Vorlesungsinhalt

- 1. Einleitung
- 2. Drehfelder in elektrischen Maschinen
- 3. Mathematische Analyse von Luftspaltfeldern
- 4. Spannungsinduktion in Drehstrommaschinen
- 5. Die Schleifringläufer-Asynchronmaschine
- 6. Die Kurzschlussläufer-Asynchronmaschine
- 7. Antriebstechnik mit der Asynchronmaschine
- 8. Die Synchronmaschine
- 9. Erregereinrichtungen und Kennlinien
- 10. Gleichstromantriebe

Die Synchronmaschine

Umrichtergespeister Walzwerksmotor:

Dillinger Hütte, Saarland (gegründet 1685!)

Quelle: Siemens AG

UNIVERSITÄT DARMSTADT

- 8. Die Synchronmaschine
 - 8.1 Funktionsprinzip und Läuferbauweisen
 - 8.2 Ständerspannungsgleichung der Vollpolmaschine
 - 8.3 Betriebsverhalten der Vollpolmaschine am "starren" Netz
 - 8.4 Ständerspannungsgleichung der Schenkelpolmaschine
 - 8.5 Betriebsverhalten der Schenkelpolmaschine am "starren" Netz
 - (8.6 Verlustbilanz bei Synchronmaschinen)
 - 8.7 Synchrongeneratoren im Inselbetrieb

Synchronmaschine - Funktionsprinzip

- Läufer hat konstantes Magnetfeld mit z.B. zwei Polen: Erregt a) über Permanentmagnete oder
 b) über von Gleichstrom durchflossene Spulen
- Ständer hat dreisträngige "Drehfeldwicklung", die vom Drehstromnetz gespeist wird und ein z. B. zweipoliges Drehfeld erregt.
- Läuferpolzahl 2p = Ständerpolzahl 2p
- Tangentiale LORENTZ-Kraft vom Ständerfeld auf stromdurchflossene Leiter der Läuferwicklung: Es entsteht das elektromagnetische Drehmoment M_e, das den Läufer SYNCHRON ("gleich schnell") mit dem Ständerdrehfeld mitzieht.

Einsatzgebiete der Synchronmaschine

Synchronmaschinen direkt am Netz: Konstante Statorfrequenz

Motor: Läuferfeldachse läuft hinter Drehfeldachse

- Absoluter Festdrehzahlantrieb ("Synchronlauf") – z. B. Uhrenantrieb!

<u>Generator:</u> Läuferfeldachse läuft vor Drehfeldachse = Läufer muss angetrieben werden!

z. B. durch die Turbine; <u>Beispiel:</u> Großmaschinen-Stromerzeuger bis ca. 2000 MVA

z. B.: 2 GW: Kernkraftwerk Olkiluoto/Finnland.

- Synchronmaschinen mit Umrichterspeisung: Variable Statorfrequenz:
 - Drehzahlgeregelte Motoren für Werkzeugmaschinen, Verpackungsmaschinen, ... \Rightarrow kleine Leistung, Permanentmagneterregung
 - Großantriebe bis 100 MW
 - z. B. Antrieb für Windkanal bis 100 MW,
 - Schiffsantriebe ca. 20 MW,
 - el. Traktion ca. 1 MW, z. B. Frankreich: TGV (Train a grande vitesse),
 - 1. Generation: el. erregt,
 - 3. Generation: PM-erregt.

Synchronmaschinen Netz- u. Umrichterbetrieb

Elektrisch oder permanentmagneterregte Schiffspropellerantriebe: z. B. Kreuzfahrtschiff *"M/S Elation":* 2 x 14 MW, 0 ... 150 /min

Quelle: ABB Finnland

Kraftwerks-"Upgrading" von 50 MVA auf 60 MVA:

Einbau des 10-poligen Generator-/Motorläufers, Pumpspeicher-Kraftwerk Kaprun, Österreich Quelle: Andritz Hydro, Österreich

Synchronmaschine mit Vollpol- und Schenkelpol-Läufer

Synchronmaschine mit Vollpolläufer

TECHNISCHE UNIVERSITÄT DARMSTADT

Ständerwicklung erregt Ständerdrehfeld

Quelle: Siemens AG

VOLLPOL: Erregerwicklung in Läufernuten; Luftspalt konstant

Läufer ("Polrad") hat Gleichstrom-durchflossene Erregerwicklung (Strom $I_{\rm f}$), die das Läuferfeld erregt.

MOTOR-Betrieb: Ständerdrehfeld zieht über die Magnetkraft den Läufer gleich schnell (="synchron") mit.

GENERATOR-Betrieb: Läufer ist mechanisch angetrieben & induziert in die Ständerwicklung ein Dreh-Spannungssystem, das den Ständerstrom treibt. Dessen Ständer-Drehfeld folgt dem Läufer synchron.

Vollpolmaschine 2p = 2: Magnetfeld bei Leerlauf

 $\frac{\text{Beispiel:}}{2p = 2, q_r = 5}$ $q_r = 5$ S

Quelle: H. Kleinrath, Studientext

Läuferquerschnitt ohne Erregerwicklung:

- Lochzahl $q_r = 5$, zweipoliger Läufer
- Läufer kann aus massivem Eisen sein, da im Läufer nur magnetischer Gleichfluss

Magnetfeld bei Leerlauf $(I_s = 0, I_f > 0)$:

- Erregerwicklung bestromt
- Ständerwicklung stromlos (Leerlauf)
- Feldlinien radial = kein tangentialer Magnetzug =
 elektromagnetisches Drehmoment ist Null

Vollpol-Synchron-Rotor, 8-polig

TECHNISCHE UNIVERSITÄT DARMSTADT

Quelle: Andritz Hydro, Bhopal, Indien

Wickelschema einer Läufer-Synchron-Vollpolwicklung, 6-polig

Drei konzentrische Feldspulen/Pol: $q_r = 3$, N_{fc} Windungen je Feldspule, N_f Windungen insgesamt

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 11 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

<u>Beispiel:</u> Vollpol-Synchronmaschine 2p = 2: Erregerwicklung (Feldwicklung) im zylindrischen Rotor

Konzentrische Feldspulen der Erregerwicklung je Pol

Zweipoliger Turbo-Generator 3000/min, 300 MW, 19 kV Y, 50 Hz Rotordurchmesser $d_{ra} = 1.150$ m, Aktive Eisenlänge $l_{Fe} = 5.46$ m: $N_f = 2p \cdot q_r \cdot N_{fc} = 2 \cdot 9 \cdot 10 = 180$

Quelle: (C) 2007 Bryon Paul McCartney / all rights reserved.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 12 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

PM-Synchronmotor mit Oberflächenmagneten Schnitt durch 6-polige PM-Synchronmaschine

