Large Generators and High Power Drives

Contents of lectures

- **1. Manufacturing of Large Electrical Machines**
- 2. Heating and cooling of electrical machines
- 3. Eddy current losses in winding systems
- 4. Excitation of synchronous machines
- 5. Design of large synchronous machines
- 6. Wind generators and high power drives
- 7. Forces in big synchronous machines

Source:

Siemens AG, Germany

TECHNISCHE UNIVERSITÄT DARMSTADT

7.1 Torque generation

- 7.2 Radial forces at centric rotor position
- 7.3 Single sided magnetic pull at eccentric rotor position
- 7.4 LORENTZ forces on slot conductors
- 7.5 LORENTZ forces on winding overhang conductors
- 7.6 Rotor pole fixation in large synchronous machines

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE

JNIVFRSITAT

DARMSTADT

7.1 Torque generation

$$dF(x) = dI(x) \cdot B_{\delta}(x) \cdot l = l \cdot A(x) \cdot B_{\delta}(x) \cdot dx$$

$$dM(x) = \frac{d}{2} \cdot dF(x) = \frac{d}{2} \cdot l \cdot A(x) \cdot B_{\delta}(x) \cdot dx$$

$$M = 2p \int_{0}^{\tau_{p}} dM = p \cdot d \cdot l \cdot \int_{0}^{\tau_{p}} A(x) \cdot B_{\delta}(x) \cdot dx$$

$$A(x) = \hat{A} \cdot \sin(\frac{x\pi}{\tau_{p}} - \varphi_{i}) \qquad \hat{A} = k_{w1} \cdot \sqrt{2} \cdot A$$

$$B_{\delta}(x) = B_{\delta 1} \sin(\frac{x\pi}{\tau_{p}})$$

$$M = l \cdot (p\tau_{p})^{2} \cdot \hat{A} \cdot \hat{B}_{\delta 1} \cdot \cos\varphi_{i} / \pi$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Tangential thrust

$$M = l \cdot (p\tau_p)^2 \cdot \hat{A} \cdot \hat{B}_{\delta 1} \cdot \cos\varphi_i / \pi$$

$$S_e = \frac{M \cdot \Omega_{syn}}{\cos \varphi_i} \qquad \text{ESSON:} \quad S_e = \frac{\pi^2}{\sqrt{2}} \cdot k_{w1} \cdot A \cdot B_{\delta 1} \cdot d^2 \cdot l \cdot n = C_e \cdot d^2 \cdot l \cdot n$$

<u>Air gap thrust</u>: Force per surface: $\tau = F / (d_{si} \cdot \pi \cdot l)$ $\tau = \hat{A} \cdot \hat{B}_{\delta} \cdot \cos \varphi_i / 2$

<u>Example:</u>

TECHNISCHE

JNIVERSITÄT

DARMSTADT

AC-machines: $k_{w1} \approx 0.95$, A = 700 A/cm, maximum thrust at: $\tau = \hat{A} \cdot \hat{B}_{\delta} \cdot \cos \varphi_i / 2 = 94000 \cdot 1 \cdot 1 / 2 = 47000$ N/m² $\cong 0.5$ bar

In reality: $\cos \varphi_i \sim 0.9$, so thrust for AC lower by 10%: 0.45 bar.

Large Generators and High Power Drives

Summary:

Torque generation

- Calculation via *LORENTZ*-Force on single conductors, integration over one pole pitch, and multiplication with the pole number:

$$M = 2p \int_{0}^{\tau_{p}} dM = p \cdot d \cdot l \cdot \int_{0}^{\tau_{p}} A(x) \cdot B_{\delta}(x) \cdot dx$$

- Rotating-field machines:

$$M = l \cdot (p\tau_p)^2 \cdot \hat{A} \cdot \hat{B}_{\delta 1} \cdot \cos\varphi_i / \pi$$

- Tangential air gap thrust = Tangential force per rotor surface

- 7.1 Torque generation
- 7.2 Radial forces at centric rotor position
- 7.3 Single sided magnetic pull at eccentric rotor position
- 7.4 LORENTZ forces on slot conductors
- 7.5 LORENTZ forces on winding overhang conductors
- 7.6 Rotor pole fixation in large synchronous machines

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE

JNIVERSITAT

DARMSTADT

7.2 Radial forces at centric rotor position

Double-frequent stator vibrations in 2-pole synchronous machines ("100 Hz" or "120 Hz")

Core spring mounting

TECHNISCHE JNIVERSITÄT DARMSTADT

Prof. A. Binder : Large Generators & High Power Drives

Electromagnetic acoustic noise and vibration

- The stator iron may be regarded as a steel ring, whereas the rotor is a steel cylinder.

