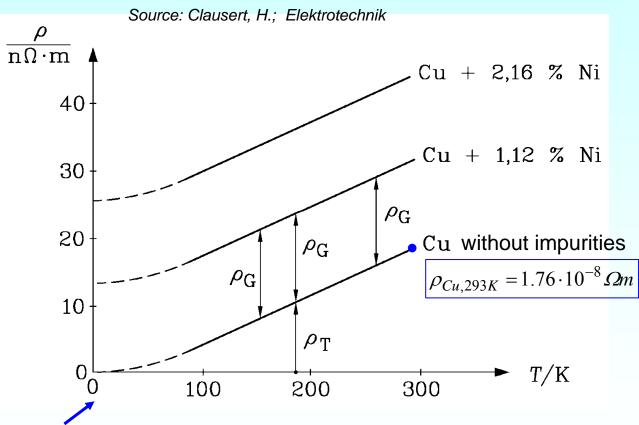
 τ_s : Collision time = corresponds to "average free path of motion" I_s :

$$v_e = l_s / \tau_s \Longrightarrow l_s = v_e \cdot \tau_s$$
 $\rho_T = \frac{m_e}{e^2 \cdot n_e \cdot \tau_s} = \frac{m_e \cdot v_e}{e^2 \cdot n_e \cdot l_s}$

Facit:

DARMSTADT

With increasing temperature the atoms oscillate more, yielding more collisions for a certain travel distance, hence the collision time reduces. So the specific resistivity increases in metallic conductors with increasing temperature!



Prof. A. Binder : New technologies of electric energy converters and actuators JNIVERSITY OF 1/13 TECHNOLOGY

Temperature dependence of electrical specific resistance $\rho(T)$

Mathiessen-rule: ρ has two components $\rho_{\rm G}$ and $\rho_{\rm T}$:

Nernst's absolute zero temperature point T = 0

$$\rho(T) = \rho_G + \rho_T(T)$$

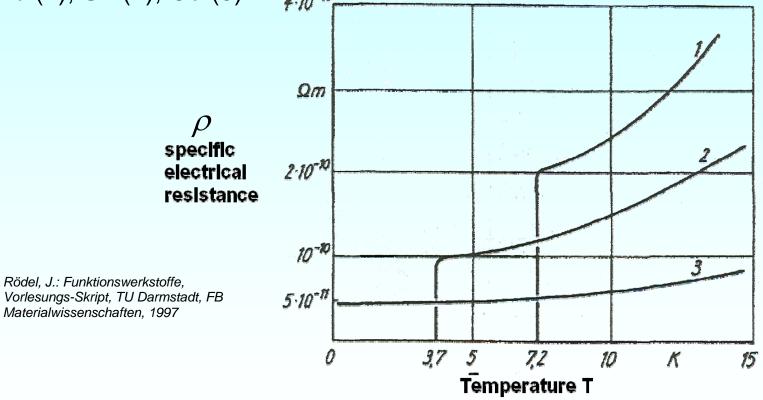
b)

Resistance is collisions of free moving electrons in the metal crystal lattice (e.g. of Cu):

- a) with crystal lattice defects such as impurities (e.g. Ni), constituting ρ_G (independent of *T*)
 - with the oscillating atoms of the crystal lattice, constituting ρ_T

Oscillations "ARE" temperature 7!

<u>Hence:</u> $T = 0 \Leftrightarrow NO$ oscillations \Leftrightarrow


No collisions $\Leftrightarrow \rho_T = 0$

1.1 Fundamentals of superconductivity Superconductor 1st type – Compared to "normal conductor" copper

 Function of the specific electric resistance in low-temperature area for Pb (1), Sn (2), Cu (3)

DARMSTADT UNIVERSITY OF TECHNOLOGY

Historic development and progress in superconductivity

<u>Year</u>	<u>Event</u>	<u>Material</u>	T _c
1911	Kammerlingh-Onnes discovers superconductivity	Hg	4 K
1952	Niob-3-Tin material	Nb₃Sn	18 K
1957	Bardeen, Cooper, Schrieffer: quantum mech. superconductor theory		
1986	<i>Müller</i> and <i>Bednorz</i> discover "high-temperature superc." HTSC	(La,Ba) ₂ Cu ₂ O ₄	30 K
1987	Material "YBCO"	YBa₂Cu₃O _{7-δ}	93 K
1988	Material "BiSCCO"	Bi-Al-Ca-Sr-Cu-O	120 K
1993	() value: under pressure highest <i>T_c</i>	HgBa ₂ Ca ₂ Cu ₃ O _{8+x}	120 K (160 K)

DARMSTADT

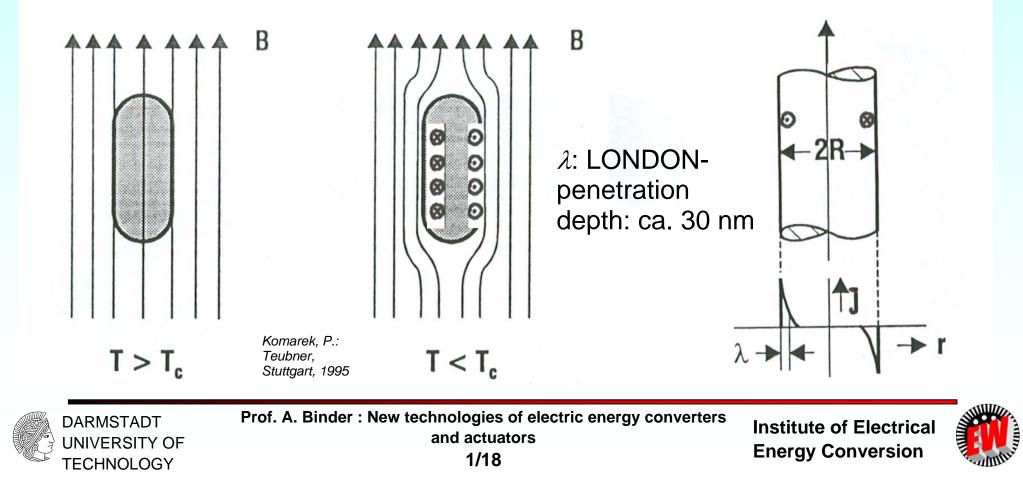
UNIVERSITY OF

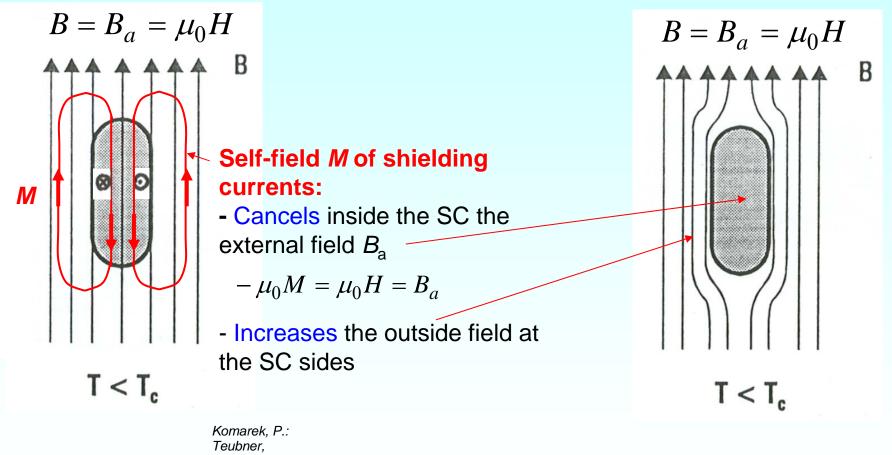
TECHNOLOGY

BARDEEN-COOPER-SCHRIEFFER theory

- **Cooper pairs:** Two electrons with opposite *momentum* and spin (angular momentum), coupled together via phonon interaction below T_c .
- **BCS** valid for low-temperature SC
- Lossless current transport in ideal crystal
- **Separation of the pairs above** T_c because of too strong crystal lattice oscillation
- Superconductivity is a macroscopically observable quantum-mechanical effect

DARMSTADT

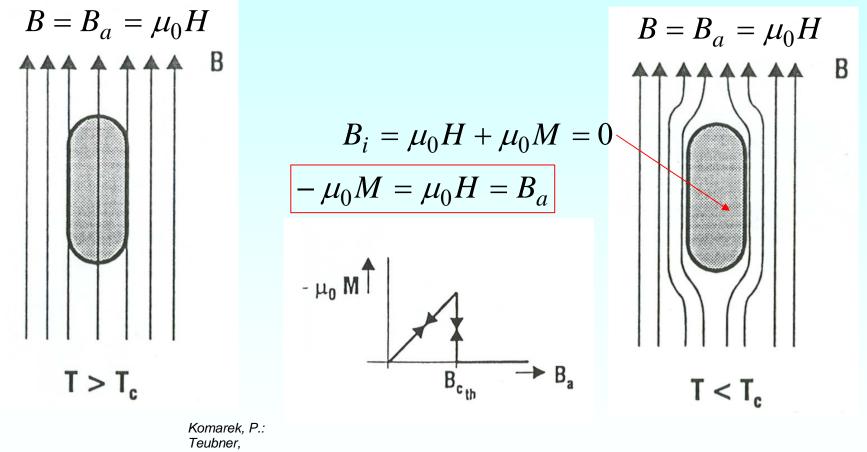

JNIVERSITY OF



Meissner-Ochsenfeld effect

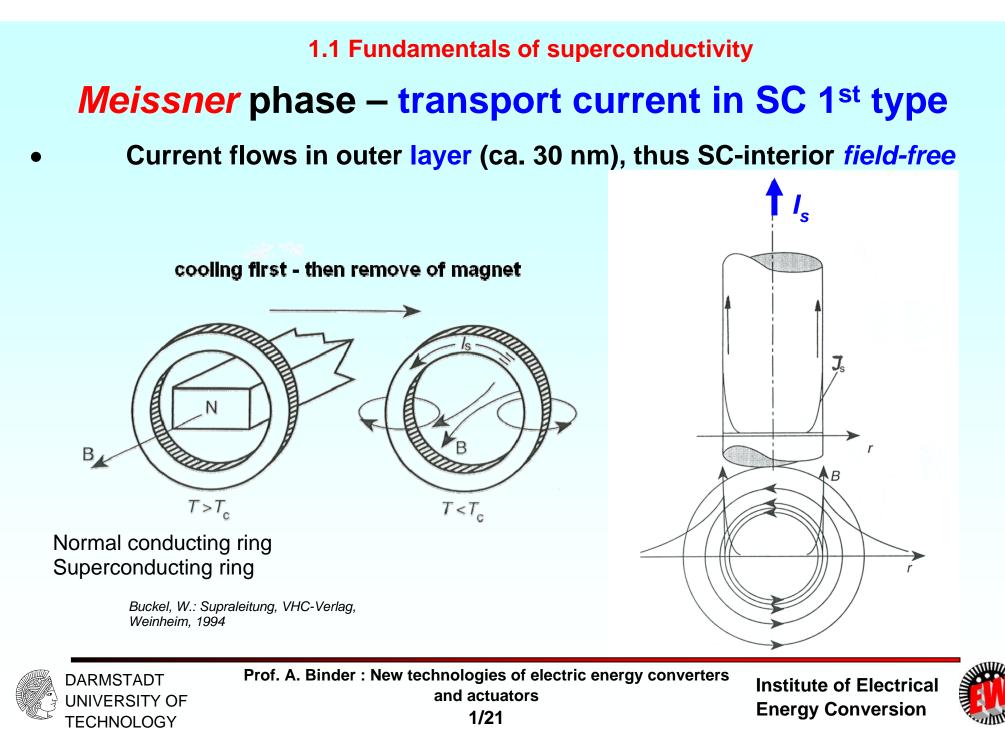
- Field *displacement* from the inside of the SC 1st type
- Super current density *J* as shielding circulating current

Self-field of shielding currents

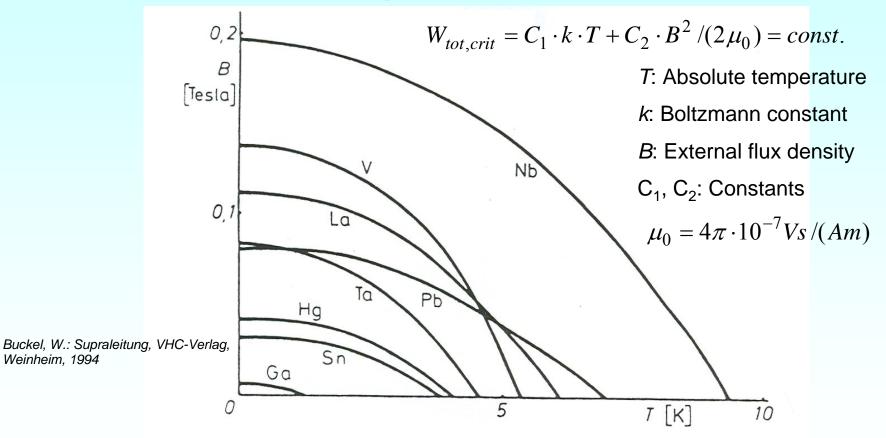

Stuttgart, 1995

DARMSTADT UNIVERSITY OF TECHNOLOGY

Ideal diamagnetism

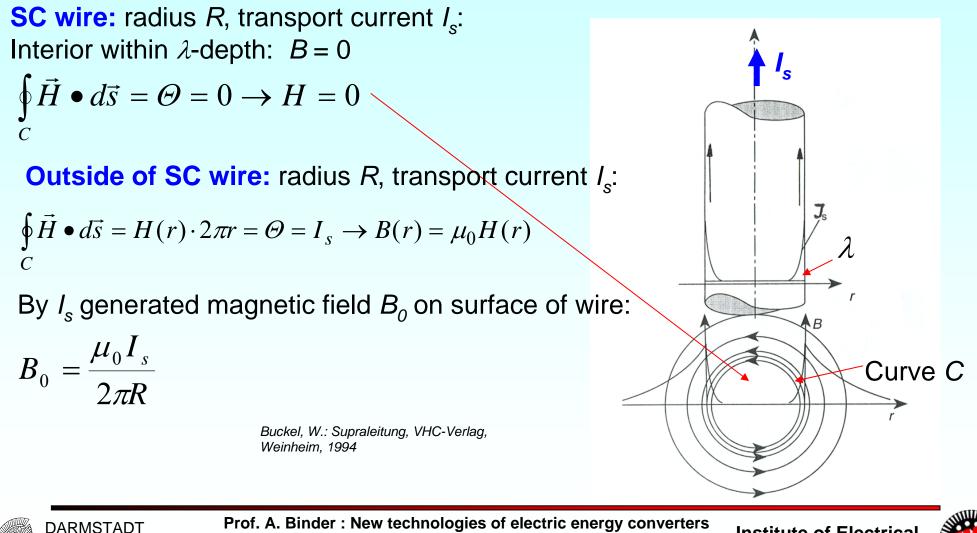

Stuttgart, 1995

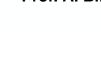
DARMSTADT UNIVERSITY OF TECHNOLOGY Prof. A. Binder : New technologies of electric energy converters and actuators


Institute of Electrical Energy Conversion

1.1 Fundamentals of superconductivity Meissner phase – critical flux density **B**_c

In external field B the energy state of Cooper pairs is raised, hence the transition temperature decreases



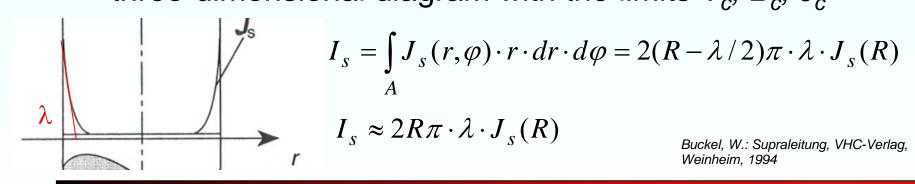


Prof. A. Binder : New technologies of electric energy converters DARMSTADT and actuators JNIVERSITY OF TECHNOLOGY