TECHNISCHE UNIVERSITÄT DARMSTADT

<u>Beispiel</u>: 36 Statornuten, $q_s = 2$, Einschicht-Runddrahtwicklung

Geringe Läufermasse m = --kleines Läuferträgheitsmoment J = hoheDrehbeschleunigung möglich

Konstanter Luftspalt δ : PM-Synchronmaschine ist "Vollpol"-Maschine

Quelle: Siemens AG

- PM-Erregung = keine Erregerverluste. Motor OHNE Kühlung betreibbar = = einfaches, robustes Antriebssystem
- Betrieb drehzahlveränderbar am Spannungszwischenkreis-Umrichter
- Polradlagegeber misst Rotorlage Positionierung des Antriebs möglich (Lageregelung)

Ein-Arm-Roboter mit PM-Synchronantrieben

TECHNISCHE UNIVERSITÄT DARMSTADT

Zusammenfassung: Funktionsprinzip und Läuferbauweisen (1)

- Vollpolläufer und Schenkelpolläufer
- Vollpol: Eher niedrige Polzahlen, dafür hohe Drehzahlen
 Schenkelpol: Eher hohe Polzahlen, niedrige Drehzahlen
- Dreisträngige Ständer-Drehfeldwicklung am Sinus-Drehspannungssystem
- Ständerwicklung erzeugt Drehfeld mit ausgeprägter Grundwelle 2*p* (rotiert mit "Synchrondrehzahl")
- Läufer ("Polrad") hat el. gespeiste Spulen (Erreger-Gleichstrom I_f) oder Permanentmagnete, die Läufer-Gleichfeld 2*p* erregen
- Ständer-Drehfeld bildet mit Läufer-Magnetfeld Drehmoment.
- Läufer wird gleich schnell mit Ständer-Drehwelle ("synchron") mitgezogen (Motorbetrieb)

Zusammenfassung:

Funktionsprinzip und Läuferbauweisen (2): Permanentmagneterregte Synchronmaschinen

- Selten-Erd-Magnete (NdFeB, SmCo) mit hoher Energiedichte im Läufer
- Umrichtergespeiste Maschinen, meist ohne Dämpferkäfig
- Hochdynamische Antriebe (J klein) im unteren und mittleren Leistungsbereich
- Details: Vorlesung "Motor development for electrical drive systems (2+1)"
- Große PM-Synchronmaschinen als Windgeneratoren: Details: Vorlesung "Large generators & High Power Drives (2+1)"

- 8. Die Synchronmaschine
 - 8.1 Funktionsprinzip und Läuferbauweisen
 - 8.2 Ständerspannungsgleichung der Vollpolmaschine
 - 8.3 Betriebsverhalten der Vollpolmaschine am "starren" Netz
 - 8.4 Ständerspannungsgleichung der Schenkelpolmaschine
 - 8.5 Betriebsverhalten der Schenkelpolmaschine am "starren" Netz
 - (8.6 Verlustbilanz bei Synchronmaschinen)
 - 8.7 Synchrongeneratoren im Inselbetrieb

Läuferfeld und Polradspannung der Vollpolmaschine

Treppenförmige Läufer-Feldkurve

hat Grundwelle (
$$\mu = 1$$
):
 $\hat{V}_f = \frac{4}{\pi} \cdot \frac{N_f}{2p} \cdot (k_{p,f} \cdot k_{d,f}) \cdot I_f \approx \frac{N_f}{2p} \cdot I_f$
 $B_p = \mu_0 \cdot \frac{\hat{V}_f}{\delta} \qquad N_f = 2p \cdot q_r \cdot N_{fc}$
 $k_{p,f} = \sin\left(\frac{W}{\tau_p} \cdot \frac{\pi}{2}\right) = \sin(\pi/3) = \frac{\sqrt{3}}{2}$
 $k_{d,f} = \frac{\sin(\pi/6)}{q_r \cdot \sin(\pi/(6q_r))} \qquad k_{wf} = k_{pf} \cdot k_{df}$

- Läuferfluss pro Pol: $\Phi_p = \frac{2}{\pi} \cdot l \cdot \tau_p \cdot B_p$
- Polradspannung U_p: Sinusförmige Feldwelle B_p induziert in die dreiphasige Ständerwicklung bei Drehzahl n ein Drehspannungssystem ("Polradspannung")

$$U_{p} = \omega_{s} \cdot \Psi_{p} / \sqrt{2} = 2\pi f_{s} \cdot \Psi_{p} / \sqrt{2} = \omega_{s} \cdot N_{s} k_{w,s} \cdot \Phi_{p} / \sqrt{2}$$

mit der Frequenz $f_s = n \cdot p$

Induzierte Ständerspannung ("Polradspannung")

Beispiel:
$$q_s = 1 \Longrightarrow k_{ws} = 1, f_s = n \cdot p$$

Verkettung des Läuferflusses mit Spule U $\Phi_p(t) = \Phi_p \cdot \sin(2\pi \cdot f_s \cdot t)$

$$\Psi_{p,U}(t) = N_s k_{ws} \cdot \Phi_p \cdot \sin(2\pi \cdot f_s \cdot t)$$

Verkettung des Läuferflusses mit Spule V und Spule W:

$$\Psi_{p,V}(t) = N_s k_{ws} \cdot \Phi_p \cdot \sin(2\pi f_s \cdot t - 2\pi/3)$$

$$\Psi_{p,W}(t) = N_s k_{ws} \cdot \Phi_p \cdot \sin(2\pi f_s \cdot t - 4\pi/3)$$

• Induzierte Spannung je Strang bei Leerlauf = Polradspannung: $\omega_s = 2\pi \cdot f_s$ $u_{i,U}(t) = -d \Psi_{p,U}(t)/dt = -\omega_s \cdot N_s k_{ws} \cdot \Phi_p \cdot \cos(\omega_s \cdot t) = -\sqrt{2} \cdot U_p \cdot \cos(\omega_s \cdot t)$

$$U_{i0} = U_p = \sqrt{2}\pi \cdot f_s \cdot N_s k_{ws} \cdot \Phi_p$$

Synchronmaschine bei Belastung $I_s \neq 0$

• Die Ständerwicklung ist an das Drehspannungssystem U_s des Netzes angeschlossen. Die Differenz $\underline{U}_s - \underline{U}_p$ treibt in der Ständerwicklung Drehstrom \underline{I}_s .

Ohm´scher Spannungsfall durch I_s & Selbstinduktionsspannung durch Ständerfeld, das von I_s erregt wird.