- Therefore the stator is less stiff than the rotor and is bent by the force waves.

- As the iron surface is shaken with this frequency, the surrounding air is compressed and de-compressed with frequency f_{Ton} . So acoustic sound waves are generated with that tonal frequency f_{Ton} to be heard by e.g. humans.

Source: Seinsch, H.-O., Teubner-Verlag

Prof. A. Binder : Large Generators & High Power Drives

7/10

Deformation of stator yoke

• 2r = 0: Stator surface oscillates in phase along stator circumference, so far reaching sound wave is generated.

• With increased node number sound pressure is equalized easier.

Source: Jordan, H. Girardet-Verlag, Essen

DARMSTADT

Resulting radial force on a stator stack segment

- Force per pole sector :

$$F_{\tau} = d \cdot l \cdot f_{av} \cdot \frac{p^2}{p^2 - \frac{1}{4}} \cdot \sin(\frac{\pi}{2p})$$

- With increasing pole count the force per pole sector decreases !

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE JNIVFRSITÄT

Example: Two-pole single phase turbine generator for German railways

50 MVA, 16 2/3 Hz, 1000/min. The stator iron stack is made of two halves.

Mass per stator halve: m = 150 tons

Stack length: I = 5.0 m, stator bore (in the middle of air gap): $d_{\delta} = 1.6$ m

Yoke cross section: $A_{ys,tot} = 3.0 \text{ m}^2$

magnetic yoke cross section (without cooling ducts): $A_{vs} = 2.4 \text{ m}^2$

Fundamental amplitude of air gap and yoke flux density: $B_{\delta 1} = 1.0$ T, $B_{vs} = 1.67$ T

Prof. A. Binder : Large Generators & High Power Drives 7/13

Forces at the separation line in the yoke

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE

UNIVERSITÄT

DARMSTADT

$$F_m = \frac{mg}{2} = \frac{150000}{2} \cdot 9.81 = \underline{736} \text{kN}$$

- Magnetic pull: Pulsation with 2x16.7 = 33.3 Hz between 0 and:

$$F_{y} = \frac{B_{ys}^{2}}{2\mu_{0}} \cdot A_{ys} = \frac{1.67^{2}}{2 \cdot 4\pi \cdot 10^{-7}} \cdot 2.4 = \underline{\underline{2663}} \text{kN}$$

- Magnetic pull of the rotor: depending on rotor position. Pulsating with 2n = 2f = 33.3 Hz.

$$F_{\tau} = d_{\delta} \cdot l \cdot f_{av} \cdot \frac{p^2}{p^2 - \frac{1}{4}} \cdot \sin(\frac{\pi}{2p}) =$$

= 1.6 \cdot 5 \cdot 199 \cdot 10^3 \cdot \frac{1^2}{1^2 - 0.25} \cdot \sin(\pi / 2)) = \frac{2122}{122} kN

Prof. A. Binder : Large Generators & High Power Drives 7/14

Resulting force at the separation line in the yoke

$$F_N = F_m + F_{ys} + F_r = 736 + 2663 + 1061 = 4460 \text{kN}$$

The resulting force is 6-times (!) of the gravitational force. **Pressure** on the insulation foil in the separation:

$$p = \frac{F_N}{A_{ys,tot}} = \frac{4460}{3} \cdot 10^3 = \underline{1487} \text{kN/m}^2$$

Note:

Tensile strength of steel St37: 3.7 MPa = 3700 kN/m².