Critical Current Density $J_c(1)$

JNIVERSITY OF

TECHNOLOGY

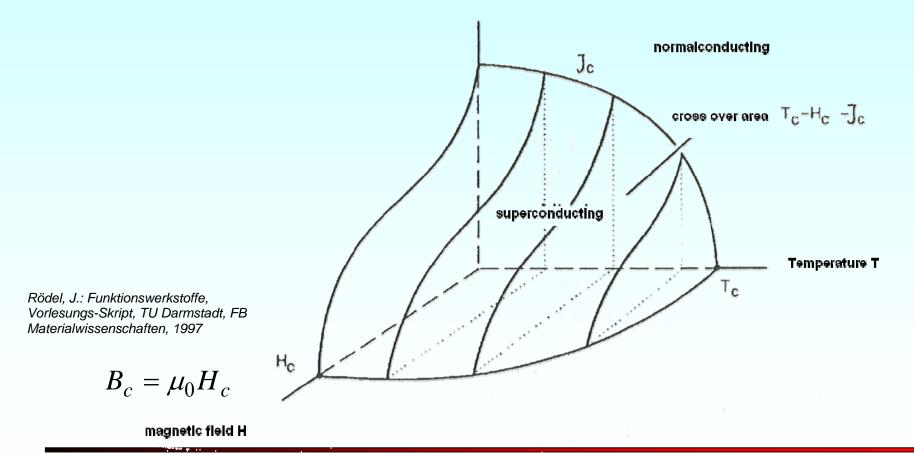


Critical Current Density J_{c} (2)

- SC wire: radius R, transport current I.:
- $B_0 > B_c$: superconducting condition expires: $B_c = \frac{\mu_0 I_{s,c}}{2\pi R}$ Corresponding super transport current density is critical current density J_c . $J_{s,c} = I_{s,c} / (2R\pi\lambda)$
- Superconducting operating area:

three-dimensional diagram with the limits T_c , B_c , J_c

JNIVERSITY OF

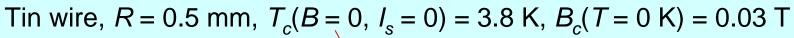


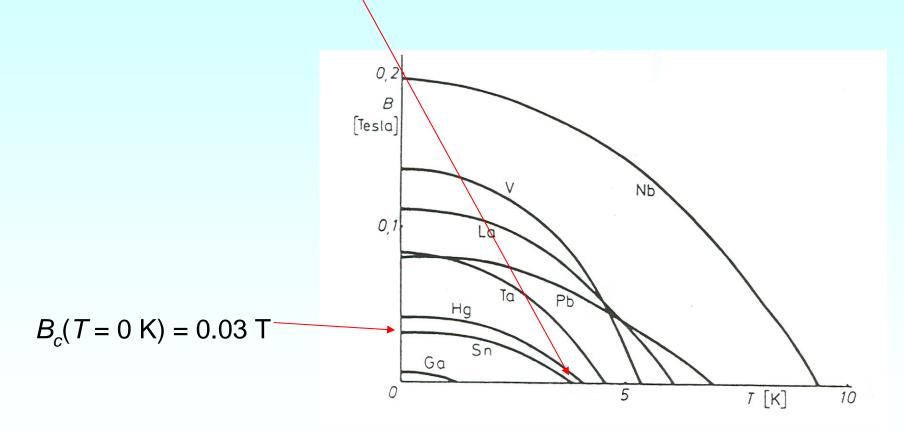
Three-dimensional phase diagram of a super-conductor

Superconducting state is possible only within the T_c - B_c - J_c -area

Current density J

DARMSTADT


UNIVERSITY OF


TECHNOLOGY

Transport current in SC 1st type

Example:

Transport current in SC 1st type

<u>Example</u>: Tin wire, R = 0.5 mm, $T_c(B = 0, I_s = 0) = 3.8 \text{ K}$,

 $\lambda = 30 nm$ $I_{sc} = 2\pi RB_{c} / \mu_{0} = 75A$ $B_{c}(T=0K) = 0.03 T$

 $J_{c} = I_{sc} / (2\pi R\lambda) = 7.9 \cdot 10^{11} A / m^{2} = 7.9 \cdot 10^{5} A / mm^{2}$

Result:

For superconductors 1st type, the limits T_c , B_c , J_c are therefore too small to use these materials for lossless energy transport with high currents or the excitation of strong magnetic fields.

Remedy: Shubnikov phase:

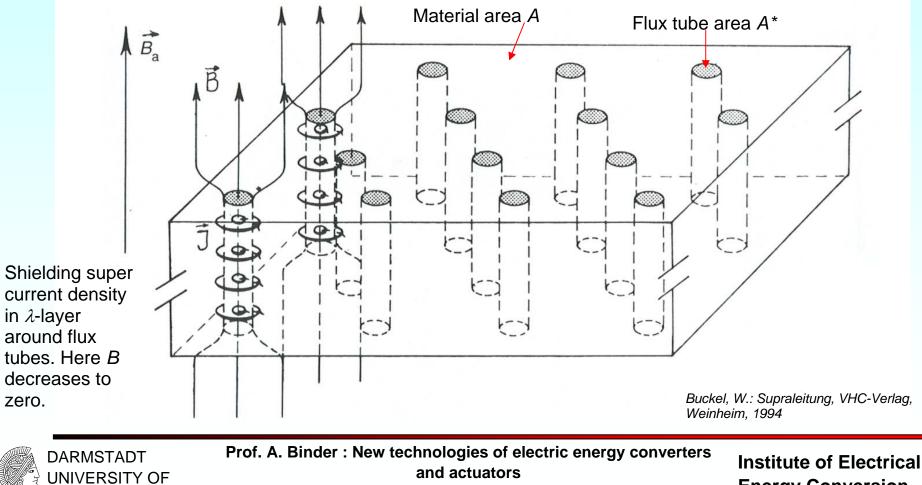
Superconductor 2nd type by means of metal alloy with base material of superconductors of 1st type

 $B_{c1} < B < B_{c2}$: Magnetic field enters the interior of the superconductor as a periodical "Flux tube" pattern

DARMSTADT

JNIVERSITY OF

TECHNOLOGY



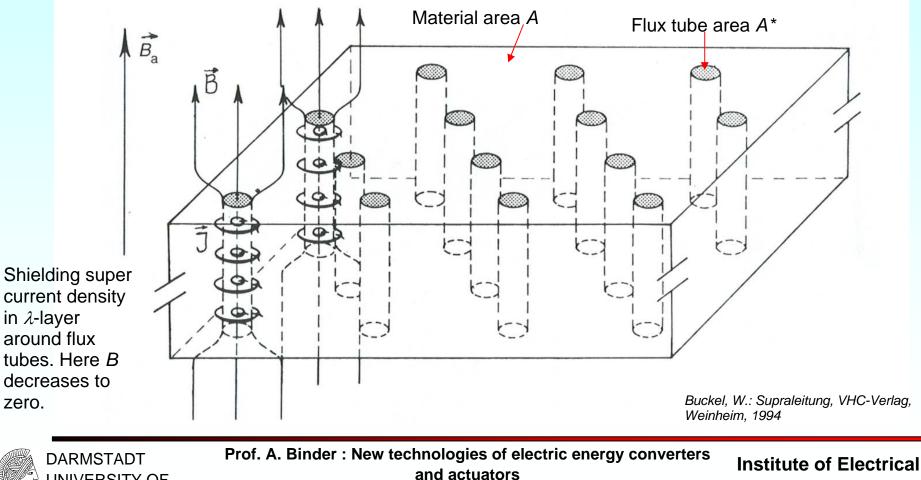
1.1 Fundamentals of superconductivity Shubnikov phase

Magnetic field "tubes" and supercurrents:

TECHNOLOGY

Interior of the flux "tubes" is normal-conducting, so that flux penetration is possible.

 $A^* = R^{*2} \pi$


Flux tubes

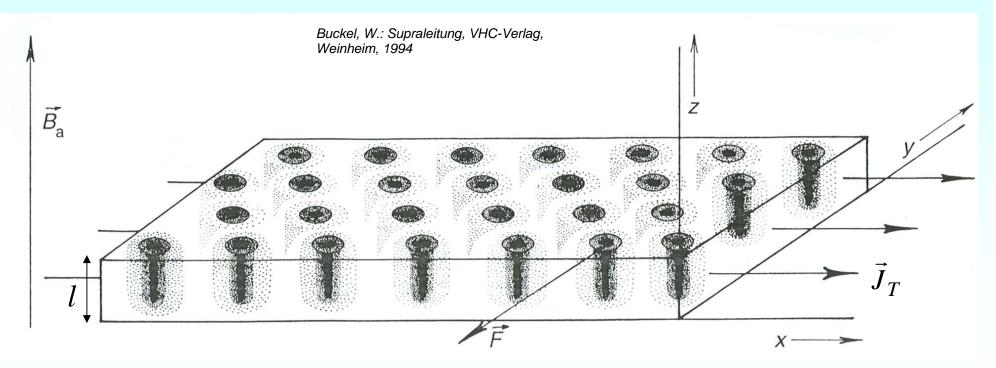
Flux tube is a quantum mechanical quantity: $\Phi^* = B \cdot A^*$

Total flux with *n* tubes: $\Phi = B_a \cdot A = n \cdot \Phi^*$

UNIVERSITY OF

TECHNOLOGY

Flux "tube" movement in Shubnikov phase


Transport current density J_{T} : Flux tubes shifted by *Lorentz force F*, pushing it into -*y*-direction \Rightarrow crystal "friction" loss \Rightarrow <u>no lossless</u> current transport

 $\vec{F} = \vec{J}_T \times \vec{B} \cdot \lambda \cdot 2\pi R * \cdot l$

DARMSTADT

UNIVERSITY OF

TECHNOLOGY

"Hard" (= technical) Superconductors

- Directed use of crystal defects: pinning centre
- Flux tubes get caught at pinning centres \Rightarrow losses disappear • \Rightarrow lossless DC current transportation
- $\vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M}$ Magnetization *M*: -μ₀Μ Komarek. P.: - μ₀ · Μ - μ₀ Μ Teubner. Stuttgart, 1995 B ${\sf B_{c}}_{th}$ Bc B_c -> B. B_c - B_c

th: theoretical

Superconductor 1st type (ideal diamagnetism)

Pure SC 2nd type (non-ideal diamagnetism)

1: Meissner 2: Shubnikov

"Hard" superconductor (diamagnetism & Hysteresis)

"Hard" superconductor shows hysteresis due to pinning centres. Their crystal energy results in crystal "friction" losses, when flux tubes move!

Prof. A. Binder : New technologies of electric energy converters and actuators UNIVERSITY OF 1/31 **TECHNOLOGY**

New technologies of electric energy converters and actuators

Summary: Fundamentals of superconductivity

- Metallic low temperature superconductors are in Meissner phase
- Metallic alloy low temperature superconductors are in Shubnikov phase
- Pinning centres in metal alloys to create "hard" superconductors
- "Hard" (technical) superconductors allow big electric transport currents

DARMSTADT

JNIVERSITY OF

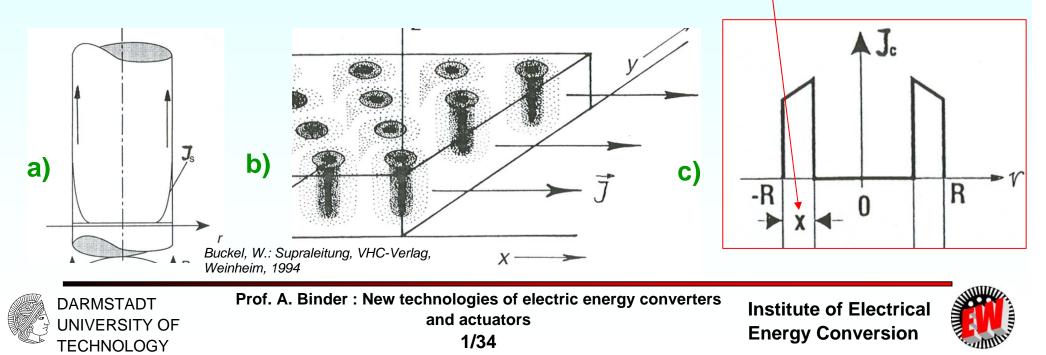
TECHNOLOGY

New technologies of electric energy converters and actuators

1. Superconductors for power systems

- 1.1 Fundamentals of superconductivity
- 1.2 Technical design of superconductors
- 1.3 Superconductors for technical use
- Cooling procedures 1.4
- 1.5 Cryostats
- 1.6 Cryogenic technology

JNIVERSITY OF



1.2 Technical design of Superconductors

Bean model: Current flow in technical superconductor

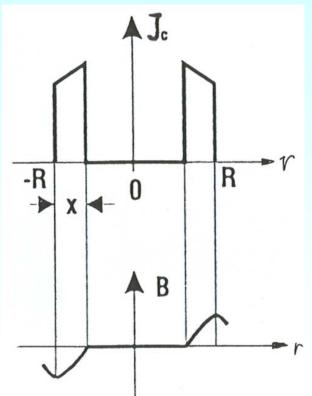
- Inside hard superconductor wire (radius R): Transport current I_s .
- a) $I_s < I_{s,c1}$: *Meissner* phase; current flows in penetration depth λ = ca. 30 nm
- b) *I*_{s,c1} < *I*_s < *I*_{s,cs}: *Shubnikov* phase; Flux tubes get inside; current flows
- in λ -border area of each flux tube.

c) Bean model: Instead of b), an increased equivalent penetration depth x is defined at the material border, where the current flows with the critical current density $J_c(T, B)$

1.2 Technical design of Superconductors

Bean model: Calculation for round wire, T = const. **1**st step: assumption: J_c independent of B: $R - x \le r \le R : J_c = const$. Transport current $I_{s:} I_s = J_c \cdot (R^2 - (R - x)^2) \cdot \pi$ Komarek. P.: Teubner. Stuttgart, 1995

Self-field **B** : $R - x \le r \le R$


$$\oint_C \vec{H}(r) \cdot d\vec{s} = 2\pi r H(r) = \Theta = J_c \cdot \left[r^2 - (R - x)^2\right] \cdot \pi$$

$$B(r) = \mu_0 \cdot J_c \cdot (r - (R - x)^2 / r) / 2$$

<u>Result:</u> B depends on r, therefore does $J_{c}(B(r))$ too!

2nd step: Inside of SC: B smaller, outside bigger, therefore $J_{c}(B)$ smaller than assumed.

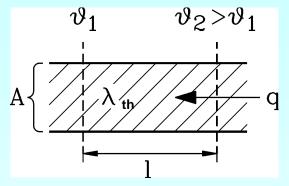
 3^{rd} step: With $J_c(B)$ new calculation of bigger x for given transport current $I_{\rm s}$.