Vollpolmaschine Ersatzschaltbild

- Ständerwicklung: Drehfeldwicklung wie bei Asynchronmaschine,
- *j*·X_s·<u>I</u>_s: Selbstinduktionsspannung über a) das ständererregte Luftspaltfeld (Reaktanz X_h) und b) das Ständerstreufeld (Reaktanz X_{sσ}).
- Spannungsfall am Ständer-Wicklungswiderstand R_s
- Spannungsgleichung je Strang: $\underline{U}_{s} = \underline{U}_{p} + jX_{h} \cdot \underline{I}_{s} + jX_{s\sigma} \cdot \underline{I}_{s} + R_{s} \cdot \underline{I}_{s}$ $\underline{U}_{s} = \underline{U}_{p} + jX_{d} \underline{I}_{s} + R_{s} \underline{I}_{s}$
- "Synchrone Reaktanz": $X_s = X_d = X_{s\sigma} + X_h$ Gesamte Wirkung des Ständer-Magnetfelds!
- Ersatzschaltbild Ständerwicklung für Ständerspannungsgleichung (Wechselstrom).

• Läuferwicklung:

 U_{f} : DC-Erregerspannung: (Feldspannung): Sie prägt über Schleifringe Gleichstrom (Erregerstrom I_{f}) in Erregerwicklung (Feldwicklung mit Widerstand R_{f}) ein.

$$U_f = R_f \cdot I_f$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 21 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Alternatives Vollpol-Ersatzschaltbild Eingeprägter Ersatzfeldstrom <u>I</u>'_f

$$\underline{U}_{h} = \underline{U}_{p} + jX_{h} \cdot \underline{I}_{s} = jX_{h} \cdot \left(\underline{I'}_{f} + \underline{I}_{s}\right) = jX_{h} \cdot \underline{I}_{m}$$

 $\underline{I}_{m} = \underline{I'}_{f} + \underline{I}_{s}$ Magnetisierungsstrom

Fiktiver Ersatz-Erreger(wechsel)strom \underline{I}_{f}

- Selbstinduktionsspannung: $\underline{U}_{s,s} = jX_h \cdot \underline{I}_s$ vom Ständer-Luftspaltfeld
- Polradspannung <u>U</u>_p: Luftspaltfeld des Läufers, kann über Erregerstrom I_f willkürlich WÄHREND DES BETRIEBS verändert werden =
 - = "gesteuerte Spannungsquelle,, \Rightarrow
- a) Amplitude über I_f verändert.
- **b)** Je nach relativer Lage des Läufer-Nordpols zum Nordpol des Ständerdrehfelds ändert sich die Phasenlage von \underline{U}_p in Bezug zu $jX_h\underline{I}_s$: Polradlage \Rightarrow Polradwinkel \mathcal{G}
- Darstellung von Amplitude und Phasenlage von \underline{U}_p mit fiktivem Wechselstrom $\underline{I'}_f$ im Ersatzschaltbild: $\underline{U}_p = jX_h \cdot \underline{I'}_f$

Übersetzungsverhältnis für Erregerstrom ü_{If}

TECHNISCHE UNIVERSITÄT DARMSTADT

Zusammenfassung: Ständerspannungsgleichung der Vollpolmaschine

- Polradspannung $U_{\rm p}$ ist Wechselspannungsquelle
- Synchronreaktanz X_d bildet mit X_dI_s Selbstinduktionsspannung des Ständerdrehfelds und Ständerstreufelds in der Ständerwicklung ab
- Polradspannung U_p kann über DC-Läufer-Erregerstrom I_f verändert werden = gesteuerte Spannungsquelle $U_p(I_f)$
- Winkel zwischen Polradspannung \underline{U}_{p} und Ständerstrangspannung \underline{U}_{s} = "Polradwinkel" \mathcal{G}
- Winkel zwischen Ständerstrangspannung \underline{U}_{s} und Strangstrom \underline{I}_{s} = "Phasenwinkel" φ_{s}

- 8. Die Synchronmaschine
 - 8.1 Funktionsprinzip und Läuferbauweisen
 - 8.2 Ständerspannungsgleichung der Vollpolmaschine
 - 8.3 Betriebsverhalten der Vollpolmaschine am "starren" Netz
 - 8.4 Ständerspannungsgleichung der Schenkelpolmaschine
 - 8.5 Betriebsverhalten der Schenkelpolmaschine am "starren" Netz
 - (8.6 Verlustbilanz bei Synchronmaschinen)
 - 8.7 Synchrongeneratoren im Inselbetrieb

Polradwinkel \mathcal{G} , Hauptfeldspannung $U_{\rm h}$, Magnetisierungsstrom $I_{\rm m}$

$$\underline{U}_{s} = \underline{U}_{p} + j \cdot (X_{h} + X_{s\sigma}) \cdot \underline{I}_{s} + R_{s} \cdot \underline{I}_{s}$$

Polradwinkel *9*: Zwischen \underline{U}_{s} und \underline{U}_{p} im mathem. Zählsinn positiv gezählt von \underline{U}_{s} nach \underline{U}_{p}

Hauptfeldspannung U_h: Resultierende Induktionswirkung von Läufer- und Ständer-Luftspaltfeld:

$$\underline{U}_h = \underline{U}_p + jX_h \cdot \underline{I}_s \qquad \underline{U}_h = jX_h \cdot \underline{I}_m$$

Magnetisierungsstrom I_m: Resultierender Erregerbedarf für Läufer- und Ständer-Luftspaltfeld:

$$\underline{I}_m = \underline{I'}_f + \underline{I}_s$$

- Spannungsdreieck $\underline{U}_p, jX_h\underline{I}_s, \underline{U}_h$ und Stromdreieck $\underline{I'}_f, \underline{I}_s, \underline{I}_m$ sind
 - a) winkelgleich,
 - b) im rechten Winkel zueinander.

Polradwinkel ϑ , Hauptfeldspannung $U_{\rm h}$

- Hauptfeldspannung U_h wird vom Hauptfeld (= resultierendes Luftspaltfeld) induziert
- $\underline{U}_{s} = \underline{U}_{h}$ gilt bei R_{s} , $X_{s\sigma} = 0$

Beispiel: GENERATOR

- Angetriebener Läufer dreht nach links = mathem. positiv
- resultierendes Luftspaltfeld folgt, bremst mit M_e den Läufer
- Polradwinkel & POSITIV

Drehmomentbildung anschaulich

- Modell zum Verständnis: Zwei gleich schnell drehende Magnete S und R
 - a) Ständer-Magnetdrehfeld => Ersatzdarstellung durch drehenden Magnet S (N-S-Magnet)
- b) Magnetisiertes Polrad ist drehender Magnet R (S-N-Magnet)
- R wird von S angezogen ⇒ Läufer folgt Stator-Drehfeld

• Motorbetrieb:

Läufer durch Lastmoment $M_s > 0$ belastet \Rightarrow "spannt Polradwinkel" $\mathscr{G} < 0$ zwischen S- und R-Achse auf, so dass Drehmoment $M_e = M_s$ entsteht, damit n = konst. bleibt

• Generatorbetrieb:

Läufer durch Turbinenmoment $M_s < 0$ angetrieben \Rightarrow Statorströme bremsen Läufer: bremsendes Drehmoment $M_e = M_s$ entsteht, "spannt Polradwinkel" $\Im > 0$ zwischen S- und R-Achse auf

Quelle: Kleinrath, El. Maschinen, Studientext • Polradwinkel & immer vorzeichenrichtig aus Zeigerdiagramm

Vollpolmaschine Magnetfeld bei Last

• Magnetfeld bei Belastung ($I_s > 0, I_f > 0$): Polachse = Richtung \underline{U}_p , Feldachse = Richtung \underline{U}_h

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 31 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Zeigerdiagramm der Vollpol-Synchronmaschine

<u>Beispiel</u>: Generator, übererregt: $P_e = m_s \cdot U_s \cdot I_s \cdot \cos \varphi_s$ a) elektrische Wirkleistung: Winkel φ_s zwischen -90° und -180°: Daher $\cos \varphi_s$ negativ: P_{ρ} ist negativ = ans Netz gelieferte Leistung (GENERATOR). $P_e < 0$: Generator $P_e > 0$: Motor VZS **b) elektrische Blindleistung:** $Q = m_s \cdot U_s \cdot I_s \cdot \sin \varphi_s$ Winkel φ_s negativ = Strom eilt Spannung VOR: $\sin \phi_s$ negativ: Q ist negativ = kapazitive Blindleistung: Maschine wirkt als kapazitiver Verbraucher. Q < 0: **übererregt**, Verbraucher kapazitiv. Q > 0: **untererregt**, Verbraucher induktiv.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 32 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Über-/Untererregt Generator/Motor-Betrieb

- Generatorbetrieb: 9 > 0: Polrad läuft VOR dem resultierenden Luftspaltfeld = Zeiger <u>U</u>_p liegt VOR <u>U</u>_h.
- Motorbetrieb: *9* < 0: Polrad läuft NACH dem resultierenden Luftspaltfeld = Zeiger <u>U_p liegt NACH <u>U_h</u>.
 </u>
- **Übererregt: Syn.maschine ist kapazitiv:** Zeiger \underline{U}_{p} i. A. deutlich länger als \underline{U}_{h} : hoher Erregerstrom I_{f}
- Untererregt: Syn.maschine ist induktiv: Zeiger <u>Up</u> i. A. deutlich kürzer als <u>Up</u>: niedriger Erregerstrom If
 - **Fazit:** Stets drehen Ständer-Drehfeld und Läufer gleich schnell. Über Generator-/ Motorbetrieb entscheidet nur die <u>relative</u> Winkellage & des Läufers zum resultierenden Luftspaltfeld.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 33 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Drehmoment M_e auf den Läufer MAXWELL'scher Zug der Feldlinien bei Last

- Feldlinien im Luftspalt haben tangentiale Richtung = tangentialer Magnetzug = elektromagnetisches Drehmoment M_e

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 34 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Drehmoment der Vollpolmaschine bei U_s = konst., R_s = 0 (1)

TECHNISCHE UNIVERSITÄT DARMSTADT

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 35 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Drehmoment der Vollpolmaschine bei U_s = konst., R_s = 0 (2)

TECHNISCHE UNIVERSITÄT DARMSTADT

Elektromagnetisches Drehmoment:

Stationärer Arbeitspunkt der Synchronmaschine <u>Beispiel:</u> Generatorbetrieb

• Kennlinie $M_e(\vartheta)$ im Arbeitspunkt ϑ_0 durch Tangente angenähert: $M_e(\vartheta_0) = M_s$ $M_e(\vartheta) \cong M_e(\vartheta_0) + (\partial M_e / \partial \vartheta) \cdot \Delta \vartheta$ mit $\Delta \vartheta = \vartheta - \vartheta_0$

 $c_{\mathcal{G}}(\mathcal{G}_0) = \partial M_e / \partial \mathcal{G}|_{\mathcal{G}_0}$ Ersatz-Drehfederkonstante $\Leftrightarrow \Delta M_e = c_{\mathcal{G}} \cdot \Delta \mathcal{G}$

TECHNISCHE UNIVERSITÄT

DARMSTADT

Mechanisches Analogon Drehfeder

Mechanische Drehfeder:

 $\Delta M = c_{\mathcal{A}} \cdot \Delta \mathcal{A}$

Synchronmaschine:

$$\Delta M_e = c_{\mathcal{G}}(\mathcal{G}_0) \cdot \Delta \mathcal{G}$$

$$c_{\mathcal{G}}(\mathcal{G}_0) = \partial M_e / \partial \mathcal{G} |_{\mathcal{G}_0} = -M_{p0} \cos \mathcal{G}_0$$

Nichtlineare negative Federkonstante:

a) Nichtlinear, weil Funktion von \mathcal{G}_0

b) "Negativ", weil \mathcal{G} für Generatorbetrieb positiv definiert

Stabile und instabile Arbeitspunkte (1)

<u>Beispiel</u>: Drehmoment-Polradwinkel-Kurve $M(\mathcal{S})$ im Generatorbetrieb: mech. Antriebsmoment M_s Arbeitspunkt 1: **stabil**, Arbeitspunkt 2: **instabil**, **Stabilitätsgrenze** beim Polradwinkel $\pm \pi/2$

Stabile und instabile Arbeitspunkte (2)

Fazit:

- Synchrones motorisches / generatorisches Kippmoment $\pm M_{p0}$ bei Kippwinkel $\pm \pi/2$.
- "**Kippen**" = Überschreiten des Kippmoments:

Polrad "schlüpft" = Polrad dreht <u>asynchron</u> zu dem vom Netz erregten Ständerdrehfeld.

- Schlüpfen = Wechselmoment = Es kann <u>keine</u> Wirkleistung mehr übertragen werden.