Source: Neidhöfer, G.; BBC, Switzerland

Resulting force at 45° rotor position

Energiewandlung • FB 18

DARMSTADT

Large Generators and High Power Drives

Summary:

Radial forces at centric rotor position

- Radial component of air gap field leads to magnetic pull between stator & rotor
- Equalization of radial forces along circumference for symmetrical machines = no resulting stator or rotor radial force, BUT:
 - Local resulting forces on stator stack segments
 - Deformation of flexible stator yoke
 - \rightarrow Electromagnetic acoustic noise and vibration
 - \rightarrow Periodical force oscillation with double stator frequency

TECHNISCHE

JNIVERSITÄT

DARMSTADT

- 7.1 Torque generation
- 7.2 Radial forces at centric rotor position
- 7.3 Single sided magnetic pull at eccentric rotor position
- 7.4 LORENTZ forces on slot conductors
- 7.5 LORENTZ forces on winding overhang conductors
- 7.6 Rotor pole fixation in large synchronous machines

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE

JNIVERSITAT

DARMSTADT

7.3 Single sided magnetic pull *F* at eccentric rotor position

2*p* ≥ 4:

$$F = \frac{\pi}{4\mu_0} \cdot d \cdot l \cdot \frac{e}{\delta} \cdot B_{\delta 1}^2$$

$$2p = 2:$$

$$F = \frac{\pi}{8\mu_0} \cdot d \cdot l \cdot \frac{e}{\delta} \cdot B_{\delta 1}^2$$

For two-pole machines the single sided pull due to rotor eccentricity is only 50% of the value for machines with higher pole count.

TECHNISCHE UNIVERSITÄT

Static and dynamic eccentricity

Static eccentricity:

Minimum air gap location is fixed.

Rotor rotates around displaced rotor axis.

Dynamic eccentricity:

Minimum air gap location rotates with n.

Displaced rotor axis rotates with *n*.

Source: Neidhöfer, G.; BBC, Switzerland

Dependence of single-sided magnetic pull on field position

For higher pole counts 2p > 2:

- Single sided radial force <u>does not depend</u> on the position of fundamental field wave amplitude relative to the position of minimum air gap.

For two-pole machines 2p = 2:

- Single sided radial force <u>depends</u> on the position of fundamental field wave amplitude relative to the position of minimum air gap.

Therefore:

At static eccentricity: Single sided pull is pulsating between zero and F with f = 2n.

At dynamic eccentricity: Single sided pull is constant and rotates with minimum air-gap location, BUT its amplitude varies with the field position between 0 and *F*.

Example:

In case of dynamic eccentricity in *d*-axis direction the radial eccentricity force vanishes.

7. Forces in big synchronous machines <u>Two-pole machines</u>: Pulsation of single sided magnetic pull

Radial force is pulsating between zero and F with f = 2n.

Radial force is constant and rotates with *n*. Force amplitude depends on field position relative to minimum air-gap.

Source: Neidhöfer, G.; BBC, Switzerland

In case of dynamic eccentricity in *d*-axis direction the radial eccentricity force vanishes.

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Example: Single sided magnetic pull for a salient pole synchronous machine

Four-pole hydro generator 1.12 MVA, rotor mass 1350 kg.

$$d_{si} = 0.555m$$
, $l = 0.49m$, $B_{\delta 1} = 0.90T$, $\delta = 7.5mm$, $e = 0.6mm$
Eccentricity : $e/\delta = 0.6/7.5 = 0.08$

- Single sided radial pull in direction of the minimum air gap:

$$F = \frac{\pi}{4\mu_0} \cdot d_{si} \cdot l \cdot \frac{e}{\delta} \cdot B_{\delta 1}^2 = \frac{\pi}{4 \cdot 4\pi \cdot 10^{-7}} \cdot 0.555 \cdot 0.49 \cdot 0.08 \cdot 0.9^2 = \underline{11013} \mathbb{N}$$

- Influence of iron saturation leads to reduction: here typically - 40 %: $F = 6\,600\,\text{N}$

- <u>Conclusion</u>: Single sided magnetic pull: ca. 50% of rotor gravitational force: $6\ 600\ N = ca.\ 0.5\ x\ 1350xg = 0.5\ x\ 13\ 240\ N.$