DARMSTADT

UNIVERSITY OF

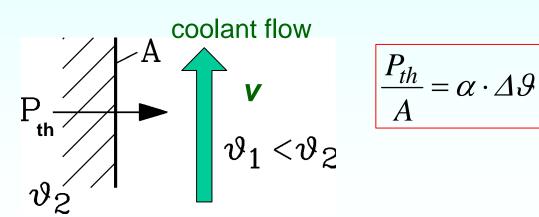
1.2 Technical design of Superconductors

Conduction of heat


heat flow density $q = P_{th}/A$ [W/m²]

Conduction of heat: Fourier's law

 λ_{th} thermal conductivity (W/(m·K))


 $P_{\rm th}$ thermal power (W)

$$\frac{P_{th}}{A} = \lambda_{th} \cdot (\mathcal{G}_2 - \mathcal{G}_1) / l$$

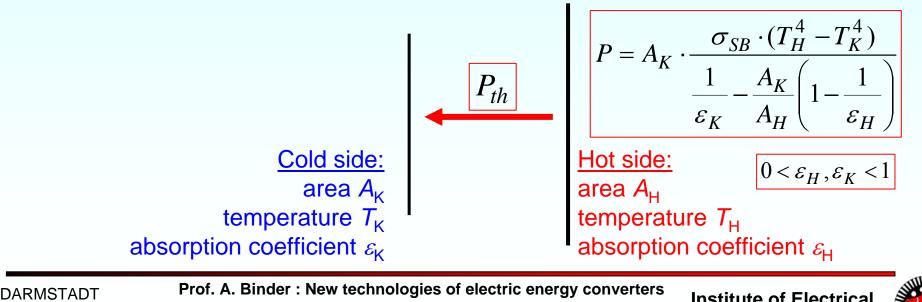
Convection

Heat transfer coefficient α describes the cooling effect of flowing ("convection") coolant, passing by a cooling surface A with the velocity v

 α : heat transfer coefficient (W/(m²·K))

- α : function of
- coolant velocity v,
- coolant parameters: mass density, thermal conductivity, heat capacity, viscosity

DARMSTADT JNIVERSITY OF


Radiation

Heat radiation does not need any medium to transport heat:

- Transferred heat P_{th} from hot (T_{H}) to cold $(T_{\text{K}} < T_{\text{H}})$ surface A
- $T_{\rm K}$, $T_{\rm H}$ are absolute temperatures, measured in K
- Heat radiation law of Stefan and Boltzmann:

$$\frac{P_{th}}{A} = \sigma_{SB} \cdot (T_H^4 - T_K^4)$$

- "Black body" radiation: $\sigma_{SB} = 5.67 \cdot 10^{-8} \text{ W/(m^2K^4)}$

and actuators JNIVERSITY OF TECHNOLOGY

Institute of Electrical Energy Conversion

Laminar (viscous) and turbulent flow

Flow in tubes :

a) Low velocity: "parallel" orbits of mass particles due to dominating inner viscous forces between particles = LAMINAR (VISCOUS) flow

b) High velocity: Orbits of different particles mingled in "chaotic" way = not only in flow

direction, but also perpendicular: TURBULENT flow Based on model parameters: **REYNOLDS number**

$\operatorname{Re} = \frac{v_{av} \cdot d}{v}$		
	A	

 v_{av} : average flow velocity

- *d*: hydraulic diameter of tube
- d = 4A/U

A,U Cross sectional area / circumference of tube

In straight tubes with smooth surface:

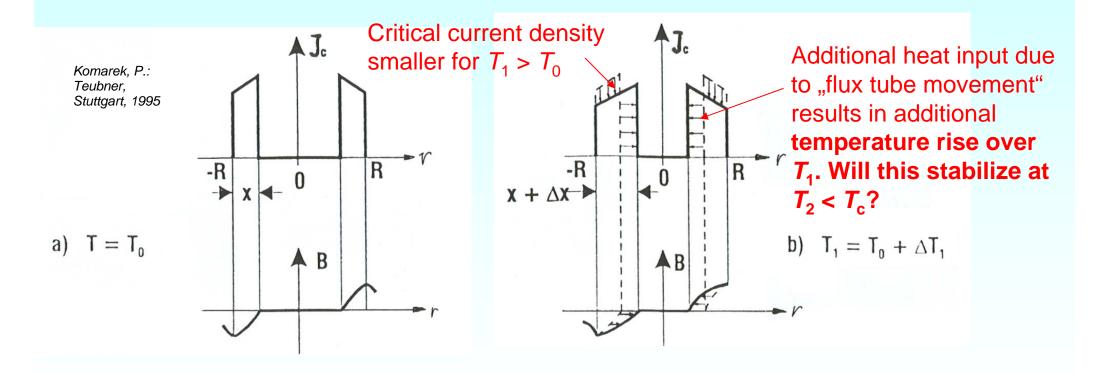
laminar flow: turbulent flow: $Re < Re_{cr}$ (critical *Reynolds* number $Re_{cr} = 2320$) Re > 3000.

For good heat transfer: Turbulent flow is needed !

DARMSTADT **Prof. A. Bind** UNIVERSITY OF TECHNOLOGY

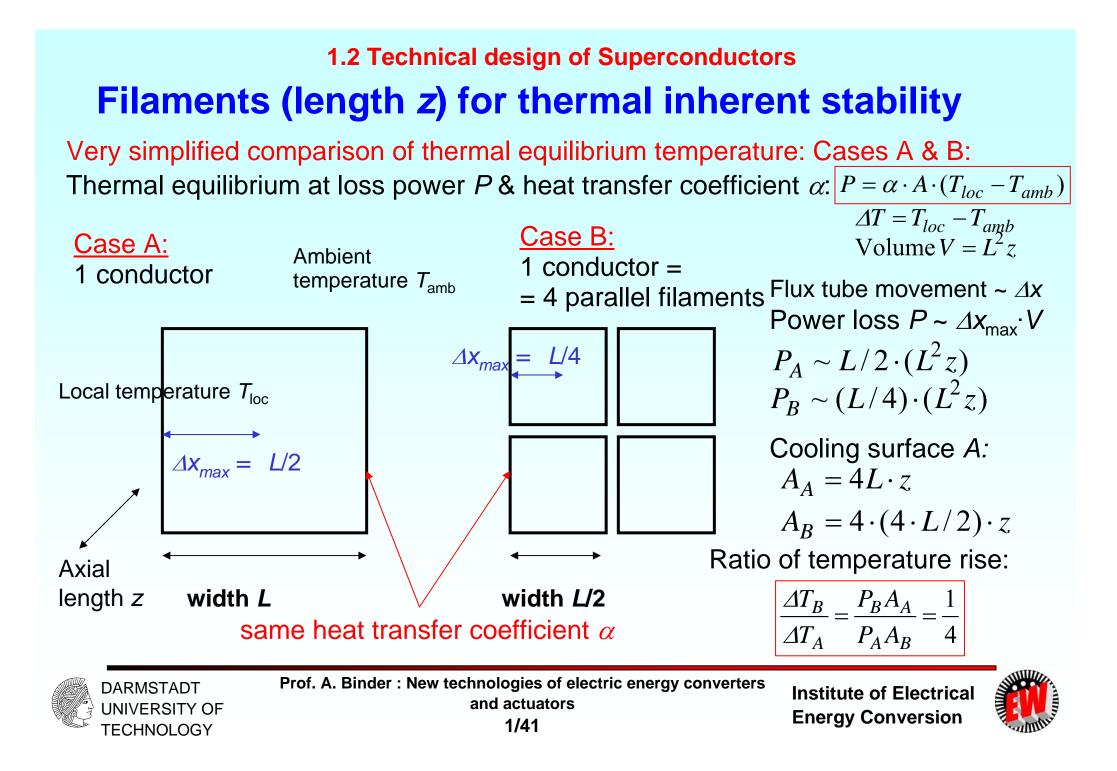
Prof. A. Binder : New technologies of electric energy converters and actuators V_{av}

Bean model: Calculation for round wire, T variable 1st step: assumption: J_c independent of B: Komarek, P.: $I_s = J_c(T) \cdot (R^2 - (R - x)^2)\pi = J_c(T) \cdot (2Rx - x^2)\pi$ Teubner. Stuttgart, 1995 $x = R - \sqrt{R^2 - I_s} / (J_c \pi)$ 2nd step: If temperature T rises: J_c reduced, x must rise for a given I_{s} R **3**rd step: exact calculation with $J_c(T, B)$: $\mathbf{X} + \Delta \mathbf{X}$ b) When x becomes equal to R, then the transport current limit is reached: $I_s = I_{s.cr}$. At $I_s > I_{s,cr}$: Quenching into normal condition!


DARMSTADT

TECHNOLOGY

How to attain thermal inherent stability ?


Transport current density distribution in superconductor wire (radius R, penetration depth x), while raising temperature from a) T_0 to b) T_1

JNIVERSITY OF

Inherent stability by filament wires

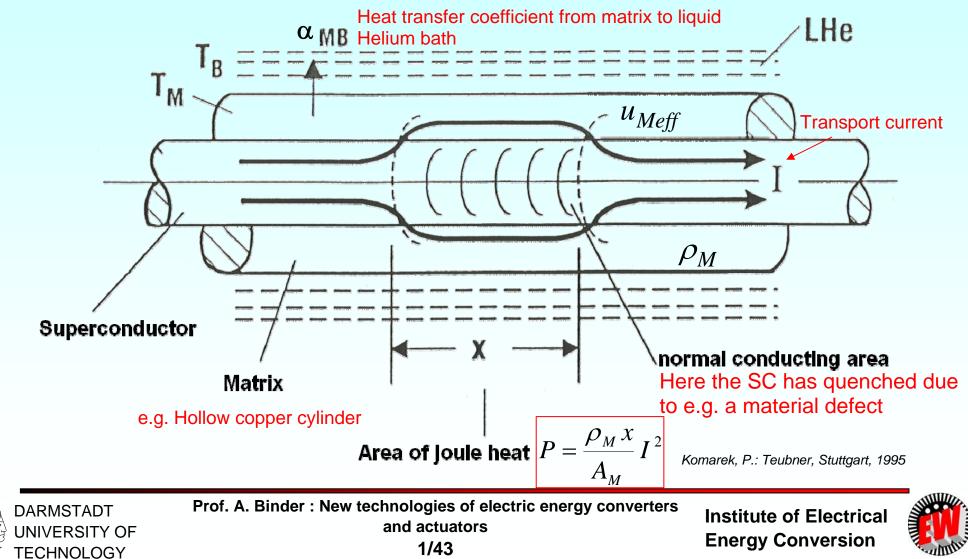
Arrange the SC as thin conductors (small radius), so that

- a) "flux movement" distances Δx are short and
- b) the additional heat input is small.

Then the thermal stability criterion is fulfilled.

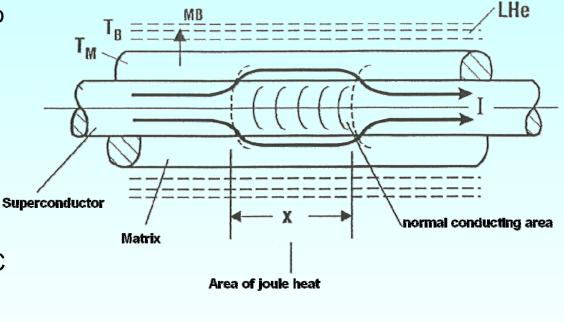
<u>Hence:</u> A separation in many parallel-positioned thin filaments is necessary.

DARMSTADT


TECHNOLOGY

JNIVERSITY OF

How to scope with a local fault in a SC (quenching) at length x?


Cryogenic stabilisation of technical superconductors with enveloping normal conductor matrix

- If a local quenching occurs (e.g. due to a material defect), the resistivity of the then normally conducting SC is usually much higher than that of e.g. copper or aluminum.

- Hence a big local heat would melt the SC.

- Therefore a "matrix" (e.g. copper) bypass as a hollow cylinder around the SC wire takes over the transport current.

- The matrix parameters must be chosen properly, so that the matrix Joule losses do not heat up the SC beyond the critical temperature, which otherwise would lead to a "quench" of the complete SC.

DARMSTADT

UNIVERSITY OF

TECHNOLOGY

Cryogenic stabilisation with cooled matrix

• At partial "quenching" at length *x*: Losses $P = \frac{\rho_M x}{A_M} I^2$ in matrix must be so small that we keep $T_M < T_c!$

• Hence the matrix resistivity $\rho_{\rm M}$ must be low and the matrix cross section $A_{\rm M}$ and the matrix circumference $u_{\rm Meff}$ big.

 \Rightarrow Heat removal via $\alpha_{\rm MB}$ must be big enough, leading to the condition:

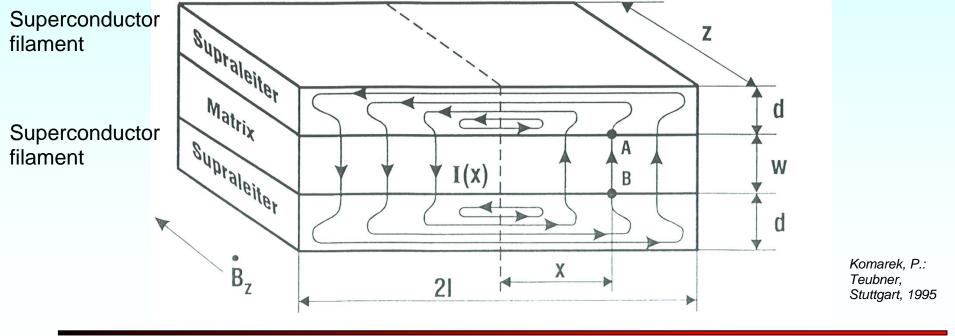
•
$$P = \frac{\rho_M x}{A_M} I^2 < \alpha_{MB} (T_c(B,J) - T_B) \cdot (x \cdot u_{Meff})$$
 : Stekly parameter $\alpha_{St} < 1$
$$\alpha_{St} = \frac{\rho_M I^2}{A_M \alpha_{MB} (T_c(B,J) - T_B) \cdot u_{Meff}} < 1$$

• The superconductor filament must be put into a highly conductive matrix (Cu, Al, Ag,...) of sufficiently large dimensions and good cooling conditions, to avoid that the quench fault length x increases along the superconductor

DARMSTADT

TECHNOLOGY

JNIVERSITY OF

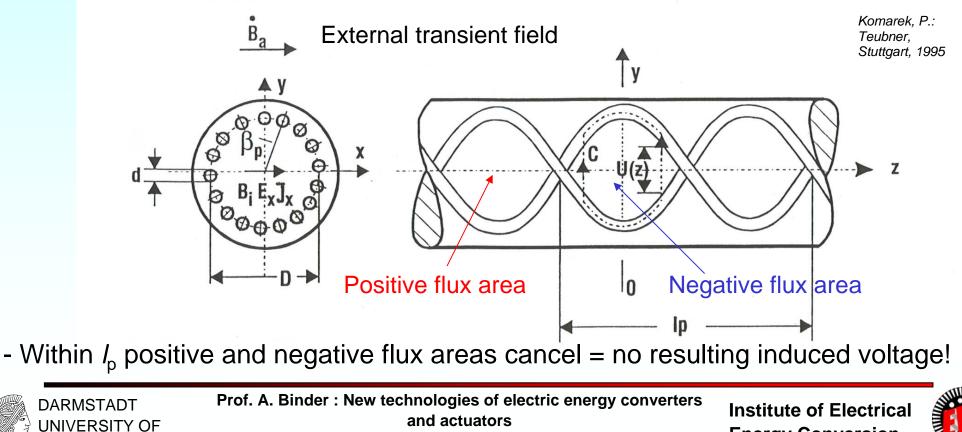


AC operation: "Coupling" of SC filaments with eddy currents

NbTi-SC in Cu matrix: SC: $d = 50 \ \mu\text{m}$, $J_c = 2.10^9 \text{ A/m}^2$, matrix: $\rho_M = 4.10^{-10} \ \Omega\text{m}$

External AC field with rate of change $dB_z/dt = 0.1$ T/s induces eddy currents I(x).

At a critical lenght $I_{c} = 2.8 \text{ cm}$ the eddy current density in the SC reaches the critical value J_{c} and quenches the SC filaments.

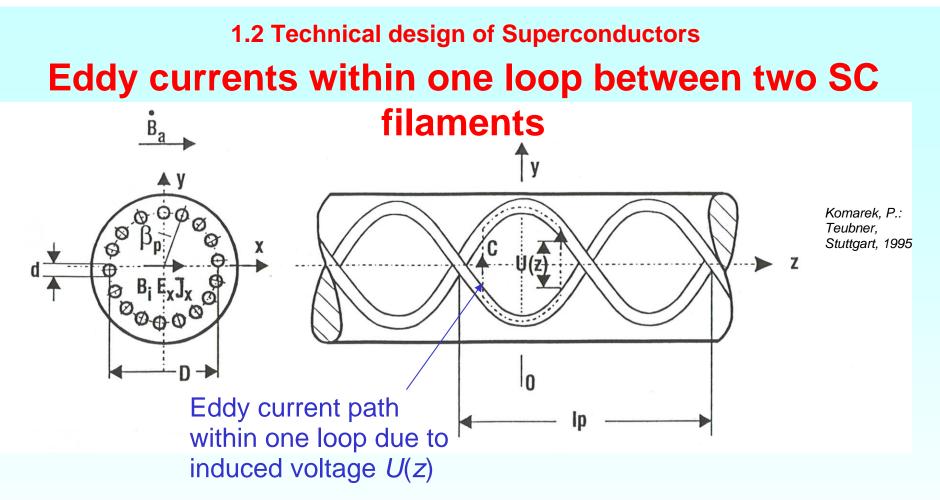


AC operation: Induced eddy currents

Flux:
$$\Phi(x,t) = B_z(t) \cdot w \cdot 2x$$

Induced voltage:
 $u_i = -d\Phi(x,t)/dt = -\dot{B}_z(t) \cdot w \cdot 2x$
Matrix coupling current ($R_{\rm SC} = 0!$):
 $I(x) = \frac{u_i(x)}{2R_{M,AB}} = \frac{-\dot{B}_z(t) \cdot w \cdot 2x}{2\rho_M \cdot w/(dx \cdot z)}$
Matrix coupling current density: $J(x) = \frac{I(x)}{dx \cdot z} = \frac{-\dot{B}_z(t) \cdot x}{\rho_M}$
Eddy current in the SC filament and the limit of the critical current density:
 $I_s(x) = -\int_0^x J(x) \cdot dx \cdot z = \frac{z \cdot \dot{B}_z(t) \cdot x^2}{2\rho_M}$
 $J_c \cdot d \cdot z = I_{s,c} = I_s(x = l_c) = \frac{z \cdot \dot{B}_z(t) \cdot l_c^2}{2\rho_M}$
Maximum admissible SC filament half length:
 $I_c = \sqrt{J_c 2\rho_M d/\dot{B}_z}$
 $I_c = \sqrt{2 \cdot 10^9 \cdot 2 \cdot 4 \cdot 10^{-10} \cdot 50 \cdot 10^{-6} / 0.1} = 28mm$
PARMSTADT
DARMSTADT
D

1.2 Technical design of Superconductors **Twisting of superconductor filaments**


Twisting of the superconductor filaments with a **twist-length** I_p , matched to the transient field dB/dt, is necessary, to avoid coupling of adjacent filaments and a "quench" by eddy currents.