Stabilitätsuntersuchung der Arbeitspunkte (1)

• Stabilität des Arbeitspunkts $\mathcal{G}_0: M_e(\mathcal{G}_0) = M_s$

 $M_e(\mathcal{G}) \cong M_e(\mathcal{G}_0) + (\partial M_e / \partial \mathcal{G}) \cdot \Delta \mathcal{G}$

$$J \cdot \frac{d\Omega_m}{dt} = M_e(\vartheta) - M_s = M_e(\vartheta_0) + c_\vartheta \cdot \varDelta \vartheta - M_s = c_\vartheta \cdot \varDelta \vartheta \qquad \Delta \vartheta = \vartheta - \vartheta_0$$

$$\Omega_m(t) = \Omega_{syn} + \Delta \Omega_m(t) \qquad \Rightarrow \quad J \cdot \frac{d\Omega_m}{dt} = J \cdot \frac{d\Delta \Omega_m}{dt}$$

- Zeitliche Änderung des Polradwinkels bewirkt Drehzahländerung $d\Delta \vartheta / dt = p \cdot \Delta \Omega_m$
- Bewegungsgleichung:

a) $|\mathcal{G}_0| < \pi/2 : c_{\mathcal{G}} < 0$ b) $|\mathcal{G}_0| > \pi/2 : c_{\mathcal{G}} > 0$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 41 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Stabilitätsuntersuchung der Arbeitspunkte (2)

$$J \cdot \frac{d^2 \varDelta \vartheta}{dt^2} - p \cdot c_{\mathcal{G}} \cdot \varDelta \vartheta = 0$$

a) $\frac{|\mathcal{G}_0| < \pi/2 : c_{\mathcal{G}} = -|c_{\mathcal{G}}| < 0}{\Delta \ddot{\mathcal{G}} + (p \cdot |c_{\mathcal{G}}|/J) \cdot \Delta \mathcal{G} = 0} \qquad \Delta \ddot{\mathcal{G}} + \omega_e^2 \cdot \Delta \mathcal{G} = 0 \qquad \omega_e^2 = p \cdot |c_{\mathcal{G}}|/J$

Anfangsstörung: $\Delta \vartheta(t=0) = \Delta \vartheta_0, \ \Delta \dot{\vartheta}(t=0) = 0 \implies \Delta \vartheta(t) = \Delta \vartheta_0 \cdot \cos(\omega_e t)$

Abweichung des Polradwinkels vom Arbeitspunkt schwingt zwar ("Drehfeder mit Dreh-Masse"), aber die Schwingungsamplitude bleibt beschränkt: **STABIL**

b)
$$\frac{|\mathcal{G}_{0}| > \pi/2}{\Delta \ddot{\mathcal{G}} - (p \cdot |c_{\mathcal{G}}|/J) \cdot \Delta \mathcal{G}} = 0 \qquad \Delta \ddot{\mathcal{G}} - \omega_{e}^{2} \cdot \Delta \mathcal{G} = 0$$

$$\Delta \ddot{\mathcal{G}} - (p \cdot |c_{\mathcal{G}}|/J) \cdot \Delta \mathcal{G} = 0 \qquad \Delta \ddot{\mathcal{G}} - \omega_{e}^{2} \cdot \Delta \mathcal{G} = 0$$
Anfangsstörung:
$$\Delta \mathcal{G}(t = 0) = \Delta \mathcal{G}_{0}, \ \Delta \dot{\mathcal{G}}(t = 0) = 0 \implies \Delta \mathcal{G}(t) = \Delta \mathcal{G}_{0} \cdot \cosh(\omega_{e}t) = \Delta \mathcal{G}_{0} \cdot \frac{e^{\omega_{e}t} + e^{-\omega_{e}t}}{2}$$

Abweichung des Polradwinkels nimmt zu: INSTABIL

Drehschwingungen der Synchronmaschine (1)

Abweichungen des Polradwinkels vom stationären Arbeitspunkt im stabilen Bereich:

$$\frac{g_0|<\pi/2}{2}: \Delta \ddot{g} + \omega_e^2 \cdot \Delta g = 0 \implies \Delta g(t) = \Delta g_0 \cdot \cos(\omega_e t) + (\Delta \dot{g}_0 / \omega_e) \cdot \sin(\omega_e t)$$

Schwingungsgleichung: Polrad schwingt um Arbeitspunkt \mathcal{G}_0 gegen das vom Netz erregte, mit *n*_{syn} rotierende Ständerdrehfeld, wenn es durch eine Störung (z. B. im Antriebsmoment) kurzfristig aus dem Arbeitspunkt ausgelenkt wird, mit der **Eigenfrequenz**:

$$f_e = \frac{\omega_e}{2\pi} = \frac{1}{2\pi} \cdot \sqrt{\frac{p \cdot |c_{\mathcal{Y}}|}{J}}$$

Fazit: Die Synchronmaschine wirkt wie eine schwingende Drehfeder mit einer Dreh-Masse.

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Drehschwingungen der Synchronmaschine (2)

Beispiel: Leerlauf-Arbeitspunkt
$$(M_e = 0, \theta_0 = 0)$$
: $|c_{\theta}| = |-M_{p0} \cdot \cos(0)| = M_{p0}$

Mit
$$p \cdot \Omega_{syn} = \omega_N$$
 und der Nenn-Anlaufdauer $T_J = \frac{J \cdot \Omega_{syn}}{M_N}$ folgt: $f_e = \frac{1}{2\pi} \cdot \sqrt{\frac{\omega_N}{T_J} \cdot \frac{M_{p0}}{M_N}}$

 $\pi/2 \cdot M_{p0}$

Beispiel: Synchronmotor (Windkanal-Antrieb):

$$P_{\rm N} = 50 \text{ MW}, f_{\rm N} = 50 \text{ Hz}, T_{\rm J} = 10 \text{ s}, M_{\rm p0}/M_{\rm N} = 1.5 \qquad -M_{\rm e}$$

$$f_{e} = \frac{1}{2\pi} \sqrt{\frac{\omega_{N}}{T_{J}} \cdot \frac{M_{p0}}{M_{N}}} = \frac{1}{2\pi} \sqrt{\frac{2\pi50}{10} \cdot 1.5} = \underline{1.09 \text{ Hz}}$$

$$Arbeitspunkt$$

Elektrisch erregte Synchronmaschinen mit Dämpferwicklung

Dämpferkäfig einer zweipoligen Schenkelmaschine Asynchrones Moment $M_{D\ddot{a}}(n)$ des Dämpferkäfigs (*KLOSS*-Funktion)

Näherung der KLOSS-Funktion $M_{D\ddot{a}}(n)$ für kleinen Schlupf *s* nahe der Synchrondrehzahl:

$$M_{D\ddot{a}}(s) \approx \frac{2M_b}{s_b} \cdot s = D \cdot s$$
 für $|s| << 1$

Wirkung der Dämpferwicklung

- Synchronmaschine schwingt am "starren" Netz bei jeder Belastungsänderung.
- Dämpferkäfig (= zusätzlicher Kurzschlusskäfig im Polrad) dämpft diese Schwingungen rasch ab.
- Schwingen = Drehzahl weicht von Synchrondrehzahl periodisch ab (Schlupf s) Spannungsinduktion mit s · f_s ⇒ Im Dämpferkäfig fließt Dämpfer-Strom, der mit Ständerdrehfeld asynchrones Drehmoment M_{Dä} bildet.
- M_{Dä} wirkt der Ursache (Polrad-Schwingbewegung) entgegen (*Lenz*´sche Regel der Spannungsinduktion) ⇒ Schwingungsdämpfung.
- Kinetische Polrad-Schwingungsenergie in Dämpferkäfig-Stromwärme "vernichtet" = Schwingungsdämpfung !

