1. Permanent magnet synchronous machines as "brushless DC drives"

1.3 High speed PM machines

Source: TU Darmstadt

Prof. A. Binder : Motor Development for Electrical Drive Systems

Institut für Elektrische Energiewandlung • FB 18

High speed applications: Tools machinery

High speed cutting:

- Constant cutting force *F* and velocity *v* demanded
- For smaller diameters 2r increased speed Ω_r necessary, but reduced torque M = F.r,
- Power is constant power P = F.v

Motor	Maximum speed	Constant Power
А	30 000/min	4.5 kW
В	12 000/min	27 kW

Typical rated data of hi-speed PM spindle drives

Utilization of electrical machines

- Electromagnetic utilization C ("Esson's number") of electric machines is (inner) apparent machine power S versus speed and "bore volume" (factor $\pi/4$ neglected in that definition).

$$C = \frac{(S/n)}{d_{si}^2 l_{Fe}} \qquad C = \frac{\pi^2}{\sqrt{2}} \cdot k_w \cdot A \cdot B_{\delta}$$

A: rms current loading

 B_{δ} : Fundamental air gap field amplitude

 $k_{\rm w}$: Fundamental winding factor

- For raising power output S of a given motor volume ~ $d_{si}^2 l_{Fe}$, either speed can be raised or current load and flux density: S ~ $n \cdot C$.

- Due to **iron saturation** the air gap flux density B_{δ} amplitude cannot be raised much above 1 T.

- Current loading A can be increased by increasing the current (or the number of conductors), but this also means increased losses in the stator. Therefore high current loading is only possible for intensive cooling.

TECHNISCHE

JNIVERSITÄT

DARMSTADT

"Power from speed" $S \sim C \cdot n \cdot V$ - "Torque from size" $M \sim S/n \sim C \cdot V$

Low speed machines:

a) Totally enclosed PM servo motor with self cooling (without any fan): 40.5 Nm, 1000/min, A = 145 A/cm, B_δ = 0.65 T, d_{si} = 154 mm, I_{Fe} = 175 mm, k_w = 0.933, C = 1.0 kVAmin/m³, P_δ = 4.24 kW
b) High torque PM motor with water jacket cooling:

737 Nm, 600/min, A = 611 A/cm, $B_{\delta} = 0.8$ T, $d_{si} = 280$ mm, $I_{Fe} = 200$ mm, $k_w = 0.866$, C = 4.9 kVAmin/m³, $P_{\delta} = 46.32$ kW

High speed machine: PM motor with water jacket cooling:

12 Nm, 24000/min, A = 225 A/cm, B_{δ} = 0.7 T d_{si} = 90 mm, I_{Fe} = 90 mm, k_w = 0.933, C = 1.7 kVAmin/m³, P_{δ} = 30.0 kW

Facit:

TECHNISCHE

DARMSTADT

INIVFRSITÄT

With only 70% higher electromagnetic utilization C the motor c) has about 7 times higher output power than motor a), as speed is increased by factor 24.

Flux weakening with negative d-current

Constant torque Flux weakening range

- At rated speed n_N the inverter voltage limit $U_{s,max}$ is reached.

- By introducing a negative d-current a voltage component opposite to the back EMF U_p is induced, so that U_s remains constant.

- This d-current does not generate any torque with the rotor permanent flux !

At constant resulting current due to the required d-current the q-current must be reduced. Hence torque *M* decreases ! ("Flux weakening range")

Instead of $n_{max,old}$ (at $U_s = U_p$) now a higher speed n_{max} is reached, but at a reduced torque, which is not any longer proportional to stator current I_s !

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Phasor diagrams of PM machine with field weakening

- stator resistance R_s is neglected, $X_s = jX_d = jX_a$

a) rated speed, rated torque,

b) rated speed, overload torque,

c) speed at 170% rated speed, decreased torque, flux weakening by negative I_{d} current,

d) very high speed (400%) can only be reached by strong field weakening; nearly the whole current consists of flux weakening component I_{d} , whereas torqueproducing component I_{a} is very small.