JNIVFRSITÄT

Rotor bending natural frequencies

Source: Wiedemann, E.; Kellenberger, W.;

Vertical part of rotational bending oscillation:

-Lumped mass model: Rotor mass *m*, elasticity *c*:

 $m_r \cdot \ddot{y} - c \cdot y = 0$

Natural bending frequency:

Springer, 1968 Exciting centrifugal force due to static imbalance $e_{\rm S}$:

 $F_U = m_r \cdot (2\pi n)^2 \cdot e_S$ Vertical (y-)component): $F_{U,y} = F_U \cdot \sin(2\pi n \cdot t) = F_U \cdot \sin(\Omega_m \cdot t)$

Additional magnetic pull F due to dynamic eccentricity, caused by F_{U} :

- Equivalent magnetic spring constant: $k = F / e = \frac{\pi}{4\mu_0} \cdot \frac{d \cdot l}{\delta} \cdot B_{\delta 1}^2$

The single sided pull reduces the natural bending frequency:

$$f_b^* = \frac{1}{2\pi} \cdot \sqrt{\frac{c-k}{m_r}}$$

TECHNISCHE

JNIVFRSITÄT

DARMSTADT

	Salient pole generator	Turbine generator
Data:	1.12 MVA, 50 Hz, 2 <i>p</i> = 4, 1500 / min	125 MVA, 50 Hz, 2 <i>p</i> = 2, 3000 / min
<i>Β</i> _{δ1} / Τ	0.7	0.8
d/l	0.555 m / 0.49 m	1.06 m / 5.6 m
δ / mm	7.5	52.5
Rotor mass <i>m</i> _r	1350 kg	47140 kg
Bending natural frequency f_b	36.67 Hz (⇔ 2200 /min)	18.17 Hz (⇔ 1090 /min)
Calculations:		
<i>c /</i> N/mm	71666	615088
<i>k</i> / N/mm	11105	22613
k/c	0.155	0.0368
Reduction of frequency	0.92	0.981
Static bending y	0.185 mm	0.75 mm
Static bending with pull y*	0.22 mm	0.78 mm
y */δ	3 %	1.5 %

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Prof. A. Binder : Large Generators & High Power Drives

7/25

Influence of slotting on rotor bending in two pole machines

- Rotor stiffness in y-direction varies with rotor position, hence with 2n.
- This leads to mechanical excitation of bending oscillation with 2*n*.
- Axial slitting of poles reduces *d*-axis stiffness; to be equal to *q*-axis stiffness.

DARMSTADT

Finite element calculation of a two-pole rotor: Bending and torsional deformations

Finite element three-dimensional model of ONE HALF of a two-pole turbine generator rotor Calculated torsional deformation:

Yellow/Red: Big torsion deformation Blue: Small torsion deformation

Source: Alstom, Switzerland

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Large Generators and High Power Drives

Summary:

Single sided magnetic pull at eccentric rotor position

- Static and dynamic rotor eccentric position: Magnetic pull is directed to minimum air gap location
- Constant magnetic force
- At 2-pole machines: Pulsating radial force with f = 2n
- Dynamic eccentricity in *d*-axis direction: Radial force is zero
- Influence on rotor natural bending frequency: Reduction of elasticity due to negative "magnetic" spring
- Axial slitting of poles to equalize *q*-axis and *d*-axis stiffness

TECHNISCHE

JNIVFRSITAT

DARMSTADT

- 7.1 Torque generation
- 7.2 Radial forces at centric rotor position
- 7.3 Single sided magnetic pull at eccentric rotor position
- 7.4 LORENTZ forces on slot conductors
- 7.5 LORENTZ forces on winding overhang conductors
- 7.6 Rotor pole fixation in large synchronous machines

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE UNIVERSITÄT DARMSTADT

7.4 LORENTZ forces on slot conductors

Tangential force due to radial field of rotor Radial force due to slot leakage self field

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE

UNIVERSITÄT

DARMSTADT

7. Forces in big synchronous machines Where is the tangential force localized ? NOT at the conductor, <u>but</u> AT the tooth!