Energy Conversion

TECHNOLOGY

Eddy currents within one loop $I(z) = U(z)/R_M(z)$ cause eddy current losses (Foucault losses) in the matrix:

$$P_{Ft} = U^2 / R_M = (\omega \cdot B \cdot D \cdot l_p / 2)^2 / R_M \sim (\omega \cdot B \cdot l_p)^2 / \rho_M$$

JNIVERSITY OF

SC alternating current losses

- Eddy current losses in the matrix: $P_{Ft} \sim (\omega B l_p)^2 / \rho_M$
 - Injection of resistive barriers (mixed matrix), CuNi-coating
 - Reducing the twist length I_p
- Hysteresis loss in SC: Partial Flux "tube" creep leads to hysteresis loop M(B). P_{Hy} prop. to the area of the magnetic hysteresis loop M(B).

 P_{Hy} ~ angular frequency ω & ~ SC filament wire diameter d

• For especially low loss of superconductors in the alternating field, filaments should be very thin (small diameter d, being way thinner than it is necessary for thermal stabilising).

DARMSTADT

JNIVERSITY OF

TECHNOLOGY

New technologies of electric energy converters and **actuators**

Summary: Technical design of superconductors

- Thin filaments for thermal stability
- Conductive matrix for quench take-over
- Much smaller filaments needed to reduce AC losses
- Twisted filaments for reduction of AC losses

DARMSTADT

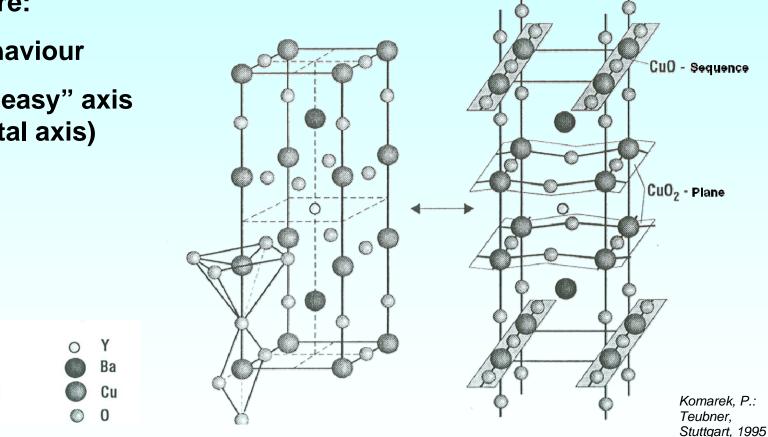
TECHNOLOGY

New technologies of electric energy converters and actuators

1. Superconductors for power systems

- 1.1 Fundamentals of superconductivity
- 1.2 Technical design of superconductors
- 1.3 Superconductors for technical use
- Cooling procedures 1.4
- 1.5 Cryostats
- 1.6 Cryogenic technology

JNIVERSITY OF



1.3 Superconductors for technical use HTSC Superconductor *Yttrium-Barium-Copper oxide* $YBa_2Cu_3O_{7-x}$

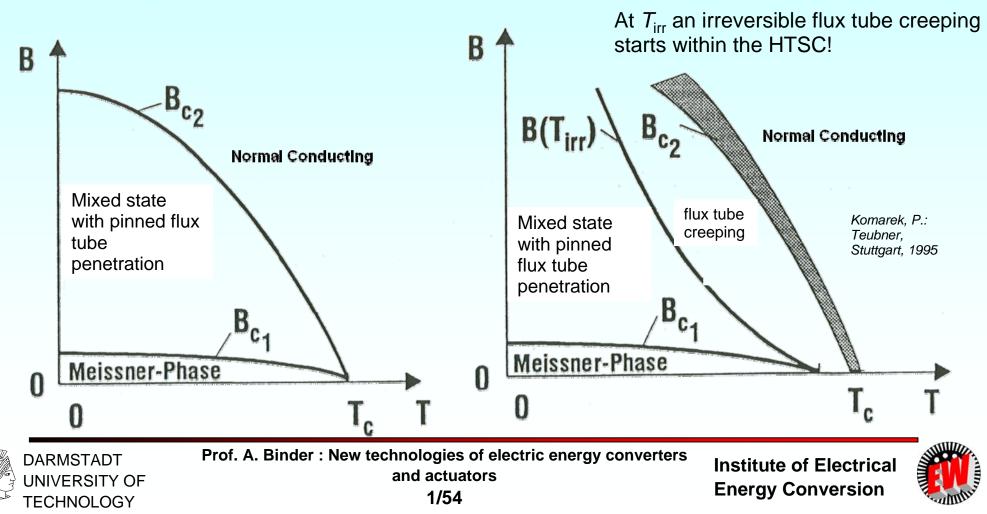
Crystal structure:

Anisotrope behaviour

a- and b-axis: "easy" axis (preferred crystal axis)

Prof. A. Binder : New technologies of electric energy converters DARMSTADT and actuators UNIVERSITY OF **TECHNOLOGY**

Institute of Electrical Energy Conversion



Limits of technical LTSC and HTSC superconductors

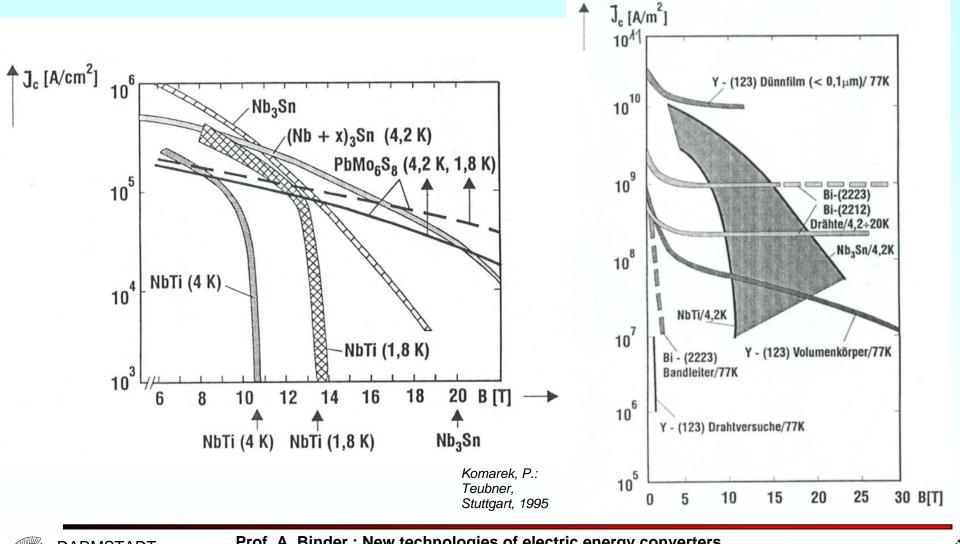
b) HTSC superconductor

B(T) phase diagram

a) LTSC superconductor,

Operating Areas of LTSC and HTSC

Superconductor type	LTSC	HTSC	
<i>Meissner</i> phase <i>B < B_{c1}</i>	Magnetic field does not enter SC, transport current flows without loss in the LONDON λ -layer		
Shubnikov phase	$B_{c1} < B < B_{c2}$	$B_{c1} < B < B(T_{irr})$	
	Magnetic field enters SC as regular flux tube pattern, transport current flows in the entire conductor cross section (lossless DC, AC: eddy current and hysteresis losses)		
Thermally activated flux creeping	Occurs only very close to T_c , hence not relevant	B(T _{irr}) < B < B _{c2} Through anisotropy and low pinning energy creeping of flux tubes: lossless DC not possible	



UNIVERSITY OF

1/55

Critical current density J_c and magnetic flux density B_{c2}

Parameters of LTSC and HTSC (1)

Material	$T_{c} (B=0) / K$	$B_{c2}(T=0)/T$	Application
NbTi (LTSC)	9.6	12 14	Standard material für $B \le 9$ T
Nb ₃ Sn (LTSC)	18	ca. 25	Standard material for high fields
Y(123) (HTSC)	ca. 90	>> 100 T *)	Magnet bearing, "Permanent" magnets, tape wire
Bi(2212)	ca. 80	> 20 T *)	Composite wire conductor
Bi(2223)	ca. 110	> 20 T *)	Composite wire conductor

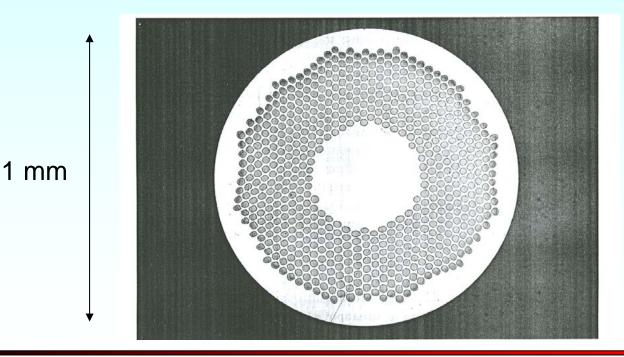
(*) : parabolic extrapolated in 70 K-area), in "easy" crystal axis for HTSC

 $Bi_2Sr_2Ca_2Cu_3O_{8+x} = Bi(2223)$ $Bi_2Sr_2CaCu_2O_{8+x} = Bi(2212)$ $YBa_2Cu_3O_{7-x} = YBCO$

UNIVERSITY OF

Parameters of LTSC and HTSC (2)

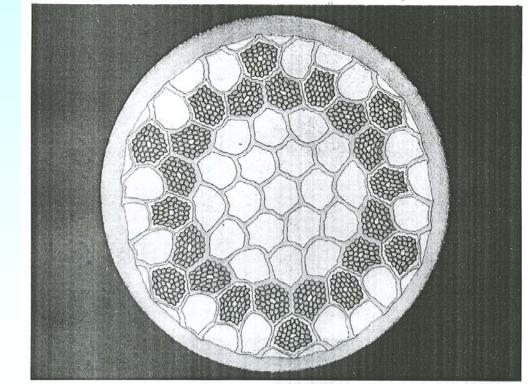
Material		Influence of mechanical load on critical current density: tensile stress σ and plastic deformation (elongation) ε
NbTi	LTSC	Small influence for σ < 500 MPa, ε < 0.3 %
Nb ₃ Sn	LTSC	Very sensitive, because brittle: decline of up to 50 %, at shear stress: filamentary break
Y(123)	HTSC	See: properties of HTSC tape conductors
Bi(2223)	HTSC	See: properties of HTSC wire conductors


 $1 Pa = 1 N/m^2$, $500 MPa = 500 N/mm^2$

NbTi-composite-round wire, Cu matrix, DC conductor

- Diameter 1 mm, 864 NbTi filaments, critical current $I_c = 75 \text{ A} (5 \text{ T}, 4.2 \text{ K})$
- Area: Wire overall: 0.785 mm², part of superconductor: 0.1 mm²
- Area ratio matrix/superconductor = 7, $J_c = 75/0.1 = 750 \text{ A/mm}^2$ "Engineering" current density: 75/0.785 = 96 A/mm²

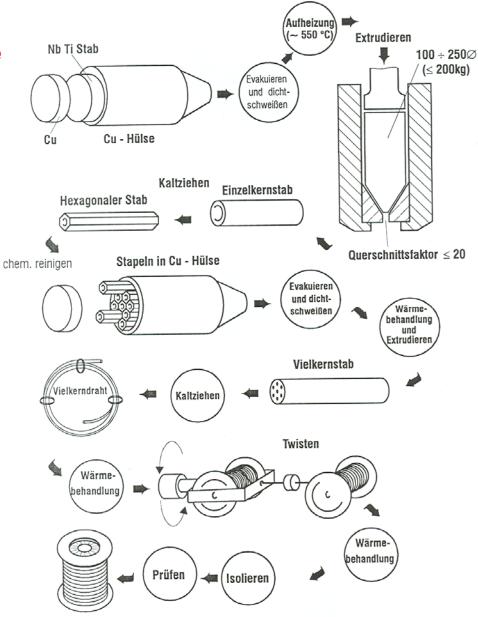
Komarek, P.: Teubner. Stuttgart, 1995


Prof. A. Binder : New technologies of electric energy converters and actuators JNIVERSITY OF TECHNOLOGY

1.3 Superconductors for technical use NbTi composite wire, Cu-CuNi mixed matrix, AC conductor

- Wire diameter 0.83 mm, 636 NbTi filaments (diameter 20 $\mu\text{m})$
- I_c = 430 A (5.5 T, 4.2 K), cross-sectional area: 0.54 mm², SC: 0.2 mm²,
- Cu: 0.34 mm², ratio Cu/SC = 1.7, J_c = 430/0.2 = 2150 A/mm²
 "Engineering" current density: 430/0.54 = 796 A/mm²