JNIVERSITÄT

Demands for flux weakening

	Voltage <i>u</i> s	Current i_s	d -axis i_{sd}	<i>q</i> -axis <i>i</i> _{sq}	Power	Speed <i>n</i>	$\cos \varphi$
a)	0.8	1.0	0	1.0	$P_{\rm N}$	n _N	0.89 ind
b)	1.0	2.0	0	2.0	$2P_{\rm N}$	n _N	0.7 ind
c)	1.0	1.5	-0.8	1.2	$2P_{\rm N}$	$1.67n_{\rm N}$	0.98 ind
<u>d</u>)	1.0	1.7	-1.6	0.5	$2P_{\rm N}$	$4n_{\rm N}$	0.89 cap

Big field weakening: $U_p >> U_{s,max}$, we may neglect $U_{s,max}$ and R_s . $I_{s.d} \cong U_p / X_s = \Psi_p / L_s = \Psi_p / L_d$

The necessary field weakening current must be smaller than the inverter current limit !

$$I_{s,d,\max} < I_{s,\max}$$

TECHNISCHE

INIVERSITÄT

Torque-speed curves without and with flux weakening

Steady state short circuit current of PM machine

$$I_{s,k} = U_p / \sqrt{R_s^2 + X_s^2} \cong U_p / X_s = \Psi_p / L_s = \Psi_p / L_d < I_{s,\max}$$

- Demand for infinite field weakening:
- If the <u>short-circuit current</u> $I_{s,k}$ of the PM machine is smaller than the inverter current limit $I_{s,max}$, an infinite field weakening is theoretically possible.
- Motor and system design for high field weakening:
- synchronous *d*-axis inductance L_d is big, e.g. big leakage inductance
- permanent magnet flux linkage with stator winding Ψ_p is small
- inverter current limit is high
- inverter voltage limit is high.

$$L_d = L_h + L_\sigma$$

FECHNISCHE

INIVFRSITÄT

DARMSTADT

$$L_h = \frac{U_{s,s}}{\omega_s \cdot I_s} = \mu_0 \cdot (N_s \cdot k_{ws})^2 \cdot \frac{2m_s}{\pi^2 \cdot p} \cdot \frac{\tau_p l_{Fe}}{\delta_{res}}$$

Rotor configurations of PM Synchronous Machines

Surface magnets: small L_h , big $I_{s,k}$, small flux weakening range

GFC: Glass fíber composite CFC: Carbon fiber composite

No flux concentration

Applied flux concentration

Prof. A. Binder : Motor Development for Electrical Drive Systems 1.3/10

Institut für Elektrische Energiewandlung • FB 18

Example: Two different machines for flux weakening

Two PM motors A and B are compared with different voltage drop and different back EMF, but the same inverter voltage and current limit $U_{s,lim}$ and $I_{s,lim}$. Numbers are given in per unit-values of $U_{s,lim}$ and $I_{s,lim}$, e.g. $u_s = U_s / U_{s,lim}$, $i_s = I_s / I_{s,lim}$.

$$I_{s,k} / I_{s,\lim} = i_{s,k} = U_p / (X_s I_{s,\lim})$$

PM machine	A	B
$U_{ m p}/U_{ m s,lim}$ at $n_{ m N}$	0.6	0.8
$X_s I_{ m s.lim}/U_{ m s,lim}$ at $n_{ m N}$	0.8	0.6
$U_{ m s,lim}$ at $n_{ m N}$	$\sqrt{0.6^2 + 0.8^2} = 1$	$\sqrt{0.8^2 + 0.6^2} = 1$
Short circuit current <i>I</i> _{s,k}	0.6/0.8 = 0.75 < 1	0.8/0.6 = 1.33 > 1
Field weakening ?	Unlimited	Limited

TECHNISCHE

JNIVERSITÄT

Comparison of two different PM machines concerning field weakening

Buried magnet rotor at rated flux and current

Fixing buried magnets at high speed via rotor sheet strength

Magnets are fixed by rotors sheet:

- no bandage
- small magnetic air gap
- less magnet material in case of flux concentration
- Detailed mechanical calculation necessary, requires Finite Element Calculation - max. tensile strength must stay below 0,2%-deformation limit of sheet $R_{p0,2}$

High speed buried magnet PM machine

Application: Tools machinery – main drive with hollow shaft

Energiewandlung • FB 18

High speed PM main spindle drive with hollow shaft

Application: Tools machinery – main drive with hollow shaft

UNIVERSITÄT

What means "High-Speed" ?