 $F_{\tau} = l \cdot \Theta_Q B_{\delta}$

 $B_r \approx \mu_0 H_d$

Tangential force per slot pitch:Radial flux density in the slot:

Tangential force at the slot conductor: $F_t = l \cdot \Theta_Q \cdot B_r$

$$F_t / F_\tau = B_{r,Q} / B_\delta$$

Example: The force on the slot conductor is only 2% of the total force per slot pitch, which mainly acts as tangential magnetic pull on the tooth side.

Source: Neidhöfer, G.; BBC, Switzerland

$$F_t / F_\tau = B_{r,Q} / B_\delta = 0.016 / 0.9 = 0.018 \cong 1/50$$

Radial conductor forces hammer with 50 Hz on the slot insulation

$$F_r(t) = l \cdot \Theta_Q(t) \cdot B_Q(t) = \frac{\mu_0}{2} \cdot \frac{l}{b_Q} \cdot \hat{\Theta}_Q^2 \cdot \sin^2(\omega t)$$

JNIVERSITÄT

Prof. A. Binder : Large Generators & High Power Drives 7/32

Double-layer winding: Radial hammering force is reduced

Single layer winding:

DARMSTADT

Energiewandlung • FB 18

tangential forces per axial conductors, 27 slots per

UNIVERSITÄT

Monitoring of turbine generator stator wedges on-site

Wedge Tightness Carriage inspects tightness of stator wedge; rotor is removed (may also be in-situ).

3D view of Carriage: Flexible articulation of robotic carriage helps access also in machines with narrow axial clearances

Source:

Siemens AG, Mülheim/Ruhr, Germany

TECHNISCHE UNIVERSITÄT DARMSTADT Prof. A. Binder : Large Generators & High Power Drives 7/36

Large Generators and High Power Drives

Summary:

LORENTZ forces on slot conductors

- Tangential conductor force due to radial field of rotor
 - Rather small, since total force mainly acts as tangential magnetic pull on the teeth
- Radial force due to slot leakage field
 - Strong stator-frequent pressure inward against the slot insulation
 - Double layer winding reduces hammering force due to pitching of coils

DARMSTADT

- 7.1 Torque generation
- 7.2 Radial forces at centric rotor position
- 7.3 Single sided magnetic pull at eccentric rotor position
- 7.4 LORENTZ forces on slot conductors
- 7.5 LORENTZ forces on winding overhang conductors
- 7.6 Rotor pole fixation in large synchronous machines

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE

JNIVERSITAT

DARMSTADT

7.5 LORENTZ forces on winding overhang conductors

- LORENTZ forces between adjacent coil sides
- Attraction of coils sides of the same phase.
- Repulsion of coil sides of different phases.
- Extreme forces at sudden short circuit:
- e.g. 12 times rated current: 144-times of rated forces.

$$F(t) = \frac{\mu_0}{2\pi} \cdot \frac{L}{a} \cdot i_1(t) \cdot i_2(t)$$

- L: length of conductor section

- a: distance between conductor centre lines

JNIVFRSITÄT

DARMSTADT

Damage of winding overhang at phase separation after sudden short circuit

Special fixations of the winding overhang are needed, especially in large, two-pole machines !

Source: Andritz Hydro, Austria

Source:

BBC, Switzerland

Prof. A. Binder : Large Generators & High Power Drives 7/40

3D finite element model of stator end winding zone

Source: Alstom, Switzerland

TECHNISCHE JNIVERSITÄT DARMSTADT

Calculated four-node vibration mode of the stator end winding

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Prof. A. Binder : Large Generators & High Power Drives 7/42

Generator end winding modelling

3D finite element calculation of end winding elliptical vibration mode (4node vibration mode)

Calculated displacement grossly exaggerated

Source:

Siemens AG, Mülheim/Ruhr, Germany

Prof. A. Binder : Large Generators & High Power Drives 7/43

Large Generators and High Power Drives

Summary:

LORENTZ forces on winding overhang conductors

-Attracting and repulsing forces between coil sides of the same phase, depending on the phase shift of neighbouring currents of different phases

$$F \sim I_1 \cdot I_2$$

- Big critical pulsating forces in case of sudden short circuit
- Special fixations of the winding overhang necessary