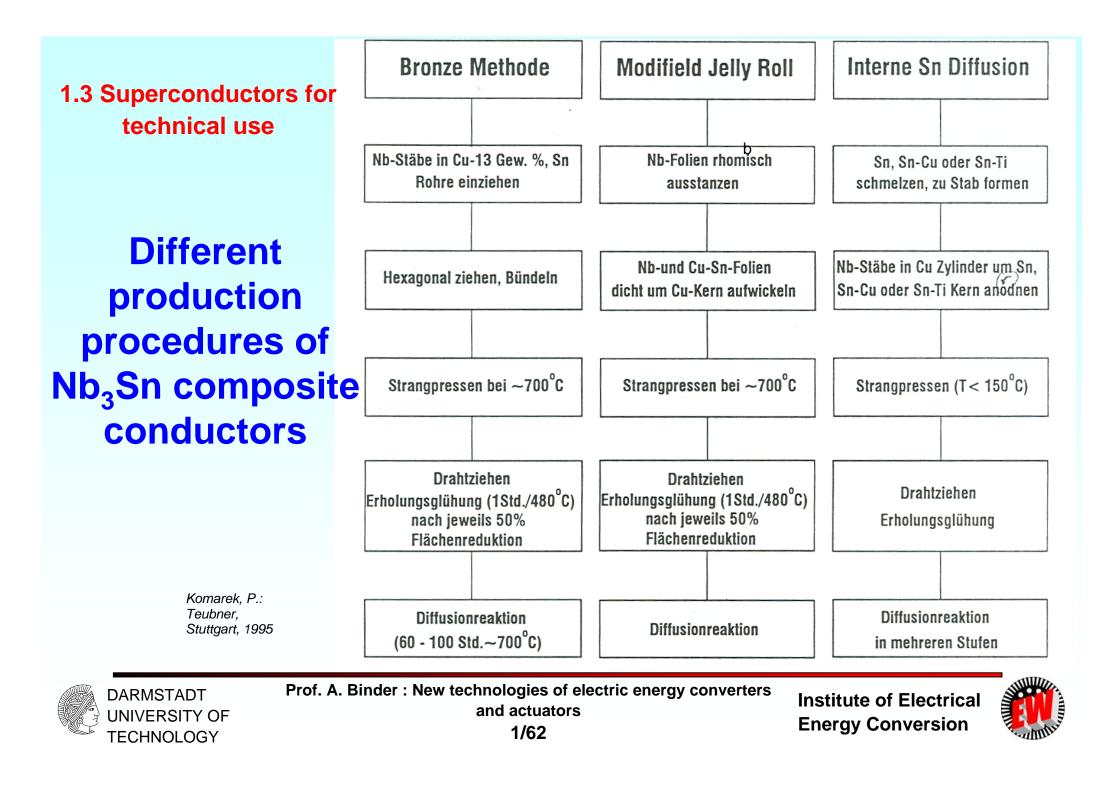
Komarek, P.: Teubner, Stuttgart, 1995



DARMSTADT UNIVERSITY OF TECHNOLOGY

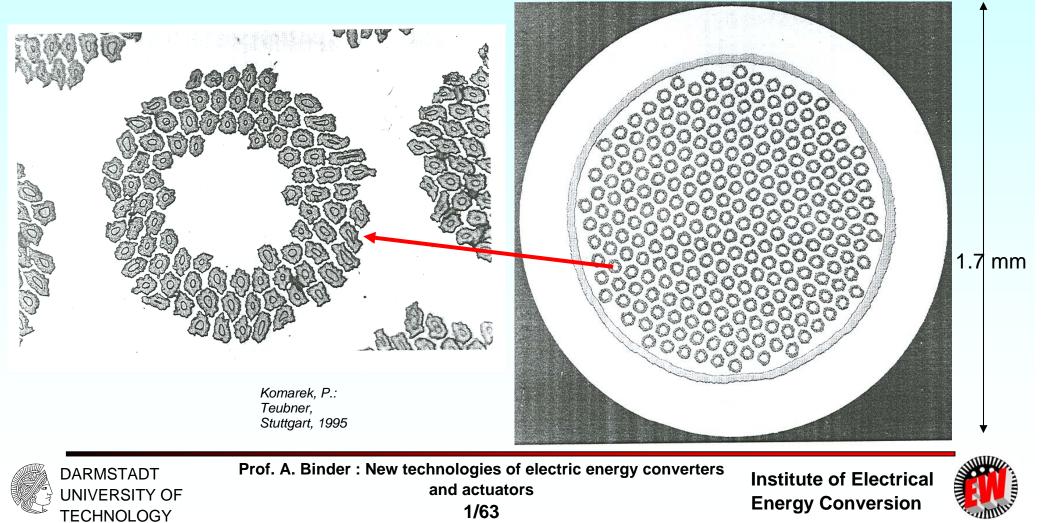
0.83 mm

Production of NbTi composite conductors

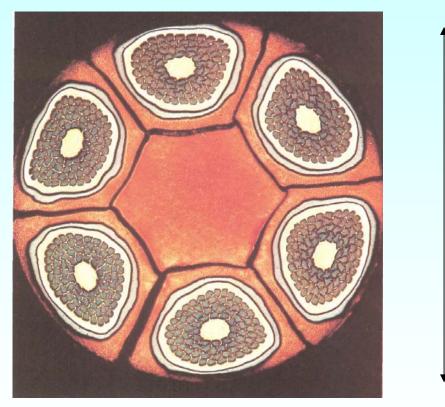


Komarek, P.: Teubner, Stuttgart, 1995

DARMSTADT **Prof.** UNIVERSITY OF TECHNOLOGY



1.3 Superconductors for technical use Nb₃Sn composite round wire

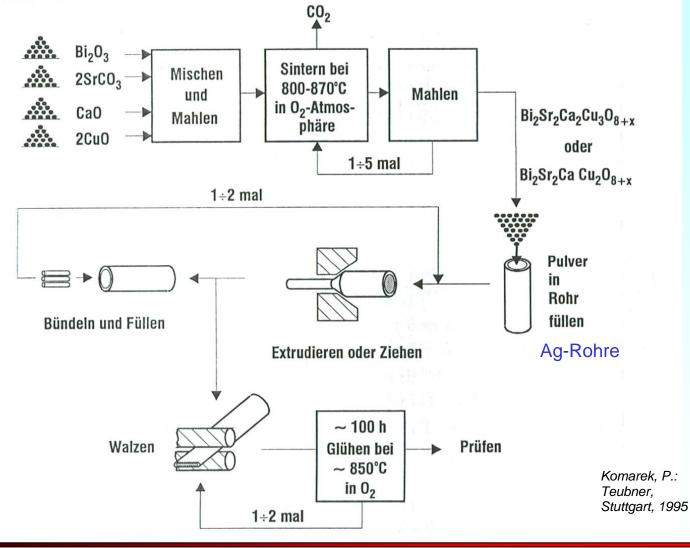

• Diameter 1.7 mm, 23000 Nb₃Sn filaments, critical current I_c = 750 A at 12 T and 4.2 K

• "Engineering" current density: $750/(1.7^2\pi/4) = 330 \text{ A/mm}^2$

1.3 Superconductors for technical use Nb₃Sn composite round wire

• Diameter 2.6 mm, 10000 Nb₃Sn filaments per conductor, 6 conductors in parallel, diameter 3 μ m per filament, Cu-Sn-matrix material: copper-tin alloy

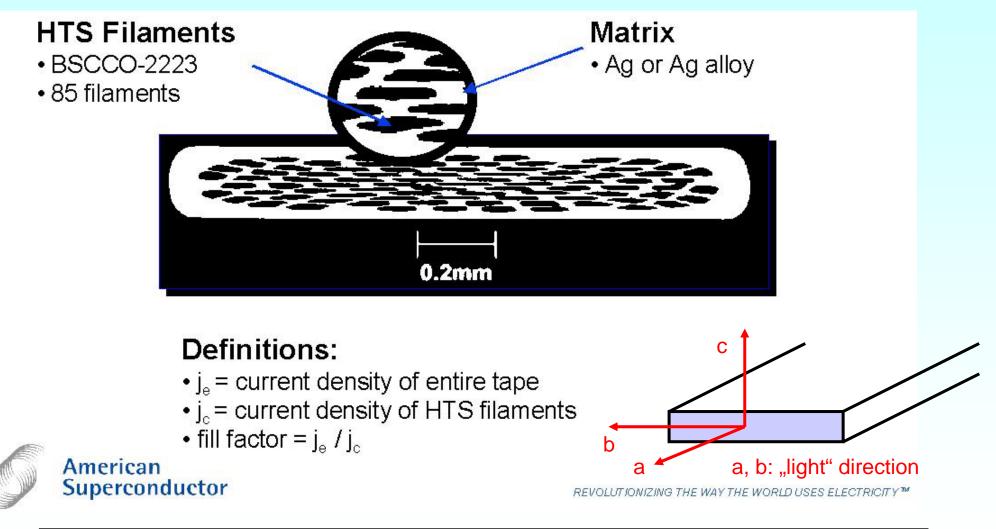
2.6 mm


Source: Vacuumschmelze GmbH, Hanau, Germany, 1983

DARMSTADT UNIVERSITY OF TECHNOLOGY

Production of Bi-superconductor composite flat wires

Prof. A. Binder : New technologies of electric energy converters



and actuators 1/65

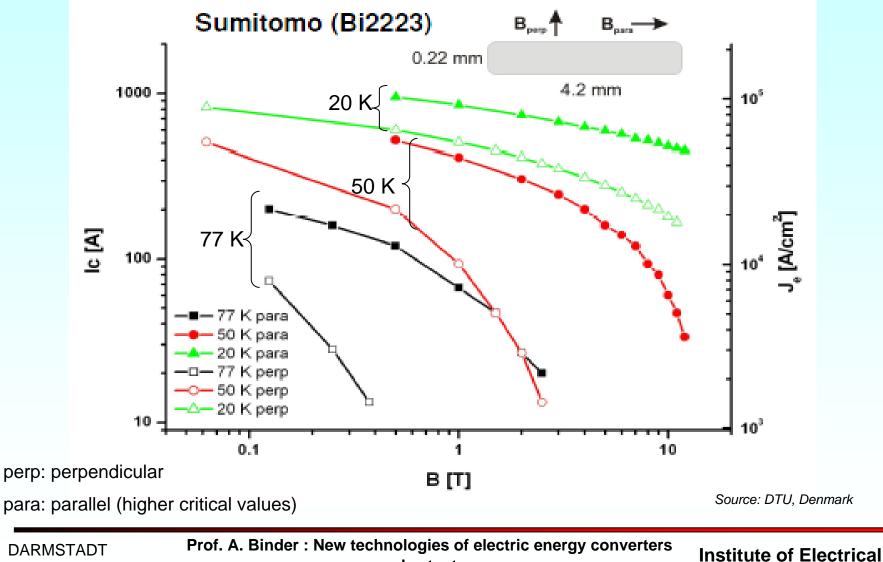
Institute of Electrical Energy Conversion

Cross section of a BiSCCO flat filament conductor

DARMSTADT UNIVERSITY OF TECHNOLOGY

1.3 Superconductors for technical use Winding up of HTSC BiSCCO flat filament conductors

Source: American Superconductor, USA


> BSCCO-tapes: Cost per kA & m length = ca. 120 €/(kA·m) (2013) Source: energiewirtschaft 112 2013, no.6

DARMSTADT UNIVERSITY OF TECHNOLOGY

1.3 Superconductors for technical use HTSC BSCCO anisotropic tapes for technical use

and actuators

Technical data of YBCO tape conductors (Issue 2007)

Substrate: Non-magnetic stainless Cr-Ni-steel band: Thickness $\Delta = 0.05 \dots 0.1$ mm HTSC: YBa₂Cu₃O_{7-x}, Thickness $d = 0.5 \dots 3 \mu m$ depending on application Cover layer: Silver, gold, copper: Thickness 0.1 … 40 μm Band width: 4.0 … 40 mm, lengths 100 … 500 m

Cross section: e.g. 0.1 mm x 4.0 mm = 0.4 mm^2

Critical current (77 K, 0 T) in HTSC: 3 μ m x 4 mm: 135 A; 3 μ m x 40 mm: 1000 A Critical current density (per HTSC cross section): 77 K, 0 T: 15 ... 40 kA/mm² Critical current density (per total cross section) = "Engineering"-current density: at 77 K: 400 ... 800 A/mm² e.g.: $I_c / A = J_c \cdot d / \Delta = 40$ kA/mm² $\cdot (1\mu$ m/100 μ m) = 400A/mm² at 65 K: 800 ... 1600 A/mm²

Thermal conductivity (77 K, 3 μm YBCO): 25 W/(m·K) Tensile strength (Zugfestigkeit): 650 MPa Minimum admissible bending radius: 9 mm, max. admissible torsion angle per cm: 30° at 4 mm band width

DARMSTADT

TECHNOLOGY

JNIVERSITY OF

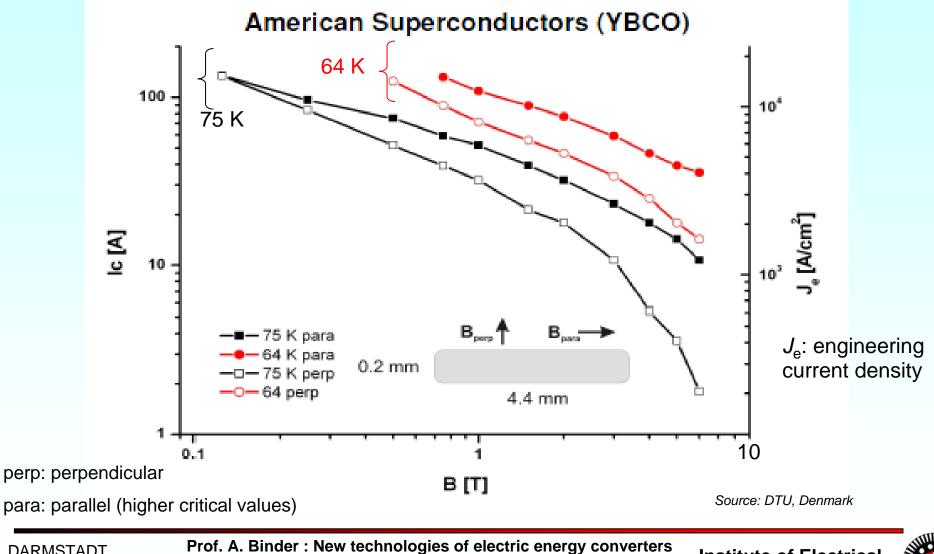
YBCO tape superconductors (Issue 2009)

HTS – Material: YBCO-Bandleiter vom AMSC,

Substrat: RABiTS NiW5%, 0.8 μm YBCO, Stabilisierung: 2 x 25 μm Edelstahl 4.4 mm breit, blank, I_c: ~85 A @ 77 K

- HTS wire laminated on both sides with stainless steel for strength and stability
- Stainless steel lamination provides high resistance shunt
- High engineering current density
- Robust product with excellent mechanical strength and bend tolerance

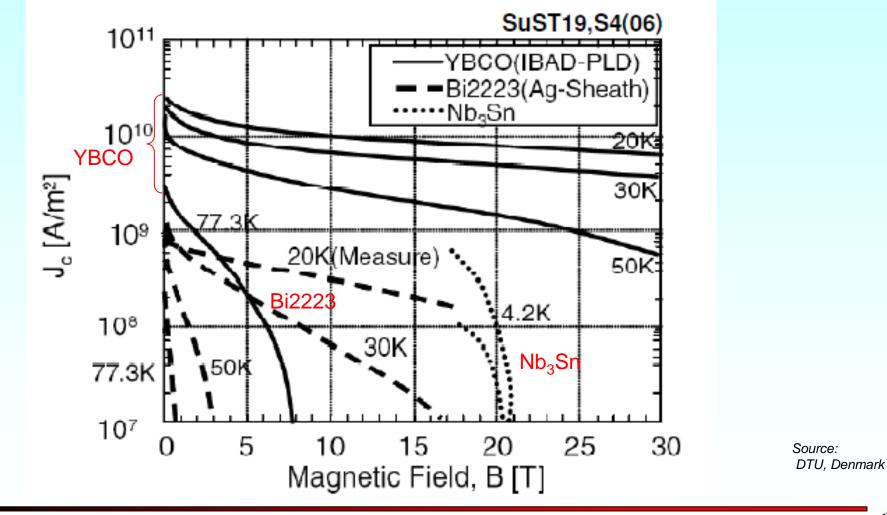
Source: American Superconductor, USA 344 superconductors are American Superconductor's new 3-ply, 4.4 mm wide second generation HTS wires.



DARMSTADT Prof. A. Binder : New technologies of electric energy converters UNIVERSITY OF and actuators TECHNOLOGY 1/70

Institute of Electrical Energy Conversion

1.3 Superconductors for technical use HTSC YBCO anisotropic tapes for technical use



Comparison of HTSC anisotropic tape conductors with LTSC Nb₃Sn

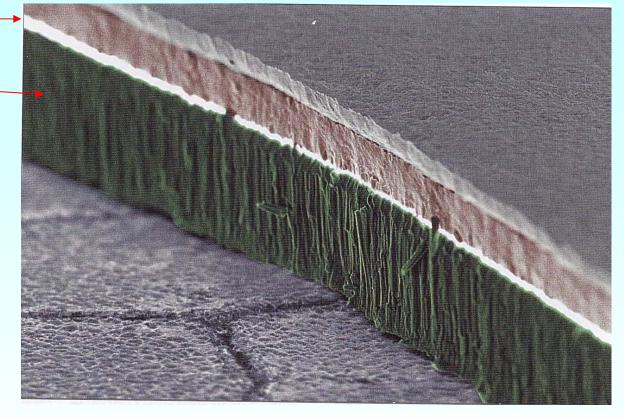
Prof. A. Binder : New technologies of electric energy converters and actuators

Institute of Electrical Energy Conversion

DARMSTADT

1.3 Superconductors for technical use YBCO tape superconductors (Issue 2013)

YCBO layer ca. 1 ... 3 µm


Stainless steel carrier tape ca. 0.1 mm

Typical data:

- 500 A per cm tape width = 400 A/mm^2 "engineering" current density at 77 K
- Tape width 4 ... 12 mm

JNIVERSITY OF

- Cost per kA & m length = $250 \notin (kA \cdot m)$ 4-times of copper conductor (2013) Aim: 2016: 60 €/(kA·m)
- Different manufacturing methods: e.g.: Metal Organic Chemical Vapor **Deposition MOCVD**

e.g.: A = 10mm $\cdot 0.12$ mm = 1.2mm² $J_c = I_c / A = 500 A / 1.2 \text{mm}^2 = 400 \text{A} / \text{mm}^2$

Source: Theva Dünnschichttechnik GmbH, Ismaning, D, Published in: energiewirtschaft 112, 2013, no. 6

New technologies of electric energy converters and actuators

Summary: Superconductors for technical use

- Low temperature metallic superconductors: NbTi and Nb₃Sn: isotropic behaviour
- High temperature ceramic copper oxide superconductors: Ba- and Y-cuprates, anisotropic behaviour
- Ba-cuprates as thin flat wires with silver matrix
- Y-cuprates as massive conductors below ca. 5 ... 10 cm or as flat band conductor strips

DARMSTADT

TECHNOLOGY

New technologies of electric energy converters and actuators

1. Superconductors for power systems

- 1.1 Fundamentals of superconductivity
- 1.2 Technical design of superconductors
- 1.3 Superconductors for technical use
- 1.4 Cooling procedures
- 1.5 Cryostats
- 1.6 Cryogenic technology