- NOT ONLY: high "rounds per second" *n* !
- BUT: High rotor circumference speed $v = d.\pi.n \approx 100 \dots 250$ m/s.
- High mechanical stress σ due to centrifugal forces ! σ proportional to mass density ρ and to v: $\sigma \sim \rho \cdot v^2$

Example: Yield strength of steel sheet: $R_{p,0.2} = \sigma_{0.2} = 350 \text{ N/mm}^2$ Thin steel ring (diameter *d*) at v = 211 m/s: Tangential stress, $\rho = 7850 \text{ kg/dm}^3$: $\sigma_t = \rho \cdot v^2 = 350 \text{ N/mm}^2$ a) At d = 1.3 m: n = 3000 /min b) At d = 90 mm: n = 45000 /min.

TECHNISCHE

DARMSTADT

INIVERSITÄT

- 4-pole rotor

- Pole coverage ratio α_e < 1

Surface mounted magnets α_{e} < 1

Fixing of magnets by bandage:

Fiber and resin ("matrix") = "Bandage"

Pre-fabricated bandage is pressed onto rotor with force.

Institut für Elektrische Energiewandlung • FB 18

Example: Damaged Rotor due to Magnet Edge Pressure

Breaking of bandage at 35 000/min

- Break length
- Total active length

- Magnet edges cut into carbon fiber bandage

4-pole rotor with PM, carbon fiber bandage and magnetic bearings

Source: TU Darmstadt

TECHNISCHE **Prof. A. Binder : N** UNIVERSITÄT DARMSTADT

Surface mounted magnets $\alpha_{p} = 1$

Fixing of magnets by bandage:

Fiber and resin ("matrix") = "Bandage"

Pre-fabricated bandage is pressed onto rotor with force.

PM-Rotor 40 kW, 40 000/min Magnetic bearings **Carbon fiber** bandage Outer diameter: ca. 90 mm

- 4-pole rotor

ratio $\alpha_{\rm e} = 1$

Prof. A. Binder : Motor Development for Electrical Drive Systems 1.3/20

Institut für Elektrische **Energiewandlung • FB 18**

Hi-speed application: Gas compressor

- Magnetic bearings due to high speed
- 400 kW, 50000/min
- Small dimensions
- Carbon fiber bandage

No gear box

Prof. A. Binder : Motor Development for Electrical Drive Systems 1.3/21

Source: Piller, Germany

^{IS} Institut für Elektrische Energiewandlung • FB 18

Example: Magnetically levitated PM drive 40 kW, 40 000/min

4-pole PM-Synchronous machine, surface magnets (Sm_2Co_{17}) 16 magnet segments / pole, carbon fiber bandage, radial magnetic bearings

Application Hi-Speed: PM Generator for micro gas turbine

Micro gas turbine: gearless: high speed generator necessary (z. B. 100 kW)

efficiency - high utilization of gas energy

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Cut-view of the stator part of a micro gas turbine

Source: IFF, Dirk Mahler

Recuperator

Combustion chamber

The recuperator is a heat exchanger, where the hot exhaust gasses pre-heat the compressed cold air for the burning process. Thus the efficiency increases.

Gas injector

oben und unten, dort wird die komprimierte Verbrennungsluft durch heiße Turbinenabgase vorgewärmt) und Injektor (unten links). Foto: IFF/Dirk Mahler

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Gearless high speed PM generator

70 000/min, 2300 Hz, four pole PM-rotor, Carbon fiber bandage

Massive rotor iron, special air bearings

Stator with four pole three phase winding, fully encapsulated in resin for good heat transfer to iron

Source: ABB, Sweden

TECHNISCHE UNIVERSITÄT DARMSTADT

Micro gas turbine arrangement

Example: 200 kW Micro gas turbine: Efficiency

Micro gas turbines

Typical ratings 50 ... 300 kW ("micro") 40000 ... 240000 / min rotational speed Acoustic noise ca. 65 dB(A) only in 1 m distance