- 7.1 Torque generation
- 7.2 Radial forces at centric rotor position
- 7.3 Single sided magnetic pull at eccentric rotor position
- 7.4 LORENTZ forces on slot conductors
- 7.5 LORENTZ forces on winding overhang conductors
- 7.6 Rotor pole fixation in large synchronous machines

Source: Neidhöfer, G.; BBC, Switzerland

TECHNISCHE UNIVERSITÄT DARMSTADT

7.6 Rotor pole fixation in large synchronous machines

Rotor surface velocity (at over-speed): $v_{u,\max} = d_{si} \cdot \pi \cdot n_{\max}$ $\sigma_t = \rho \cdot v_{u,\max}^2 < \sigma_{zul}$ Centrifugal acceleration: $a_{centr} = \frac{v_{u,\max}^2}{d_{si}/2}$

"specific centrifugal force f" = centrifugal force F_{centr} /gravity: a_{centr} /g

$$F_{centr} = m \cdot \frac{v_{u,\max}^2}{d_{si}/2} \quad f = \frac{F_{centr}}{m \cdot g} = \frac{v_{u,\max}^2}{g \cdot d_{si}/2} = \frac{a_{centr}}{g}$$

A) Screwed poles

B) Dove-tail fixation

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Source: Gregori, F.; TU Wien

C) Double-dove tail / Hammer fixation

D) Double hammer fixation (or three hammers)

E) "Bolted comb" (nowadays not any longer used, too expensive)

Prof. A. Binder : Large Generators & High Power Drives 7/46

V_{u,max}

Tangential mechanical stress due to radial centrifugal force

Example: Steel cylinder fixation of rotor winding overhang

- Mass element of rotor (angle $\varphi << 1$) : $dm = \rho \cdot r \cdot \varphi \cdot dr \cdot l$
- Centrifugal force per mass element: $dF = dm \cdot r \cdot \Omega_m^2, \quad \Omega_m = 2\pi n$
- mechanical tangential forces:

$$2 \cdot dF_t \cdot \sin(\varphi/2) = dF \quad \rightarrow \quad dF_t = \frac{dF}{2\sin(\varphi/2)} \approx \frac{dF}{\varphi}$$

tangential tensile stress :

$$\sigma_t = \frac{dF_t}{l \cdot dr} \approx \frac{dF}{l \cdot dr \cdot \varphi} = \rho \cdot (r\Omega_m)^2 = \rho \cdot v_u^2 < \sigma_{zul}$$

TECHNISCHE DARMSTADT

JNIVERSITÄT

Prof. A. Binder : Large Generators & High Power Drives 7/47

 $\sigma_t = \rho \cdot v_u^2 < \sigma_{zul}$

 $\Delta \varphi$

 $\Delta \varphi$

 F_t

۸m

F

F.

Ft

F+

A) Screwed poles: $v_{u,max} = 110...120 \text{ m/s}$

Massive pole, laminated pole surface Mas

$$a_{centr} / g \le 600..800$$

Massive pole shaft, laminated pole shoe

Source:

Gregori, F., TU Wien

<u>Example:</u>

TECHNISCHE

UNIVERSITÄT

DARMSTADT

River hydro plant, *Kaplan* turbine, *Friesach* (River *Drau*)/Austria, Bulb turbine generators, 48 poles, 8.5 MVA, 50Hz, $d_{si} = 4.34$ m, $n_N/n_{max} = 125/395/min$,

 $v_{u,max} = 90$ m/s, $a_{centr}/g = 380$.