JNIVERSITY OF

1.4 Cooling procedures

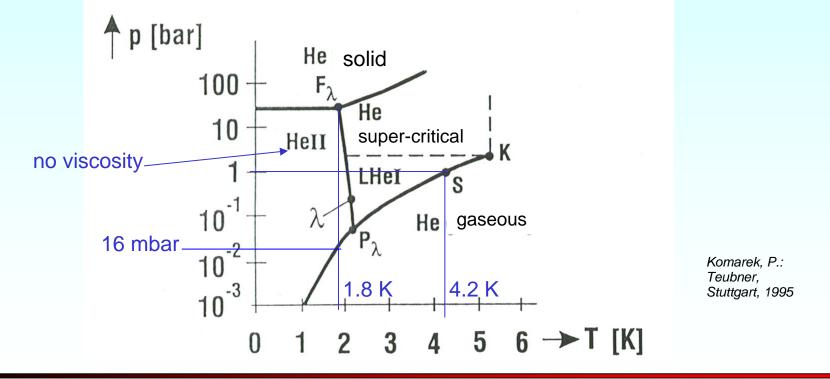
Coolants

Coolant	Melting point	Boiling point (1 bar)
Не	-	4.2 K
H ₂	14 K	20.4 K
N ₂	63 K	77.3 K

- Helium for cooling:
 - a) liquid Helium LHe I near boiling point S
 - b) "super-critical" liquid Helium
 - c) superfluid liquid Helium He II near 1.8 K

("superfluid" = very low viscosity)

• Property of Helium a), b), c) different

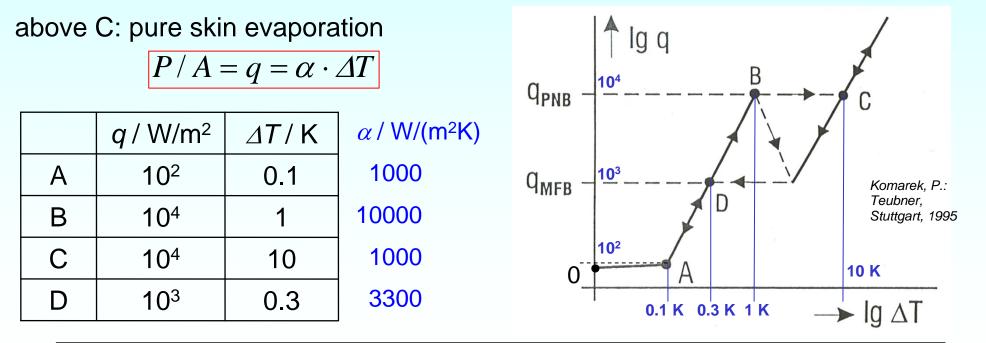


1.4 Cooling procedures

Pressure (p)-Temperature (T) phase diagram of Helium

- K: critical point 5.2 K, 2.26 bar, S: boiling point 4.2 K at 1 bar
- λ : p(T)-separation line between LHe I (L: liquid) and HeII ("superfluid" Helium)
- P_{λ} (2.17 K, 0.049 bar)... F_{λ} (1.76 K, 29.7 bar): crossover gaseous solid

DARMSTADT UNIVERSITY OF TECHNOLOGY



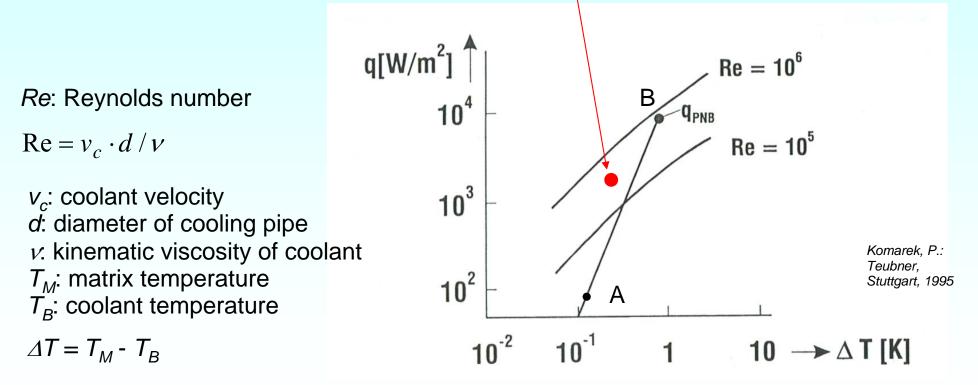
1.4 Cooling procedures Helium bath cooling

- 0....A: convective heat transfer at liquid Helium LHe I
- A...B: Evaporation of LHe I (blister evaporation)

- *q*: heat flow density *P*: losses α : heat transfer coefficient ΔT : temperature difference *A*: cooling surface
- B: The blister evaporation creates an enclosed vapour skin
- B...C...D: Thermally instable range between blister- and skin evaporation

DARMSTADT

UNIVERSITY OF


TECHNOLOGY

1.4 Cooling procedures

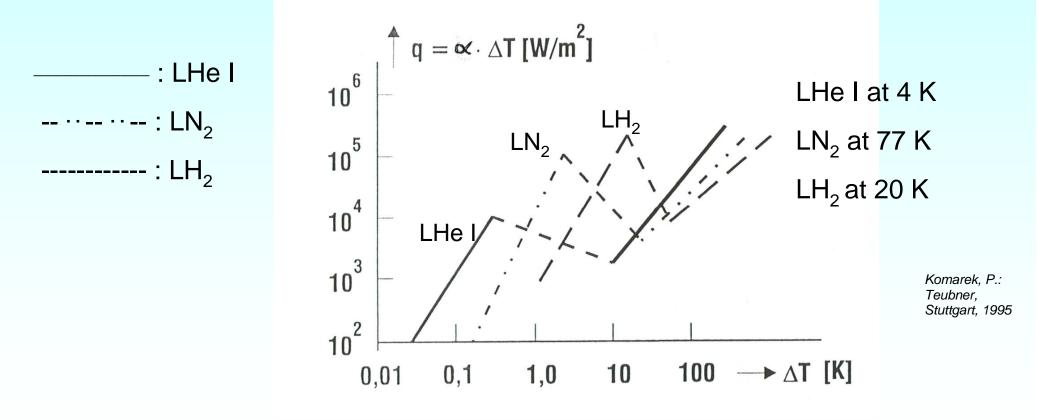
Heat Transfer: Forced flow of super-critical He

- Flowing super-critical He (4.2 K, 3 bar): *Reynolds* number e.g. 10⁵ or 10⁶ resp.
- q_{PNB} : Boiling bath cooling LHe I with blister evaporation (1 bar)
- Superfluid He II: $T_M = 2.16$ K, $T_B = 1.8$ K, $\Delta T = 0.36$ K: q = 2100 W/m²

DARMSTADT

UNIVERSITY OF

TECHNOLOGY



1.4 Cooling procedures

Boiling bath cooling: Nitrogen LN₂ and Hydrogen LH₂

- Compared: LHe I, LH_2 and LN_2 (p = 1 bar) (L: liquid)
- Blister cooling, unstable transition and skin cooling

New technologies of electric energy converters and actuators

Summary: Cooling procedures

- Low temperature superconductors: Liquid Helium cooling below 4 K
- Boiling bath cooling
- liquid pressurized He cooling
- superfluid He cooling at very low temperatures below 2 K
- High temperature superconductors:
 - Liquid Nitrogen cooling or gaseous rare gas cooling, below 77 K

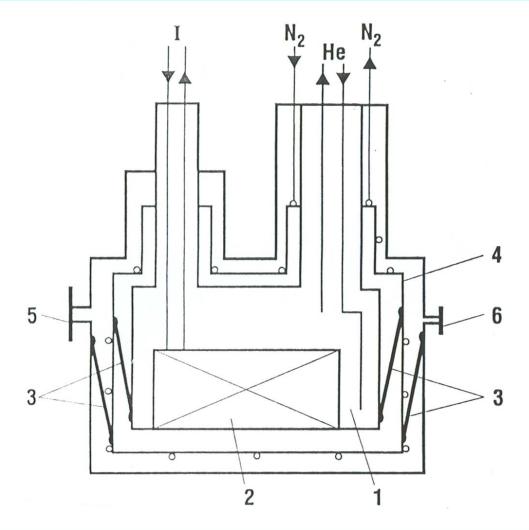
DARMSTADT

JNIVERSITY OF

TECHNOLOGY

New technologies of electric energy converters and actuators

1. Superconductors for power systems


- 1.1 Fundamentals of superconductivity
- 1.2 Technical design of superconductors
- 1.3 Superconductors for technical use
- Cooling procedures 1.4
- 1.5 Cryostats
- 1.6 Cryogenic technology

JNIVERSITY OF

Cryostat: Schematic design

- 1: 4 K-He space
- 2: Superconductor magnet
- 3: Suspensions
- 4: Radiation shield cooled to 80 K with LN₂
- 5: Bursting disc
- 6: Evacuating system connection
- I: Current leads

He: LHeI-Helium supply and He-exhaust gas

 $\rm N_2$: Shield cooling with $\rm LN_2$ supply and $\rm N_2$ -exhaust gas

Komarek, P.: Teubner, Stuttgart, 1995

Thermal input to cryostats by heat conduction

Heat conduction by mechanic fixation rods from warm to cold side: a)

Fourier law: $q = \lambda \cdot \Delta T / \Delta x$

 λ : Thermal conductivity for conduction of heat

Usually AUSTENITIC Cr-Ni-doped steel (non-magnetic) is used, which can be used also at very low temperatures without getting brittle! Heat flow is typically $\lambda \Delta T = 416$ W/m per length of a steel rod!

DARMSTADT

TECHNOLOGY

JNIVERSITY OF

Thermal input to cryostats by radiation

b) Thermal radiation from warm to cold areas:

$$P = A_K \cdot \frac{\sigma_{SB} \cdot (T_H^4 - T_K^4)}{\frac{1}{\varepsilon_K} - \frac{A_K}{A_H} \left(1 - \frac{1}{\varepsilon_H}\right)}$$

(Stefan-Boltzmann law, combined with Kirchhoff law)

 $\sigma_{SB} = 5.67 \cdot 10^{-8} \text{ W/(m^2K^4)}$ Stefan-Boltzmann constant

Absorption coefficient of radiation: ε_{κ} (at cold side), ε_{μ} (at hot side): $0 \le \varepsilon_{\kappa}, \varepsilon_{\mu} \le 1$ ε_{κ} should be small!

Radiating surface: A_{κ} (at cold side), A_{μ} (at hot side) Surface temperature: T_{K} (at cold side), T_{H} (at hot side) Radiated power: P

Note: At $\varepsilon_{\rm H} = 1$: $P \sim \varepsilon_{\rm K}$

<u>Note</u>: At $\varepsilon_{\kappa} = 1$, $\varepsilon_{H} = 1$, $A_{\kappa} = A_{H} = A$: we get Stefan-Boltzmann law alone: $P = A \cdot \sigma_{SB} \cdot (T_{H}^{4} - T_{K}^{4})$

JNIVERSITY OF

Thermal input to cryostats by "convection"

c) Heat convection by He-gas as residual gas in vacuum:

Residual He-gas molecules transport heat (= kinetic molecular energy) ! All other residual molecules (H_2 , O_2 , N_2 , ...) are frozen at the cold side!

 $P = A_K \cdot \alpha \cdot (T_H - T_K)$ $\alpha = K_W \cdot a_{AK} \cdot p_{Pa}$ (α : heat transfer coefficient) K_{W} : gas constant (He: 2.10⁵ W/(m²·K·bar))

 a_{AK} : Accommodation coefficient (He: 0.4), p_{Pa} : Partial pressure of residual gas

Prof. A. Binder : New technologies of electric energy converters DARMSTADT and actuators **JNIVERSITY OF** 1/86 TECHNOLOGY

Example: Thermal input to cryostats

a) Austenitic rod fixation: Temperature difference

 $\Delta T = 80 - 4 = 76$ K, rod cross section A = 1 cm², rod length $\Delta x = 50$ cm :

 $P = A \cdot \lambda \cdot \Delta T / \Delta x = 10^{-4} \cdot 416 / (50 \cdot 10^{-2}) = 80 mW$: P = 80 mW

b) Radiation: $\sigma_{SB} = 5.67 \cdot 10^{-8} \text{ W/(m^2K^4)}$ Stefan-Boltzmann constant

<u>Cold side:</u> well polished metal surface: $\varepsilon_{\kappa} = 0.05$, 4.2 K

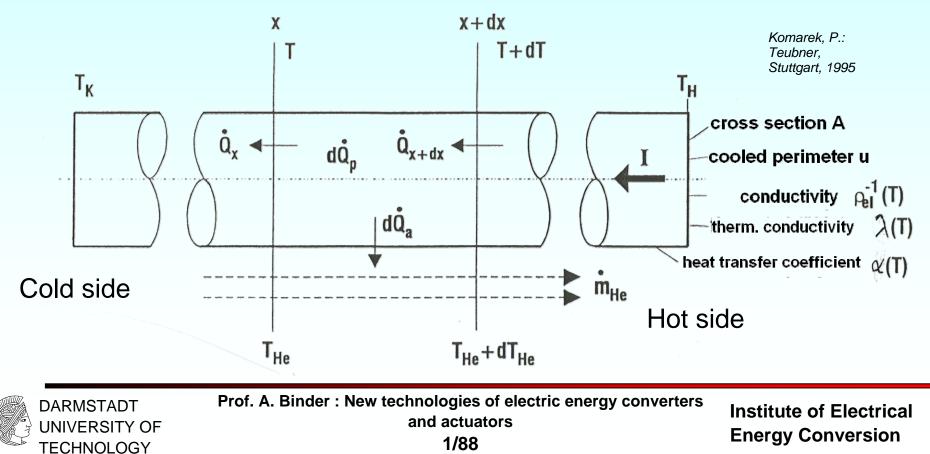
<u>Hot side</u>: oxidised (dead) plate: $\varepsilon_{H} = 0.5, 80 \text{ K}$

 $A_{H} \sim A_{\kappa}$: $P/A_{\kappa} = q = 0.11 \text{ W/m}^2$

c) He-residual gas: Partial pressure 10⁻⁵ mbar in vacuum container

 $T_{\mu} = 80 \text{ K}, T_{\kappa} = 4.2 \text{ K}, P/A_{\kappa} = 2 \cdot 10^5 \cdot 0.4 \cdot 10^{-8} \cdot (80 - 4.2) = 0.06W/m^2$ $q = 0.06 \text{ W/m}^2$

e.g.: $A_K = 1m^2$: $P = (q_{b1} + q_{c1}) \cdot A_K = (0.11 + 0.06) \cdot 1 = 0.17 = 170$ mW


DARMSTADT

JNIVERSITY OF

Heat balance in cooled current feed

- Q: Heat energy, heat flow density q = (dQ/dt)/A in gas cooled current feed
- Coolant flow rate dm_{He}/dt , current flow I
- Q_p : Heat by RP^2 Q_a : energy export by cooling

Heat inflow in non-cooled current feed

- $P/V = \rho_{al}(T)J^2$ Joule losses per volume
- Wiedemann-Franz-Lorenz law: $\lambda(T)\rho_{el}(T) = L_0T$ $L_0 = 2.445 \cdot 10^{-8} \text{ W} \cdot \Omega/\text{K}^2$
- Fourier heat conducting law: Heat flow density: $q(x) = -\lambda(T) \cdot dT / dx$
- Heat flow balance: $A \cdot dq(x) = A \cdot (q(x + dx) q(x)) = A \cdot dx \cdot \rho_{ol}(x)J^2$
- HEAT CONDUCTION-equation: $\frac{d}{dx} \left(\lambda(x) \cdot A \cdot \frac{dT}{dx} \right) + \frac{\rho_{el}(x)}{A} I^2 = 0$
- Boundary condition: Copper bar: x = 0, $T = T_{H}$; x = L, $T = T_{K}$
- Solution: $q = P/A = \frac{1}{A} \int_{-\infty}^{L} \rho_{el}(x) J^2 A dx = \left(\frac{I}{A}\right)^2 \int_{-\infty}^{L} \rho_{el}(x) dx = \frac{I}{A} \sqrt{2 \int_{-\infty}^{TH} \lambda(T) \rho_{el}(T) dT}$ $\int_{0}^{TH} \lambda(T) \rho_{el}(T) dT = \int_{0}^{TH} L_0 T dT = L_0 \frac{T_H^2 - T_K^2}{2} \qquad \Longrightarrow q = \frac{I}{A} \sqrt{L_0 (T_H^2 - T_K^2)}$ TK

JNIVERSITY OF

Example: Non-cooled current feed

- Copper-current feed: T_{K} = 4.2 K, T_{H} = 290 K (17°C at hot side)
- $I = 1000 \text{ A Transport current: } P = q \cdot A = I_{\sqrt{L_0(T_H^2 T_K^2)}}$ $P = q \cdot A = 1000\sqrt{2.445 \cdot 10^{-8}(290^2 - 4.2^2)} = \underline{45.3W}$

45 W: much too high !

- Such simple built current feeds CANNOT be used!
- If $T_H = 290$ K, $T_K = 77$ K: <u>P = 43.7 W</u> would be somewhat smaller.
- Current feeds **must be cooled**, so heat loss can be removed via a cooling gas and cannot flow to cold side.