Electric efficiency 28 ... 33%

Co-generation of electric power and heating: Thermal efficiency 75 ... 90%

Life time for operation 80000 h

Maintenance intervals 6 000 h

General revision necessary after 30000 h

Source: BWK 62 (2010), no. 9, p. 65

Electric cars: Specification ACEA small & prototype motor

Speed	Base: 2200/min, Max.: 9000/min, Over-speed: 12000/min			
Mech. Power	Peak: 30 kW, Continuous: 15 kW			
Duty-Cycle EUROPED	30 kW: 2 min, @ 4500/min, 10 kW for 8 min.			
Torque	Peak: 130Nm, Continuous: 75Nm			
DC Supply	130290V from Battery			
Motor	Motor Diameter < 250 mm, mass < 40 kg			
Stator: 36 skewed (1 slot-pitch) slots, stack 225mm, bore 122.6mm, outer diameter of laminations: 180mm				
Rotor: Surface NdFeB-magnets: remanence 1 T (20°C), magnet height 2.5 mm, magnetic air-gap (air gap + sleeve) $\delta_{\rm e}$ = 1.05mm, pole coverage: 98%				
Armature: Single layer, round wire, three phase, star, 15 turns/phase, 10.55mOhm resistance/phase (20°C)				
Cooling: Liquid jacket, coolant: 50%/50% water/glycol, 8 l/min flow rate, 50°C/55°C inverter/motor inlet temperature				
Insulation: Thermal C	lass F (max.145°C plus 15 K in hot spots)			

TECHNISCHE

UNIVERSITÄT

"Mild high speed": Motors for electric or hybrid-electric cars

Propulsion for electric car:

a) Torque-Current-Characteristic for propulsion motor, b) Measured torque-speed drive characteristic at 132V DC link voltage = battery voltage, $M_{pk} = 156Nm, P_{pk} = 35kW, I_{s,lim} = 315A$ c) Prototypes of fuel cell powered cars NECAR (<u>New</u> <u>Electric Car</u>) of *DaimlerChrysler* with electric drive system

Source: Daimler, Stuttgart, Germany

Ultra high-speed motor for a meso-scale gas turbine

Torque	M _N	2 mNm
Phase voltage	U _N	11 V
Current	I _N	3 A
Frequency	f _N	8.3 kHz
Rotor diameter	d _R	6 mm
Stack length	l _{Fe}	15 mm

100 W, 500 000/min

- Two-pole PM motor, six-step voltage feeding
- Titanium rotor sleeve
- Circumference speed: 157 m/s
- $d_{\rm m}$: average bearing diameter
- mechanical bearings $n \cdot d_m \cong 2 \cdot 10^6 \, \text{mm/min}$

Source: Swiss Federal Institute of Technology in Zurich, Switzerland

TECHNISCHE UNIVERSITÄT DARMSTADT

High power high-speed cage induction motors

15000/min, 4 MW cage induction motor

- Gas compressor drives
- Rating 4 MW, 15000/min, 2.5 kNm ... 16 MW, 6000 /min, 25.5 kNm
- Copper cage two-pole induction motors, massive rotor iron, ca. 240 m/s
- Active magnetic bearings, operation above first bending mode
- Medium voltage IGBT PWM inverter operation

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Source:

Homo-polar generator for flywheel

Source: Uni. Stuttgart & FSZ Karlsruhe, Germany

Bearingless high-speed PM motor 500 W, 60000/min

No-load flux plot

> Program FEMAG

BEARINGLESS concept: Two 3- phase stator windings: Pole count difference MUST be 2 !

- Two-pole drive winding $2p_1 = 2$
- Four-pole levitation winding $2p_2 = 4$

Axial & radial active magnetic bearing Combination of PM motor and radial magnetic bearing = = BEARINGLESS

32 mm

TECHNISCHE **P** UNIVERSITÄT DARMSTADT

Bearingless high-speed PM motor 500 W, 60000/min

60000/min 500 W Two-pole f = 1000 Hz 100 m/s

Source: TU Darmstadt, In co-operation with Levitec Company, Lahnau, Germany

Bearingless high-speed PM motor 40 kW, 40000/min

BEARINGLESS concept:

Two 3- phase stator windings:

- Four-pole drive winding $2p_1 = 4$
- Six-pole levitation winding $2p_2 = 6$ Source: TU Darmstadt.