Screwed rotor poles

Massive rotor yoke ring of a bulb type hydro power generator for low speed, high pole count

River power plant, Kaplan turbine drive

Holes to screw the poles

Source:

Andritz Hydro, Austria

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Prof. A. Binder : Large Generators & High Power Drives 7/49

B) Dove-tail fixation $v_{u,max} = 130...180$ m/s

Massive poles:
$$a_{centr} / g \le 1850$$
 Laminated poles: $a_{centr} / g \le 1300.1500$

<u>Example:</u>

Double dove tail fixation, laminated poles: Hydro power plant *Shi San Ling/China*, 12 poles, 222 MVA, 50 Hz, d_{si} = 4.5 m, n_N/n_{max} = 500/725/min, $v_{u,max}$ = 170 m/s, a_{centr}/g = 1322

Dove-tail fixation

Dove-tail fixation

Prof. A. Binder : Large Generators & High Power Drives 7/52

D) Hammer fixation: $v_{u,max} = 180 \dots 200 \text{ m/s}$

<u>Examples:</u>

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Double hammer fixation: Storage plant *Kühtai/Austria*, 10 poles, $n_N = 600$ /min, 167 MVA, 50 Hz, $d_{si} = 3.4$ m, $n_{max}/n_N = ca. 1.7$, $v_{u,max} = ca. 180$ m/s, $a_{centr}/g = ca. 2000$

<u>Four-fold hammer fixation</u>: Single phase hydro power plant (German railways): Langenprozelten (river *Main*)/Deutschland, 4 poles, 16.7 Hz, $n_N/n_{max} = 500/757/min$, 94 MVA, $d_{si} = 3.5$ m, $v_{u,max} = 139$ m/s, $a_{centr}/g = 1121$, Pole mass 31 t (!)

Triple hammer fixation of rotor poles

Triple hammer fixation of rotor poles

Pump storage power plant *Vianden* /Luxembourg

Refurbishment of rotor winding

Laminated pole, massive pressure plates at the pole ends

Source:

Andritz Hydro, Austria

TECHNISCHE UNIVERSITÄT DARMSTADT Prof. A. Binder : Large Generators & High Power Drives 7/54

Balancing and over-speed test of salient pole rotor

Special bearings to measure unbalance, manufactured by Schenck/Darmstadt

Source: Andritz Hydro, Austria

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Prof. A. Binder : Large Generators & High Power Drives 7/55

7. Forces in big synchronous machines

Cylindrical rotor synchronous machines: $v_{u,max} = 215 \dots 235$ m/s

- Tangential mechanical stress in steel cylinder fixation of rotor winding overhang

Cylindrical rotor synchronous machines

Tangential and radial mechanical stress

a) due to rotor teeth and winding

b) due to rotor yoke mass

Rotor body without central hole has 50% lower stress!

Source: Wiedemann, E.; Kellenberger, W.; Springer-Verlag

JNIVERSITÄT

Prof. A. Binder : Large Generators & High Power Drives 7/58

Largest mechanical stress in Two-Pole Turbine Generators

<u>Example:</u> $f_s = 50$ Hz: Largest possible power: 1 GW at 50 Hz, n = 3000/min Rotor diameter: d = 1.25 m: v = 188 m/s = 676 km/h at 2p = 2, $l_{Fe} = 8$ m

- Bigger rotor diameters not possible due to limited strength of steel
- Longer rotors not possible due to strong rotor bending Source: Alstom Power Generation, Mannheim

Manufacturing of Hydrogen gas-cooled Two-pole Rotor, 1 GW, Lippendorf/Germany

TECHNISCHE UNIVERSITÄT DARMSTADT

Two-Pole Generator Rotor End Winding Retaining Cap

Modern stainless steel end caps: resistant to stress corrosion cracking due to Cr content e.g.: Fe-18Mn-18Cr-0.05C-07N steel ("18:18 steel")

2-pole generator: End cap failure (ca. 1975): non-magnetic austenitic manganese steel, sensible to stress corrosion cracking in moisture or aggressive halogen atmosphere

Source: Electra, April 2012

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Large Generators and High Power Drives

Summary:

Rotor pole fixation in large synchronous machines

- Fixation of the poles against centrifugal forces
- Increased mechanical requirements with rising circumferential speed
- Fixation types for salient rotor machines:
 - Screwed poles
 - (Double) Dove-tail fixation
 - (Double/triple) Hammer fixation
- Extreme mechanical stress in cylindrical rotor machines especially at two-pole machines: centrifugal acceleration up to 10000-times gravitational acceleration
- Retaining rings as end winding fixation

TECHNISCHE

JNIVERSITÄT

DARMSTADT

Large Generators and High Power drives

That's all, folks !