Asynchronkäfig im Läufer der Synchronmaschine

Anlaufkäfig: Grosse Käfig-Stab-Querschnitte: Asynchroner Anlauf der Synchronmaschine am Netz möglich, bei kurzgeschlossener Erregerwicklung

Dämpferkäfig: Kleine Käfig-Stab-Querschnitte Kein asynchroner Anlauf der Synchronmaschine am Netz wegen der Gefahr thermischer Überhitzung möglich.

Aber:

Abdämpfung von mechanischen

Läuferschwingungen bei Belastungsänderungen! Denn:

Schwingen des Läufers (der Drehbewegung überlagert) bewirkt, dass das Luftspalt-Drehfeld den Läuferkäfig induziert.

Käfigströme bilden mit Drehfeld Bremsmoment,

dass die Schwingbewegung rasch dämpft.

Dämpferkäfig in Rotoren von Schenkelpol-Synchronmaschinen

TECHNISCHE UNIVERSITÄT DARMSTADT

10-poliger Motorläufer, durchgehende Dämpferringe

14-poliger Generatorläufer, Dämpferstäbe in den Polschuhen

Quelle: Lloyd Dynamowerk, Bremen

Quelle: Siemens AG, Deutschland

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 48 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Kupferkeile der Erregerwicklung und Wicklungskappen bilden Dämpferkäfig

Vierpoliger Turbo-Generator

Einführen des Rotors mit dem Kran

Dämpferkäfig-

Wicklungs-

Quelle:

4-poliger Turbogenerator für ca. 1.6 GW: Einsatz in Kernkraftwerken

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 49 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Gedämpfte Polrad-Schwingungen (1)

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 50 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Gedämpfte Polrad-Schwingungen (2)

• Lösung der Schwingungsgleichung: Anfangsbedingungen:

$$\begin{split} \frac{J}{p} \cdot \Delta \ddot{\mathcal{B}} + \frac{D}{p\Omega_{syn}} \cdot \Delta \dot{\mathcal{B}} + |c_{g}| \cdot \Delta \mathcal{B} = 0 & \Delta \mathcal{B}(t=0) = \Delta \mathcal{B}_{0} \\ \Delta \ddot{\mathcal{B}} + \frac{D}{J \cdot \Omega_{syn}} \cdot \Delta \dot{\mathcal{B}} + \frac{p \cdot |c_{g}|}{J} \cdot \Delta \mathcal{B} = 0 & \Delta \dot{\mathcal{B}}(t=0) = \Delta \dot{\mathcal{B}}_{0} : z.B. : \Delta \dot{\mathcal{B}}_{0} = -\Delta \mathcal{B}_{0} / \tau = -\alpha \cdot \Delta \mathcal{B}_{0} \\ \Delta \ddot{\mathcal{B}} + 2\alpha \cdot \Delta \dot{\mathcal{B}} + \omega_{e}^{2} \cdot \Delta \mathcal{B} = 0 \Rightarrow \Delta \mathcal{B} = C_{1} \cdot e^{\lambda_{1}t} + C_{2} \cdot e^{\lambda_{2}t} \Rightarrow \lambda^{2} + 2\alpha \cdot \lambda + \omega_{e}^{2} = 0 \\ \alpha^{2} < \omega_{e}^{2} : \lambda_{1,2} = -\alpha \pm j \cdot \sqrt{\omega_{e}^{2} - \alpha^{2}} = -\alpha \pm j \cdot \omega_{e}' \\ \Delta \mathcal{B}(t) = \mathcal{B}(t) - \mathcal{B}_{0} = \Delta \mathcal{B}_{0} \cdot e^{-\alpha t} \cdot \cos(2\pi \cdot f'_{e} \cdot t) \end{split}$$

Beispiel: Gedämpfte Polrad-Schwingungen

<u>Beispiel</u>: Arbeitspunkt $\mathcal{G}_0 = 0$: Eigenfrequenz OHNE Dämpfer: $f_e = 1.093$ Hz Nenn-Anlaufdauer: $T_J = 10$ s, $T_J = J \cdot \Omega_{syn} / M_N$ Dämpferkäfig: asynchrones Kippmoment $M_b/M_N = 1.4$, Kippschlupf: $s_b = 20$ %

$$D \ddot{a} mp fungsmaß: \alpha = \frac{M_b}{J\Omega_{syn} s_b} = \frac{M_b / M_N}{s_b} \cdot \frac{M_N}{J\Omega_{syn}} = \frac{M_b / M_N}{s_b} \cdot \frac{1}{T_J} = \frac{1.4}{0.2} \cdot \frac{1}{10} = 0.7/s$$

Schwingung klingt mit der Zeitkonstante $\tau = 1/\alpha = 1/0.7 = 1.43$ sab.

Schwingung hat Eigenfrequenz
$$f'_{e} = \sqrt{(2\pi \cdot 1.093)^2 - 0.7^2} / (2\pi) = 1.087 \text{ Hz}$$

TECHNISCHE

UNIVERSITÄT DARMSTADT

Nutzen der Dämpferwicklung (= Dämpferkäfig, Dämpfer)

- Synchronmaschinen am starren Netz:

Dämpferwicklung dämpft

- a) Pendelungen bei Laständerung rasch
- b) inverses Drehfeld (-Ω_{syn}) bei "Schieflast" (Meist Dämpferkäfigstab-Querschnitt für 20% Schieflast ausgelegt)
- Dämpferkäfig mit großem Stab-/Ringquerschnitt: Anlaufkäfig für asynchronen Anlauf am Netz

ABER:

 Synchronmaschine im Inselbetrieb benötigt <u>keinen</u>
 Schwingungs-Dämpfer, da sie nicht gegen das von ihr selbst verursachte Statordrehfeld schwingen kann

Schiefsymmetrisches Drehstrom-System Gegen-Drehfeld

 $\underline{I}_U + \underline{I}_V + \underline{I}_W = 3\underline{I}_0 = 0$

Sternschaltung der Generator-Statorwicklung: <u>Kein</u> Nullstrom-System *I*₀!

Dämpferkäfig verringert Gegen-Drehfeld

- Das unsymmetrische Drehstrom-System kann mathematisch eindeutig in zwei symmetrische Drehstrom-Systeme (Mit- und Gegen-System) zerlegt werden.
- Mit-System: Erregt das Luftspalt-Mit-Drehfeld (rotiert mit n_{syn}); es erzeugt mit dem Rotorfeld das zeitlich konstante Nutz-Drehmoment $M_{e}(\mathcal{G})$.
- Gegen-System: Erregt das Luftspalt-Gegen-Drehfeld (rotiert mit -n_{syn}); es erzeugt mit dem Rotorfeld

a) das schädliche mit $2f_s$ pulsierende Wechsel-Drehmoment $M_{e,\sim}$

und

b) induziert die Rotor-DC-Feldwicklung \Rightarrow Unerwünschter 2 f_s -Wechselstrom in DC-Feldwicklung.