In co-operation with Levitec Company, Lahnau, Germany

- Rotor successfully tested at 44000/min (185 m/s)
- Electrical tests completed

Losses at high speed

No-load losses:

a) Iron losses: x = ca. 1.8, considering eddy-current and hysteresis losses

$$P_{Fe} \sim B^2 \cdot f^x \sim B^2 \cdot n^x$$

 $P_{fr} \sim d_r \cdot l_{Fe} \cdot n^y$

 $P_{Cu} = 3 \cdot R_s \cdot I_s^2$

b) Friction losses at the rotor surface (and in the bearings)

 $y = 2 \dots 3$, depending on rotor and stator surface condition

Load losses:

c) Armature winding losses (copper losses):

d) Additional losses

- in stator winding due to eddy currents of high frequency current
- in rotor magnets and rotor iron, $z = ca. 1.5 \dots 2$, depending on rotor geometry and stator current shape.

$$P_{M+Fe,r} = f(n, \text{ current shape}) \sim I^2 \cdot n^2$$

With high speed motors the loss groups a), b) and d) dominate, and therefore special care must be taken for motor design. Low loss iron sheets with only 1 W/kg losses at 1 T, 50 Hz may reduce iron losses.

JNIVERSITÄT

Electromagnetic utilization

- Size of motor active parts: Stator bore diameter d_{si} Active rotor length $I_{\rm Fe}$
- Esson's apparent air gap power equation.

$$S_{\delta} = (\pi^2 / \sqrt{2}) \cdot k_{\rm w} \cdot A \cdot B \cdot d_{\rm si}^2 l_{\rm Fe} \cdot n$$

- Esson's electromagnetic utilization factor: $C = (\pi^2 / \sqrt{2}) \cdot k_w \cdot A \cdot B$

Air gap flux density B, current loading A, winding factor $k_{\rm W} \cong 0.91$

- Increased iron, friction and additional losses at high speed:

Reduction of A and B necessary, leads to reduction of C!

$$C \sim A \cdot B \sim 1/n^{1.6}$$

FCHNISCHE

Rated speed vs. rated power from published data

Pulsating and rotating hysteresis losses

Rotor:

losses

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. A. Binder : Motor Development for Electrical Drive Systems

Institut für Elektrische Energiewandlung • FB 18

Air friction losses at high speed

 Air friction losses P_{fr} of a rotating rotor cylinder in a smooth stator bore: Turbulent flow (*Reynolds*-number *Re* > 1000) at the cylinder surface:

$$P_{fr} = 1.7 \cdot \rho_{air} \cdot n^3 \cdot (2R)^4 \cdot L \cdot \frac{1}{\text{Re}^{0.15}} \qquad \text{Re} = \frac{(2R) \cdot \pi \cdot n \cdot \delta}{V_{air}}$$

Air gap between rotor cylinder and stator bore: δ

• *Example:* C-Fiber sleeve:

140°C: air mass density: $\rho_{air} = 0.826$ kg/m³, kinematic viscosity $v_{air} = 26.5 \cdot 10^{-6}$ m²/s cylinder radius & length R = 50 mm, L = 100 mm, $v_u = 200$ m/s, $\delta = 10$ mm $n = v_u / (2\pi R) = 636 / s = 38200 / min$

$$\operatorname{Re} = \frac{(2 \cdot 0.05) \cdot \pi \cdot 636 \cdot 0.01}{26.5 \cdot 10^{-6}} = 75400 > 1000$$

Air friction losses:

$$P_{fr} = 1.7 \cdot 0.826 \cdot 636^3 \cdot 0.1^4 \cdot 0.1 \cdot (75400)^{-0.15} = \underline{670} \text{ W}$$

Losses at inverter operation

- Voltage: $U_N \sim n \cdot N_s \cdot k_w \cdot d \cdot l_{F_P} \cdot B$: high $n \sim f$, low $N_s \sim 1/f$
- Motor inductance rather small: $L \sim \mu_0 \cdot N_s^2 \cdot l_{Fe} \sim 1/f^2$
- High fundamental frequency: e. g. *n* = 200000 /min, two-pole motor: f = 3.3 kHz, high switching frequency $f_T \approx 5f$
- Current ripple amplitude rather big : $I_T \sim U_T / (f_T \cdot L) \sim f$ $(U_{\rm T}: \text{PWM voltage ripple amplitude at } f_{\rm T})$