DARMSTADT

TECHNOLOGY

JNIVERSITY OF

Technically realised current feeding

a) Exhaust gas cooled current feed:

He-Boiling-bath cooling: vaporized He passes as cooling gas past current feed

b) HTSC superconductor as current feed:

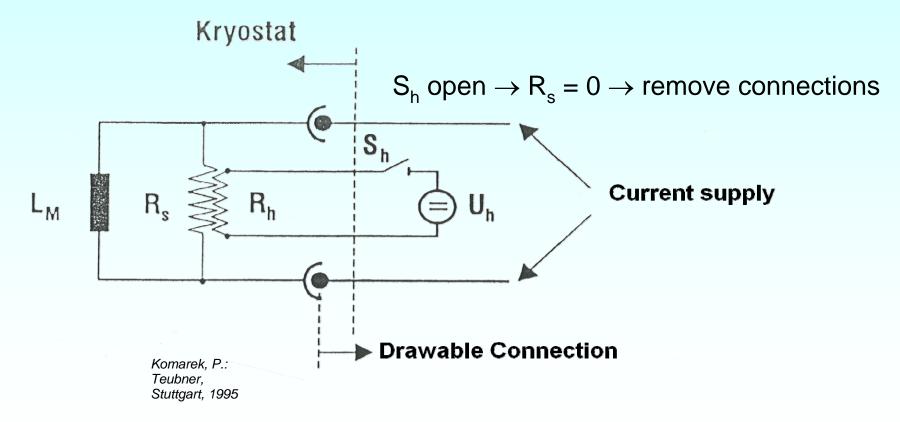
<u>He cold gas cooling</u>: critical temperature below the limit for HTSC \Rightarrow Cold side LTSC: (Nb₃Sn), intermediate conductor: HTSC (Bi(2212)), Hot side: copper as conductor.

c) Removable current feed for "current short circuit" operation: e.g. in computer tomographs (MRI), SMES:

DC current needed for exciting a DC magnetic field for long time:

- Cold end: plug-in connection,
- Super-conducting short circuit switch for SC winding,
- \Rightarrow No loss due to heat conduction via current feed

DARMSTADT


JNIVERSITY OF

Removable current feed for SC-magnet

- Continuous DC current operation with superconducting short circuit switch R_s
- L_M : magnet coil inductivity, $R_h S_h U_h$: heating circuit

New technologies of electric energy converters and **actuators**

Summary: Cryostats

- Low temperature tank vessels
- Needed for maintaining a space at very low temperature
- Vacuum thermal insulation
- Radiation shields at intermediate temperature 77 K for 4 K operation

DARMSTADT

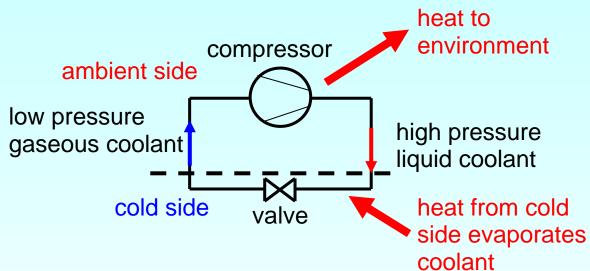
TECHNOLOGY

New technologies of electric energy converters and actuators

1. Superconductors for power systems

- 1.1 Fundamentals of superconductivity
- 1.2 Technical design of superconductors
- 1.3 Superconductors for technical use
- 1.4 Cooling procedures
- 1.5 Cryostats
- 1.6 Cryogenic technology

JNIVERSITY OF


Cryogenic properties of He and N ₂	Helium	Nitrogen
Boiling point T_s at 1 bar	4.22 K	77.35 K
Critical point p_{κ}/T_{κ} : Pressure / Temperature	2.3bar /5.22K	33.9bar/126K
Vaporizing heat w	20.8 kJ/kg	199 kJ/kg
Heat conductivity λ : boiling liquid	0.027 W/(m·K)	0.14 W/(m·K)
Heat conductivity λ : Gas at 300 K (about 27°C)	143 W/(m·K)	24 W/(m·K)
Heat flow density q for blister vaporization at 1 bar	0.8 W/cm ²	\leq 12 W/cm ²
Specific heat c_p of boiling liquid, J/(kg·K)	4.41	2.03
Specific heat c_p of gas (at 0°C, 1 bar), kJ/(kg·K)	5.23	1.04
Density ρ of boiling liquid	124.8 kg/m ³	804.2 kg/m ³
Density $ ho$ of gas (at 0 °C, 1 bar)	0.178 kg/m ³	1.25 kg/m ³
Relative permittivity ε_r / loss factor $tg\delta$	1.05 / 2·10 ⁻⁶	1.43 / >1·10 ⁻⁵
Breakdown field strength E _D for boiling liquid, kV/cm	200400	300600
Breakdown field strength <i>E_D</i> for gas (at 1°C, 1 bar)	4.7 kV/cm	3.3 kV/cm
Pressure influence (<i>Paschen law</i>): <i>E_{D,min}</i> (kV/cm) <i>p</i> *	1.7 @ <i>p*</i> =50mbar	0.3 @ <i>p*</i> =10mbar

1/95

Cold vapour process (1)

- Refrigeration machine: Thermodynamic cycle process
- Cryogen (coolant, CN) operated between "liquid" and "gaseous" state.

CN: Low boiling point, vapour heat is extracted from the cooled object.

CN: Afterwards liquefaction via compression \Rightarrow The critical temperature of cryogen must be higher than the condenser temperature, otherwise no liquefaction of the gas under pressure possible.

DARMSTADT

JNIVERSITY OF

TECHNOLOGY

Cold vapour process (2)

- Applications: Compressor fridge, heat pump (reversed operation to fridge)
- Special design: absorber fridge
- To create very low temperatures (< -100 °C) the <u>cold vapour process</u> cannot be used for technical reasons:
 - "cold" compressor causes technical problems (bearings!),
 - sealing problems,
 - freezing lubricant in bearings etc.

1.6 Cryogenic technology Cold gas process

• Cryogen (coolant) in gaseous state

1) Stirling process

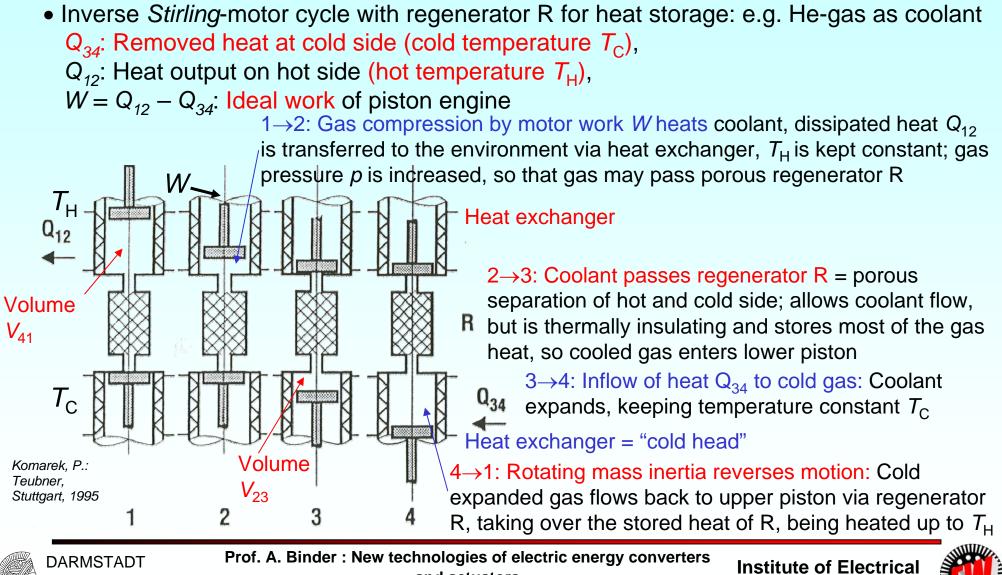
In the **Stirling cycle process** the cryogen (He gas) is used in a closed thermal cycle and removes heat from chilled goods.

2) Adiabatic expansion (Q = const.)

An (ideal) gas is expanded in an expansion machine (e.g. piston engine,...) (= the pressure drops). The delivered work from the gas to the machine decreases the heat energy in gas, which is cooled.

3) Joule-Thomson expansion

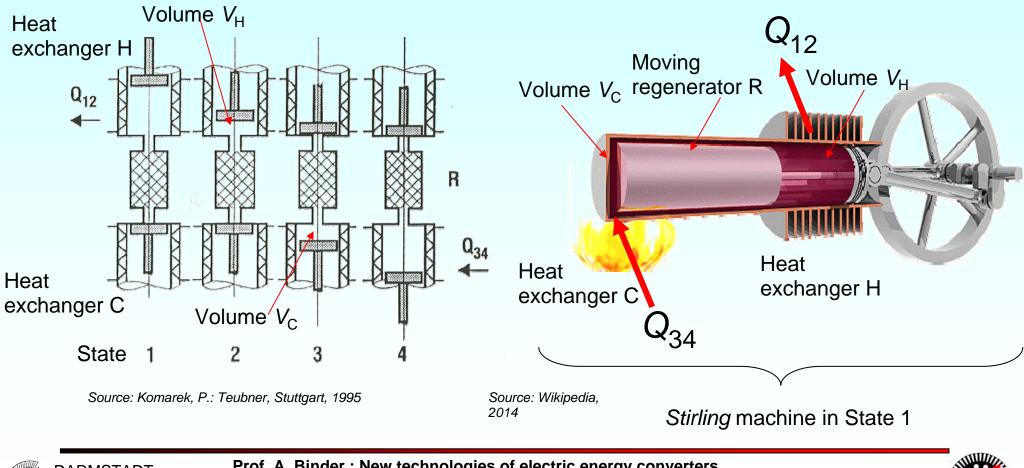
Expansion of a **real** gas via flowing through a throttle valve: Temperature falls in the gas (due to gas work against the attracting *van der Waals* forces).


DARMSTADT

UNIVERSITY OF

TECHNOLOGY

1.6 Cryogenic technology Stirling cooling process

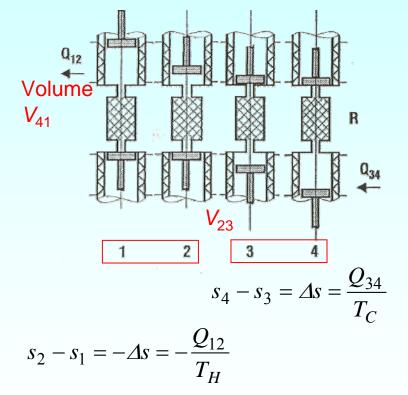

and actuators

Stirling cooling machine

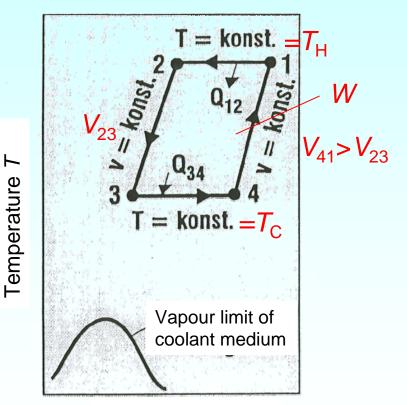
Moving pistons

Moving regenerator

Prof. A. Binder : New technologies of electric energy converters and actuators 1/100 Institute of Electrical Energy Conversion



1.6 Cryogenic technology Stirling cooling process: T-s-Diagram


• Temperature-entropy: T(s)-diagram of the coolant medium

Komarek, P.: Teubner, Stuttgart, 1995

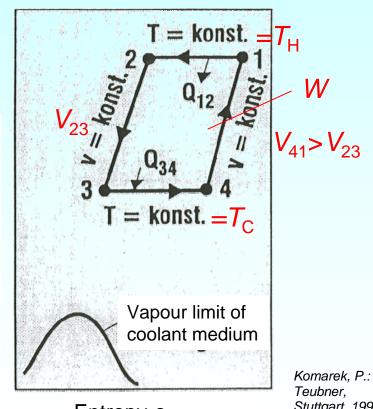
Entropy change: ds = dQ/T; enclosed area = necessary work *W* for cooling

Q = m c T: At *m*, *c* const.: $\Delta s_{12} = -\Delta s_{34}$

1.6 Cryogenic technology Stirling cooling process: Theoretical efficiency

 \vdash

• Calculation of work W from T(s)-diagram


$$W = \int_{1-2-3}^{1-2-3} T(s) \cdot ds - \int_{1-4-3}^{1-4-3} T(s) \cdot ds = \int_{1-2-3}^{1-2-3} \frac{dQ}{ds} \cdot ds - \int_{1-4-3}^{1-4-3} \frac{dQ}{ds} \cdot ds =$$
$$= \int_{1-2-3}^{1-2} \frac{dQ}{ds} - \int_{1-4-3}^{1-4-3} \frac{dQ}{ds} - \int_{1-2}^{1-4-3} \frac{dQ}{ds} - \int_{1-4-3}^{1-4-3} \frac{dQ}{ds} \cdot ds =$$
$$W = Q_{12} - Q_{34}$$

• Ideal efficiency of the cooling process η :

$$\eta = \frac{Q_{34}}{W} = \frac{Q_{34}}{Q_{12} - Q_{34}} = \frac{\Delta s \cdot T_C}{\Delta s \cdot T_H - \Delta s \cdot T_C} = \frac{T_C}{T_H - T_C}$$

$$\eta = \frac{T_C}{T_H - T_C}$$

Facit: The ideal efficiency of the *Stirling* cooling process is identical with the CARNOT-efficiency and therefore maximum!

Entropy s

Stuttgart, 1995

DARMSTADT

TECHNOLOGY

Adiabatic expansion (Q = const.)

- Ideal gas: Gas particles have no volume ("points"), but mass, and have no interacting forces
- Ideal gas: $p \cdot V = n \cdot R \cdot T$

n: number of mol =
$$N/N_A$$
, *N*: particle number $N_A = 6.022 \cdot 10^{23}$ Avogadro's number

- Inner energy of an ideal gas: $U = N \cdot (f/2) \cdot k \cdot T$ f: number of degrees of freedom per particle $U = n \cdot (f/2) \cdot N_A \cdot k \cdot T = n \cdot (f/2) \cdot R \cdot T$

- Change of inner energy by work W or heat Q: $dU = \delta W + \delta Q$
- <u>Adiabatic change of state</u>: No heat exchange: $\delta Q = 0$: $dU = \delta W$

Ideal gas is expanded e.g. in a piston engine, the gas works against the piston. The delivered work $\Delta W < 0$ from the gas to the piston decreases the inner gas energy, hence its temperature T drops.

$$\Delta W = \Delta U = n \cdot (f/2) \cdot R \cdot \Delta T = n \cdot (f/2) \cdot R \cdot (T_2 - T_1) < 0 : T_2 < T_1$$

 $p_1 \cdot V_1 \sim T_1 > p_2 \cdot V_2 \sim T_2$: pressure drops via expansion: $p_2 < p_1$

Ideal gas versus real gas

- Ideal gas: Gas particles have
 - no volume ("points"), but mass,
 - no interacting forces
- Real gas: Gas particles have
 - volume ("NO ideal points") and mass,
 - interacting forces (electrostatic van der Waals forces)

DARMSTADT

TECHNOLOGY

JNIVERSITY OF

Prof. A. Binder : New technologies of electric energy converters and actuators

1/104

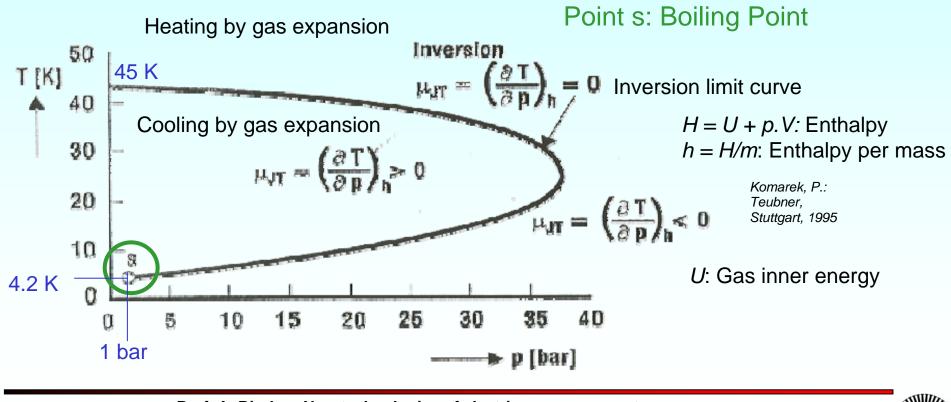
Joule-Thomson expansion

• Expansion of a real gas: Flowing through a throttle valve:

- A) There are *van der Waals* forces between the gas molecules, against which the expanding gas performs work, which is covered by its heat content (inner energy *U*): *T* falls.
- B) Gas-molecules have <u>finite</u> volume, which narrows the space for molecule movement (kinetic energy $U \sim kT$). Gas, limited to small volume *V*, has lower *U* than in bigger volume \Rightarrow expansion: *T* rises
- If A dominates over B: Temperature falls at expansion: at low T(U small)
- If B dominates over A: Temperature rises at expansion: at high T(U big)
- The temperature, at which the effect changes its sign, is called inversion-temperature T_i. It depends on the pressure p in the gas.