• ABHILFE:

Gegendrehfeld induziert Dämpferkäfig mit $2f_s \Rightarrow$ Dämpferströme fließen:

Dämpferströme erregen (nahezu) gegenphasiges Luftspaltfeld,

das das Gegendrehfeld (nahezu) auslöscht, so dass es die Feldwicklung nicht induzieren kann.

Vollpol-Synchronmaschine Bewickelter isolierter Stator

(C) 2007 Bryon Paul McCartney / all rights reserved.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 56 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Vollpol-Synchronmaschine: Fertigung des zylindrischen Rotors ("Induktor")

Zweipoliger Turbo-Generator 3000/min 300 MW, 19 kV Y, 50 Hz, $\cos \varphi_s = 0.85$ (EZS)

Fertigung der Rotor-Erregerwicklung

 $q_{\rm r} = 9, \, 2p = 2$

Es fehlen noch die Wicklungskappen!

Luftkühlung - Hohlleiter

Leitfähige Keile der Erregernuten bilden Dämpferkäfig

Rotordurchmesser 1150mm, Aktivlänge 5460mm, 95 Windungen pro Rotorpol

(C) 2007 Bryon Paul McCartney / all rights reserved.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 57 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Stator-Stromortskurve der Vollpol-Synchronmaschine

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Betriebsgrenzkurven der Synchronmaschine

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 59 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Elektrische Maschinen und Antriebe

Zusammenfassung: Betriebsverhalten der Vollpolmaschine am "starren" Netz (1)

- Winkel zwischen Ständerstrangspannung und Polradspannung = "Polradwinkel" 9.
- Bei $R_s = 0$ gilt exakt: Polradwinkel $\mathcal{G} = 0$: Drehmoment = 0: "Leerlauf".
- Polradwinkel positiv ϑ > 0: Läufer-N-Pol läuft VOR Ständer-S-Pol = Läufer muss angetrieben werden = ele. Drehmoment M_e bremst = Generatorbetrieb.
- Generator: Wirkleistung negativ = Wirkleistungsfluss ins Netz,
 Phasenwinkel zwischen Ständerstrangspannung und Strangstrom größer als 90°.
- Polradwinkel negativ β < 0: Läufer-N-Pol läuft NACH Ständer-S-Pol = Läufer wird gezogen = ele. Drehmoment M_e treibt = Motorbetrieb.

Elektrische Maschinen und Antriebe

Zusammenfassung: Betriebsverhalten der Vollpolmaschine am "starren" Netz (2)

- Läufer- und Ständerfeld bilden zeitlich konstantes Drehmoment M_e.
- Synchronmaschine hat Maximalmoment = "synchrones Kippmoment" M_{p0}.
 a) bei R_s = 0: M_{p0} im Generator- und Motorbetrieb gleich groß
 b) bei R_s > 0: M_{p0} im Generatorbetrieb wegen I_s²R_s-Verluste größer als im Motorbetrieb (wie bei ASM)
- Polradwinkel \mathcal{G} kennzeichnet Lastzustand: Bei $R_s = 0$: Stabil bei Polradwinkeln -90° $\leq \mathcal{G} \leq$ 90°.
- Synchronmaschine kann kapazitiv oder induktiv betrieben werden
 - a) kapazitiv $\sin \varphi_s < 0$: übererregt = hoher Erregerstrom I_f ,
 - b) induktiv $\sin \varphi_s > 0$: unterregt = niedriger Erregerstrom I_f ,
 - c) "ohm´sch" sin φ_s = 0: normalerregt = mittlerer Erregerstrom I_f .
- Dämpferkäfig gegen Polradschwingungen, fallweise auch als "kräftiger" Anlaufkäfig.

Elektrische Maschinen und Antriebe

- 8. Die Synchronmaschine
 - 8.1 Funktionsprinzip und Läuferbauweisen
 - 8.2 Ständerspannungsgleichung der Vollpolmaschine
 - 8.3 Betriebsverhalten der Vollpolmaschine am "starren" Netz
 - 8.4 Ständerspannungsgleichung der Schenkelpolmaschine
 - 8.5 Betriebsverhalten der Schenkelpolmaschine am "starren" Netz
 - (8.6 Verlustbilanz bei Synchronmaschinen)
 - 8.7 Synchrongeneratoren im Inselbetrieb

Schenkelpol-Synchronmaschine

- Ausgeprägte N- und S-Pole, Pollücken dazwischen, Luftspalt nicht konstant,
- Polspulen als Erregerwicklung, Luftspalt in Polmitte am kleinsten ($\delta_{\min} = \delta_0$)

Läuferfeld ("Polradfeld")

Läuferfeld und Polradspannung der Schenkelpolmaschine

TECHNISCHE UNIVERSITÄT DARMSTADT

Glockenförmige Läufer-Feldkurve $B_{\delta}(x)$: Konstante magnetische Spannung $V_{\rm f}$ erzeugt mit variablem Luftspalt $\delta(x)$ glockenförmige Feldkurve. Diese hat Grundwelle ($\mu = 1$):

$$B_{\delta}(x) = \mu_0 \frac{V_f}{\delta(x)} \rightarrow FOURIER$$
-Reihe: Grundwelle: Amplitude \hat{B}_p proportional I_f

• Polradspannung U_p : Sinusförmige Feld-Grundwelle \hat{B}_p induziert in die dreiphasige Ständerwicklung bei Drehzahl *n* ein Drehspannungssystem ("Polradspannung")

$$U_p = \omega_s \cdot \Psi_p / \sqrt{2} = \omega_s \cdot N_s k_{w,s} \cdot \Phi_p / \sqrt{2} = \sqrt{2}\pi f_s \cdot N_s k_{w,s} \cdot \frac{2}{\pi} l\tau_p \hat{B}_p \qquad f_s = n \cdot p$$

Leerlauf: $I_s = 0$: Induzierte Ständerspannung ("Polradspannung")

TECHNISCHE UNIVERSITÄT DARMSTADT

Wiederholung

• **<u>Grundwellen-Läuferfluss pro Pol</u>**: Fluss der Feld-Grundwelle $\mu = 1$:

$$\Phi_p(I_f) = \frac{2}{\pi} \cdot \tau_p \cdot l \cdot \hat{B}_p(I_f)$$

Läufer-Fluss ist bezüglich Läufer ein Gleichfluss, bezüglich Ständer wegen Läuferrotation ein Wechselfluss $\Phi_p(t)$

- Rotierendes Polrad (Drehzahl *n*): $\Phi_p(t) = \Phi_p \cdot \sin(2\pi \cdot f_s \cdot t)$ Frequenz $f_s = n \cdot p$
- Induzierte Polrad-Spannung je Ständerwicklungsstrang als Leerlaufspannung im Generatorbetrieb messbar:

$$U_{i0} = U_p = \omega_s \cdot N_s k_{ws} \cdot \Phi_p / \sqrt{2} = \sqrt{2}\pi \cdot f_s \cdot N_s k_{ws} \cdot \Phi_p \qquad (k_{ws} \approx 0.95)$$

• Bei Änderung des Feldstroms $I_{\rm f}$ in der Polradwicklung ändert sich die induzierte Polradspannung $U_p \sim I_{\rm f}$.