Need: Low current harmonics to reduce additional losses a) Very high switching frequency f_{T}

- b) 3-level-inverter
- c) (Active) output sine wave filter

Types of High Speed Motors

Types of bearings for high speed drives taken from published data

Water jacket cooling

spiral water channel

TECHNISCHE UNIVERSITÄ DARMSTADT

Example: High speed motors 30 kW, 24 000 /min

- Cross section of four pole high speed AC motor 30 kW, 24 000 /min
- AC induction and PM synchronous alternatives
- Identical stator with 36 slots, two-layer winding and water jacket cooling.
- <u>Upper half:</u> Induction machine with copper squirrel cage rotor
- <u>Lower half</u>: Synchronous machine with surface-mounted Sm_2Co_{17} -Magnets and glass fibre bandage, $d_r = 90$ mm, 113 m/s

UNIVERSITÄT

Hi-Speed Rotor: PM-Synchronous vs. Induction Principle

AC-rotor: 24 000/min 30 kW, $d_{si} = I_{Fe} = 90$ mm $P_N / (d_{si}^2 l_{Fe}) = 41.15$ kW/dm³

4-poles PM-rotor, laminated yoke, BEFORE the pressing on of the fibre-glass sleeve

Source: TU Darmstadt

4-poles induction copper cagerotor with oval bars:

Mass/bar: 23 grams

Centrifugal force/bar: 0.6 tons

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. A. Binder : Motor Development for Electrical Drive Systems 1.3/47

Institut für Elektrische Energiewandlung • FB 18

Voltage harmonics at six-step operation

• Inverter output phase voltage: $u_{S1} - u_{S2} = u_{L1-L2}; \quad u_{S2} - u_{S3} = u_{L2-L3}; \quad u_{S1} + u_{S2} + u_{S3} = 0;$

Electrical machine is fed with a blend of harmonic voltages of different amplitude, frequency and phase angle. Only fundamental (ordinal number k = 1) is desired. Voltage harmonics (|k| > 1) cause harmonic currents in electric machine with additional losses, torque pulsation, vibrations and acoustic noise.

FOURIER-Spectrum of voltage harmonics: Six-step operation (= Block voltage)

Harmonic voltage systems

k = 1:k = 5
$$\Rightarrow$$
 k = -5: $u_{U1}(t) = \hat{U}_1 \cdot \cos(\omega t)$ $u_{U5}(t) = \hat{U}_5 \cdot \cos(5\omega t)$ $u_{V1}(t) = \hat{U}_1 \cdot \cos(\omega t - 2\pi/3)$ $u_{V5}(t) = \hat{U}_5 \cdot \cos(5(\omega t - 2\pi/3)) = \hat{U}_5 \cdot \cos(5\omega t + 2\pi/3)$ $u_{W1}(t) = \hat{U}_1 \cdot \cos(\omega t - 4\pi/3)$ $u_{W5}(t) = \hat{U}_5 \cdot \cos(5(\omega t - 4\pi/3)) = \hat{U}_5 \cdot \cos(5\omega t + 4\pi/3)$ $U - V - W$ $U - W - V$ Positive sequence system $U - W - V$ Negative sequence systemNegative sequence system

• **General rule:** Positive and negative systems occur alternatively: Ordinal number *k* has a positive or negative sign: *k* =+1, -5, +7, -11, +13, ...

$$u_{Uk}(t) = \hat{U}_k \cdot \cos(k\omega t)$$
$$u_{Vk}(t) = \hat{U}_k \cdot \cos(k\omega t - 2\pi/3)$$
$$u_{Wk}(t) = \hat{U}_k \cdot \cos(k\omega t - 4\pi/3)$$

$$k = 1 + 6g$$

$$g = 0, \pm 1, \pm 2, \dots$$

TECHNISCHE

UNIVERSITÄT

Current harmonics in PM synchronous machines at inverter operation

- <u>kth voltage harmonic</u> U_{s,k} (frequency: k·f_s) causes current harmonic per phase I_{s,k} in the stator winding.
- These current harmonics cause fast rotating magnetic fundamental field waves (v = 1, pole count 2p) in the air gap with clockwise or counter-clockwise rotation:

$$n_{syn,k} = k \cdot f_s / p$$

Equivalent circuit of the PM synchronous machine for the fundamental frequency f_s