DARMSTADT

JNIVERSITY OF


TECHNOLOGY

Helium-inversion temperature T_i

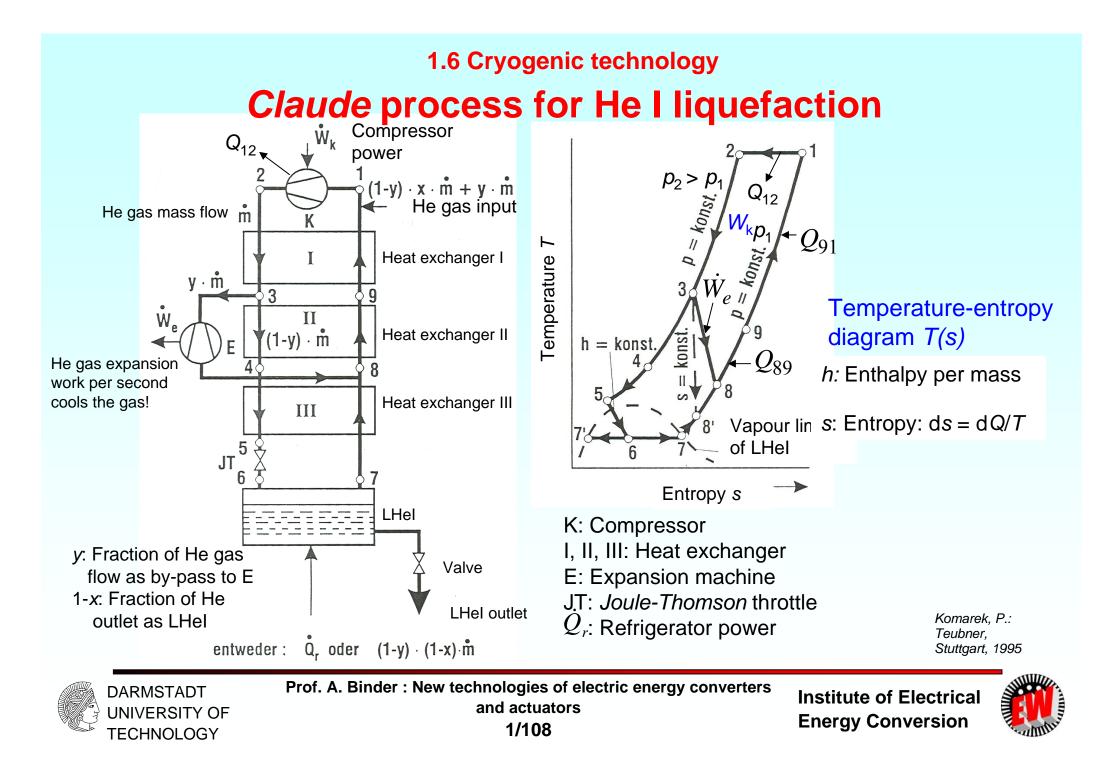
- $T_i(p)$: Inversion curve: He-Gas: $T_i = 45$ K (0 bar), T_i max. at p_{min}
- Inside inversion curve: Expansion by a throttle valve \Rightarrow cooling effect

Inversion temperature T of gases He, H₂, N₂

• p = 0 bar:

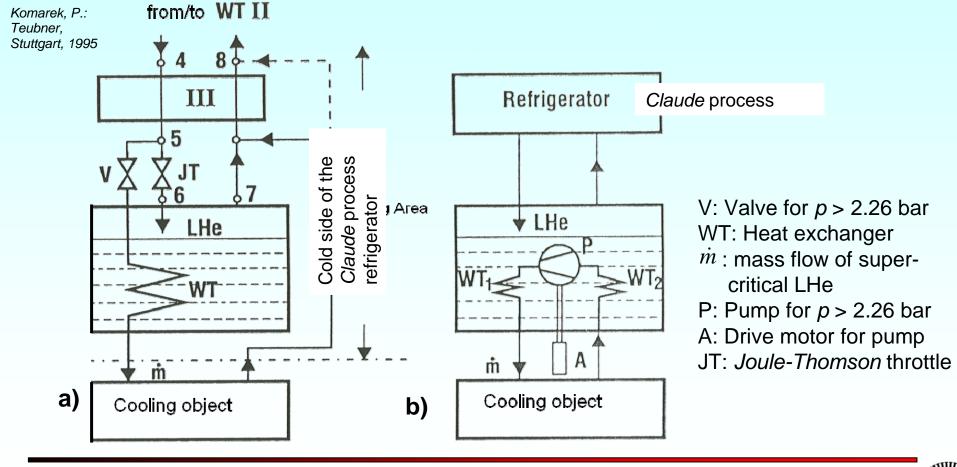
Gas	Helium	Hydrogen	Nitrogen
Inversion temperature	45 K	205 K	621 K

- Joule-Thomson effect can be used for N₂ in all cooling ranges from room temperature 293 K (20°C) downwards.
- He and H₂-Gas: Until reaching inversion temperature, it must be precooled by other effects. Multistep cooling processes are necessary.
- Using the *Joule-Thomson* effect:
 - e. g. *Claude* process: LHeI-liquefaction, *Linde* process: N₂-liquefaction

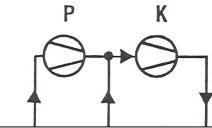

DARMSTADT

TECHNOLOGY

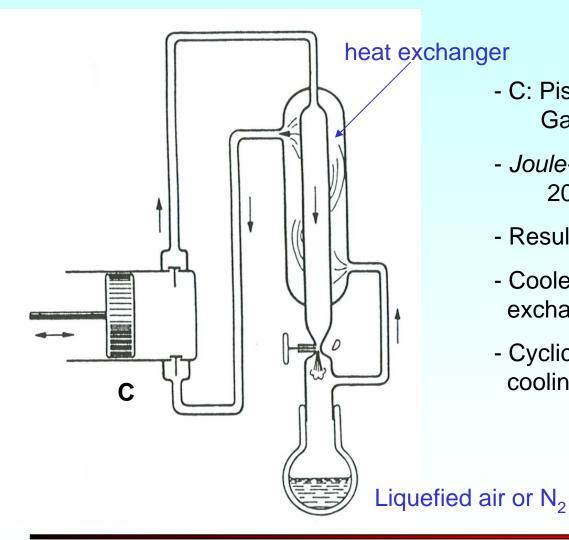
JNIVERSITY OF



Production of super-critical He (*p* > 2.26 bar**)**


a) Directly from *Claude* process refrigerating machine for LHeI,b) Via enclosed cooling secondary circuit inside the LHeI bath

Generation of superfluid He II


1.6 Cryogenic technology

Cooling with heat exchangers I & II and Expansion E like in Claude process 8 - Pump P for circulating the He III Heat exchanger III - Compressor K for build-up of pressure difference - Joule-Thomson throttle JT for JT JT. sequential cooling 7 LHe I (1 bar, 4,2 K) IV Heat exchanger IV Komarek, P.: Teubner. Stuttgart, 1995 LHe II (16 mbar, 1,8 K)

Linde cycle for air and LN₂-liquefaction

- C: Piston compressor: Gas compression to 200 bar

- *Joule-Thomson* throttle D: Gas expansion to 20 bar,
- Resulting gas cooling of about 45 K
- Cooled gas cools in a reverse flow via heat exchanger the gas inflow!
- Cyclic repetition leads to continued gas cooling, until liquefaction occurs!

Westphal, W.: Physik, Springer, Berlin

Method of N₂ (and H₂) liquefaction

- a) *Linde cycle*: large scale application
- b) Small cooling systems: temperature range 20 K (LH₂) ... 80 K (LN₂)

Stirling cycle and Gifford-McMahon cycle.

b1) *Stirling* cycle:

For most N_2 -liquefiers for lab purpose (80 K, small devices), because of its simple and robust design.

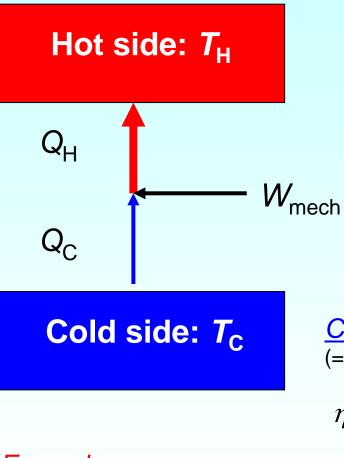
b2) Gifford-McMahon cycle:

For most small cooling systems for temperature range down to about 20 K (LH₂liquefiers):

- 1. Isothermal compression (*p* increased, *V* reduced, T = const.)
- 2. Isobaric compression (p = const., V reduced, heat Q_{12} removed as Q_{12} output)

Work Wneeded

- 3. Isentropic expansion (s = const., V increased)
- 4. Isobaric expansion (p = const., V increased, heat Q_{34} inflow as Q_{34} input)



DARMSTADT

TECHNOLOGY

Efficiency of thermal cyclic processes

Heat energy (J): $Q = m \cdot c \cdot T$

 $Q_{\rm H}$: Heat energy output to hot side

 $Q_{\rm C}$: Heat energy withdrawn from cold side

 $W_{\rm mech}$: Mechanical work of refrigerator

$$\eta_{Cooling} = \frac{Q_C}{W_{mech}} = \frac{Q_C}{Q_H - Q_C} = \frac{T_C}{T_H - T_C} \begin{cases} < 1 \\ > 1 \end{cases}$$

<u>Compare</u>: Efficiency of a thermal cyclic machine (= reversed cycle to cooling process):

$$\eta_{Motor} = \frac{P_{mech}}{P_{in}} = \frac{W_{mech}}{Q_H} = \frac{Q_H - Q_C}{Q_H} = 1 - \frac{T_C}{T_H} < 1$$
$$\eta_{Motor} = \frac{300 - 77}{300} = 74.3\%, \quad \eta_{Cooling} = \frac{77}{300 - 77} = 34.5\%$$

Example:

JNIVERSITY OF

$$T_{\rm H} = 300$$
 K, $T_{\rm C} = 77$ K:

Example: Ideal efficiency of cooling systems

- Carnot efficiency η_c : Ideal η :
- $T_{\mu} = 300$ K:
- a) N₂ liquefaction: $T_c = 77$ K:
- b) He liquefaction: $T_c = 4.2$ K:

$$\eta_{Cooling} = \frac{T_C}{T_H - T_C} = \eta_C$$

$$\eta_c = \frac{77}{300 - 77} = 34.5\%$$
$$\eta_c = \frac{4.2}{300 - 4.2} = 1.4\%$$

• For each Watt of heat power that is to be removed from the superconductor, you ideally need for LHe 1/0.014 = 71 W as compressor power, but for LN_2 only 1/0.345 = 3 W !

$$71:3=24(!)$$

DARMSTADT

TECHNOLOGY

Real energy input for cooling with He and N_2

• The big imbalance 24 : 1 (N_2 : He-liquefaction) shows enormous technical potential of HTSC technology, which can operate with LN_2 .

• Rise of losses due to compressor engine friction, loss of pressure due to friction e.g. in tubes, driving motor losses, heat exchanger losses,...

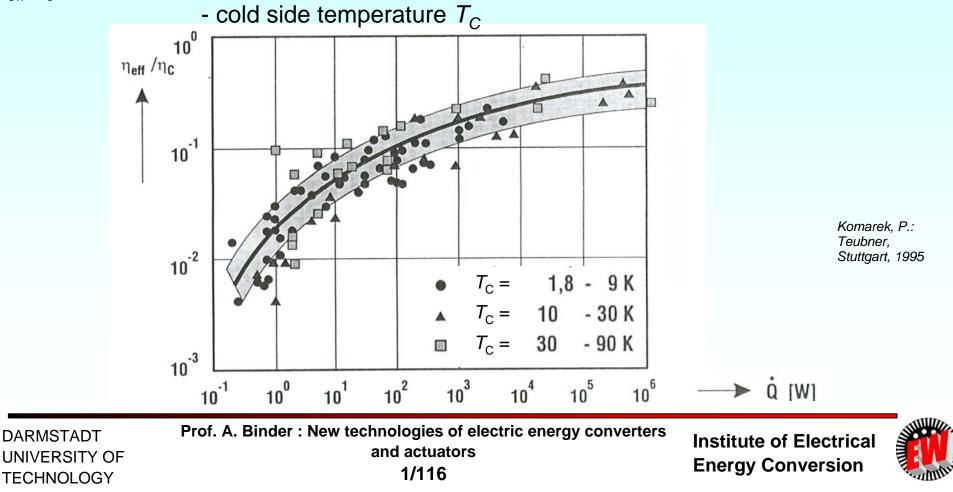
 \Rightarrow Real cooling systems have a significantly lower efficiency η_{eff} compared to η_{c} .

Result:

A real cooling system with **100 W** cooling power has typically a **1/10** smaller efficiency than the ideal Carnot cooling system. For 1 W cooling power that is to be removed from the superconductor, you need about 700 W electric driving power for the compressor drive at 4.2 K (LTSC), at 77 K (HTSC) it's "only" 30 W.

DARMSTADT

TECHNOLOGY


JNIVERSITY OF

1.6 Cryogenic technology Efficiency of cooling systems

- \bullet Measured efficiency $\eta_{\rm eff}$ of real cooling systems
- Comparison to ideal Carnot efficiency η_c
- η_{eff}/η_c depends on: system size (removed power Q from cold side),

Portable small Gifford-McMahon-refrigerator

Cooling power:

Q = 1 W at $T_{\rm C} = 4$ K Cold head (T_c) : touches the cold side \dot{Q} = 40 W at $T_{\rm C}$ = 50 K Compressor drive electric input power P_e: 7.5 kW 20 000 hours MTBF (Mean time between failure) $|W|_{T_c = 4K, \eta_c = 0.014} \Rightarrow \frac{|W|}{0.014} = 71.4W$ $\Rightarrow \frac{\eta_{eff}}{\eta_c} = \frac{71.4}{7500} = 0.01$ $40W\big|_{T_c=50K,\eta_c=0.2} \Rightarrow \frac{40W}{0.2} = 200W$ $\Rightarrow \frac{\eta_{eff}}{\eta_c} = \frac{200}{7500} = 0.027$ Source: American Superconductor, USA

DARMSTADT

TECHNOLOGY

Prof. A. Binder : New technologies of electric energy converters and actuators JNIVERSITY OF 1/117

Institute of Electrical **Energy Conversion**

New technologies of electric energy converters and actuators

Summary: Cryogenic technology

- Liquefaction of He or nitrogen needed for cooling
- Cold vapour process only for limited cooling, as seals are freezing
- Cold gas process via cycle processes (e.g. Stirling or Gifford-McMahon)
- Cold gas process via adiabatic expansion or Joule-Thomson-expansion
- For He liquefaction a two-stage Claude cooling process is needed
- Much higher amount of energy needed for He liquefaction than for nitrogen

DARMSTADT

JNIVERSITY OF

TECHNOLOGY