Iron losses neglected in the equivalent circuit

Equivalent circuit of the PM synchronous machine for a harmonic frequency $k.f_s$

Example: Harmonic currents at six step operation

<u>Data:</u> 8-pole motor, $n_N = 1500$ /min, $U_{pN} = 119$ V, $X_{dN} = 4.35 \Omega$, DC-link voltage of inverter: U_d = 540 V, Operation at elevated speed *n* = 3000/min, *f* = 200 Hz Phase voltage, r.m.s.: $U_k = \hat{U}_{k,LL} / \sqrt{6} = \frac{4}{\pi} U_d \frac{1}{k} \sin(\frac{k\pi}{3}) / \sqrt{6}$ Current harmonics: $|k| > 1: I_k = \frac{U_k}{\sqrt{R^2 + (k\omega L_d)^2}} \approx \frac{U_k}{|k| 2\pi f L_d} \quad k = 1 + 6g, \quad g = 0, \pm 1, \pm 2, \dots$

k	U_k/V	I_k / A
1	243	5.64
-5	42	0.97
7	30	0.49
-11	19.1	0.20
13	16.2	0.14

• For k = 1 the fundamental equivalent circuit has to be taken for calculating the current. $\hat{U}_{k,LL} = \frac{4}{\pi} U_d \frac{1}{k} \sin(\frac{k\pi}{3}) \Big|_{k=1} = \frac{4}{\pi} 540 \cdot \sin(\frac{\pi}{3}) = 595V$ $U_{k=1} = 595 / \sqrt{6} = 243V = U_{\text{max}}$ $\frac{1}{I_{s,k=1}} = \frac{\sqrt{U_{\max}^2 - U_{pN}^2} \cdot \left(\frac{n}{n_N}\right)^2}}{\frac{n}{n_N} X_{dN}} = \frac{\sqrt{243^2 - 119^2} \cdot \left(\frac{3000}{1500}\right)^2}}{\frac{3000}{1500} \cdot 4.35} = 5.64A$

JNIVERSITÄT

Numerical Calculation of Additional Losses in Rotor

2p = 4, $d_{si} = 90$ mm, $I_{Fe} = 90$ mm,

Q = 36 stator slots,

Sm₂Co₁₇-magnets

 $f_{\rm s} = 800 \; {\rm Hz},$ $n = f_{\rm s}/p = 24000/{\rm min}$

Results: **solid** rotor yoke: too high losses with block-voltage supply

<u>*Remedy:*</u> laminated yoke or sine wave filter necessary

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Example: PM rotor iron losses - six step voltage operation

- Loss calculation in massive rotor iron for *k*th current harmonic, neglecting influence of losses in the segmented SmCo-magnets:
- Analytical calculation of rotor iron losses due to k-th current harmonic: P_{Fe,r,k}
- Numerical calculation with finite element method (program *MEGA/Univ. of Bath/UK*)

k	n _{rel} 1/min	current Ioading A/m	P _{Fe,r,k} / W analytical	P _{Fe,r,k} / W MEGA numerical
-5	144000	4610	120	114
7	144000	2338	31	29
-11	288000	971	12	11
13	288000	633	5	5
		Total:	168	159

$$n_{syn} = 24000 / \min$$

$$n_{rel} = |k - 1| \cdot n_{syn}$$

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Losses in solid PM rotor iron back and in massive magnet rings

Six step voltage inverter operation, 24000/min, full load

 Losses in for kth current harmonic in rotor iron: P_{Fe.r.k} in solid SmCo-magnet rings: P_{Mk}

k	n _{rel} 1/min	Harmonic current loading A/m	P _{M,k} / P _{Fe,r,k} / W analytical	P _{Mk} / P _{Fe,r,k} / W numerical MEGA
-5	144000	4610	92.6 / 4.1	64 / 13
7	144000	2338	24.1 / 1.1	16.7 / 3.3
-11	288000	971	4.2 / 0.13	3.0 / 0.5
13	288000	633	2.2 / 0.07	1.3 / 0.2
		Total	123.1 + 5.4 = 128.5	85 + 17 = 102

Result:

DARMSTADT

The rotor iron back is shielded by the self-field of the eddy currents in the magnet shell

TECHNISCHE Prof. A. Binder : Motor Development for Electrical Drive Systems JNIVERSITÄT 1.3/55

Losses in laminated rotor iron back & in massive magnet rings

• Losses in laminated rotor iron $(\kappa_{Fe} = 0)$: $P_{Fe,r,k}$, in magnet rings: $P_{M,k}$

Six step voltage inverter operation, 24000/min, full load

• Magnet rings are shielding the rotor, so not much difference between solid and laminated rotor iron back!

k	n _{rel} 1/min	Harmonic current Ioading A/m	P _{Mk} / P _{Fe,r,k} / W analytical	P _{Mk} / P _{Fe,r,k} / W numerical MEGA
-5	144000	4610	101.8 / 0	81 / 0
7	144000	2338	26.0 / 0	21 / 0
-11	288000	971	4.5 / 0	3.5 / 0
13	288000	633	2.3 / 0	1.5 / 0
		Total	134.6	107

TECHNISCHE

INIVERSITÄT

Example: Losses in segmented magnets

- Only losses in magnets P_{Mk} considered, rotor iron back is assumed laminated: $\kappa_{Fe} = 0$
- Six step voltage inverter operation, 24000/min, full load

k	n _{rel} 1/min	Harmonic current loading A/m	Harmonic flux density mT	P _{Mk} / W analytical	P _{Mk} / W numerical MEGA
-5	144000	4610	19.9	13.8	14.2
7	144000	2338	10.2	3.6	3.6
-11	288000	971	4.1	2.4	2.5
13	288000	633	2.9	1.2	1.1
				Total: 21	22

• Magnet segments have only small eddy current losses. They cannot shield the rotor iron. There is a big difference in losses between solid rotor (big iron losses) and laminated rotor iron back (small losses)!

TECHNISCHE

JNIVERSITÄT

Example: Additional losses of high speed PM synchronous motor

Result:

Segmented surface magnets and laminated rotor iron back yield lowest additional rotor losses.

• Built prototypes: 30 kW, 24000/min, 4 poles, segmented magnets

(Source: PhD thesis Lu Tong: TU Darmstadt)

Calculated additional rotor losses at six-step voltage inverter operation:

Solid rotor iron, magnetic shell:	128.5 W:	$\eta = 95.66\%$
Laminated rotor, magnetic shell:	134.6 W:	η = 95.65%
Laminated rotor, segmented magnets:	21 W:	$\eta = 96.06\%$

TECHNISCHE

JNIVERSITÄT

Motor Test Bench for 24 000/min, 30 kW

rotor temperature measurement

water cooling circulation

IM Induction machine Load

speed measurement

Source: TU Darmstadt

PM-

Test-Motor

DARMSTADT

• 24 000 RPM

• 30 kW

• 12 Nm

• 800 Hz

TECHNISCHE **Prof. A. Binder : Motor Development for Electrical Drive Systems UNIVERSITÄT**

1.3/59

Institut für Elektrische Energiewandlung • FB 18

Additional losses at high speed

	current harmonics	additional losses	
Sine wave voltage opera	tion: few	small	
Block current operation:	rather big	rather big	
Block voltage operation:	considerable	e considerable	
Permanent magnet synchronous motor: magnets $h_M = 3.5 \text{ mm}$, $d_B = 2.8 \text{ mm}$, $\delta = 0.7 \text{ mm}$ Massive rotor iron, segmented magnets (so no shielding effect for rotor iron)			
Fundamental voltage, current,	Ideal voltage sine wave	Voltage six step inverter	
power factor	operation	operation	
$U_{s,(1)}$ (line to line), I_s , $\cos \varphi_{(1)}$	301 V, 67.4 A, 0.89	309 V, 71.9 A, 0.84	
Motor output power <i>P</i> _{out}	30 144 W	30 159 W	
P_{Fe}	560 W	560 W	
P_{fr}	440 W	440 W	
$P_{Cu,s}$	430 W	522 W	
$P_{M+Fe,r}$	50 W	520 W	
Efficiency	95.3 %	93.65 %	

PM-Synchronous Motor: Measured Heating in Stator Windings and Rotor Magnets

DARMSTADT

+

╋╋

+++