Fertigung geblechter Rotor-Schenkelpole (noch unbewickelt)

Massive Polpressplatten

Schwalbenschwanzbefestigung im Rotorjoch

Rotorbleche werden durch Pressplatten fixiert

Quelle:

Andritz Hydro, Bhopal, Indien

Komplettiertes Polrad mit Schenkelpolen, Lüfter und Schwungrad, 8-polig

Schwungrad erhöht Rotorträgheitsmoment, um bei Lastabwurf die Drehzahlzunahme zu begrenzen

Radiallüfter mit rückwärts gekrümmten Schaufeln, auf der Welle fixiert, für eine Drehrichtung bei fester Drehzahl optimiert

> Quelle: Andritz Hydro, Bhopal, Indien

Wasserkraftwerk Kauli

Vierpoliger Schenkelpolläufer mit Massivpolen für Motorbetrieb mit asynchronem Netzanlauf

Massiveiserner Läufer mit massiveisernen Polschuhen als "Anlauf"-<u>und</u> "Dämpferkäfig":

Bei asynchronem Netzanlauf induziert das Ständerfeld in die massiven el. leitfähigen Läuferpolschuhe Wirbelströme.

Diese Wirbelströme erzeugen mit dem Ständerfeld das Anlaufmoment.

50 Hz, 2*p* = 4, *n* = 1500/min

Quelle: Andritz Hydro, Österreich

Schenkelpolmaschine: Ständerluftspaltfeld & Hauptinduktivität

- Ständer-Drehfeldwicklung wie bei Asynchronmaschine, ABER: Luftspalt ist in der Pollücke (*q*-Achse) GRÖSSER als in der Polachse (*d*-Achse), wo $\delta_{min} = \delta_0$!
- <u>Daher</u>: Bei gleicher magnetischer Spannung V_s (Grundwelle v = 1) ist Luftspaltfeld in der *q*-Achse KLEINER als in der *d*-Achse.

• Ständerfeld in *d*-Achse: Grundwellenamplitude etwas kleiner als bei konstantem Luftspalt δ_0 :

$$c_d = \hat{B}_{d1} / \hat{B}_s \approx 0.95 < 1$$
 $L_{dh} \approx 0.95 \cdot L_h$

• Ständerfeld in *q*-Achse: Grundwellenamplitude um ca. 50% kleiner als bei konstantem Luftspalt δ_0 :

$$c_q = \hat{B}_{q1} / \hat{B}_s \approx 0.4...0.5 < 1 \quad L_{qh} \approx (0.4...0.5) \cdot L_h$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 71 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Zerlegung des Stator-Stroms I_s in I_{sd} und I_{sq}

"Zwei-Achsen-Theorie":

- Das dreiphasige Stromsystem I_{sd} (in Phasen U, V, W) magnetisiert eine Stator-Grundwelle IN RICHTUNG der d-Achse \Rightarrow Es wirkt die Induktivität L_{dh} !
- Das dreiphasige Stromsystem I_{sq} (in Phasen U, V, W) magnetisiert eine Stator-Grundwelle IN RICHTUNG der q-Achse \Rightarrow Es wirkt die Induktivität L_{qh} !

Ständerstrom I_s: d- und q-Komponente

 Ständerstrom-Zeiger <u>I</u>s in d- und q-Komponente gedanklich zerlegt:

$$\underline{I}_s = \underline{I}_{sd} + \underline{I}_{sq}$$

 \underline{I}_{sd} ist in Phase/Gegenphase mit $\underline{I'}_{f}$ und erregt daher ein Ständer-Luftspaltfeld in *d*-Achse (Polachse). Bildet gemeinsam mit dem Läuferfeld den Luftspaltfluss Φ_{dh} .

 \underline{I}_{sq} ist 90° zu \underline{I}_{sd} phasenverschoben, erregt daher ein Ständer-Luftspaltfeld in *q*-Achse (Pollücke). Zugehöriger Luftspaltfluss: Φ_{qh} .

- Statorfeld-Selbstinduktionsspannung: Zwei um 90° phasenverschobene Komponenten: $j\omega_s L_{dh} \underline{I}_{sd}$ $j\omega_s L_{qh} \underline{I}_{sq}$
- Hinzu kommt Selbstinduktion durch Ständerstreufluss $\Phi_{s\sigma}$: $j\omega_s L_{s\sigma} I_s$

Schenkelpolmaschine Ständer-Spannungsgleichung

 Ständerspannungsgleichung je Strang mit Ständerstreuinduktivität L_{sσ} und Strangwiderstand R_s:

$$\underline{U}_{s} = R_{s} \cdot \underline{I}_{s} + j\omega_{s} \cdot L_{s\sigma} \cdot \underline{I}_{s} + j\omega_{s} \cdot L_{qh} \cdot \underline{I}_{sq} + j\omega_{s} \cdot L_{dh} \cdot \underline{I}_{sd} + \underline{U}_{p} \qquad \underline{U}_{p} = j\omega_{s} \cdot L_{dh} \cdot \underline{I}_{f}$$
$$\underline{U}_{s} = R_{s} \cdot \underline{I}_{s} + j\omega_{s} \cdot L_{s\sigma} \cdot (\underline{I}_{sd} + \underline{I}_{sq}) + j\omega_{s} \cdot (L_{qh} \cdot \underline{I}_{sq} + L_{dh} \cdot \underline{I}_{sd}) + \underline{U}_{p}$$

- X_d : "Synchrone Reaktanz der Längsachse": $X_d = X_{s\sigma} + X_{dh} = \omega_s \cdot L_{s\sigma} + \omega_s \cdot L_{dh}$ X_q : "Synchrone Reaktanz der Querachse": $X_q = X_{s\sigma} + X_{qh} = \omega_s \cdot L_{s\sigma} + \omega_s \cdot L_{qh}$
- Es ist $X_d > X_q$, typisch: $X_q = (0.5 \dots 0.6) \cdot X_d$, z. B. bei Schenkelpol-Wasserkraftgeneratoren, großen Schenkelpol-Synchronmotoren, ...
- Vollpolmaschine: "Sonderfall" der Schenkelpolmaschine für $X_d = X_q$ *Hinweis:*

Die Nuten der Erregerwicklung des Vollpol-Läufers stellen ebenfalls kleine "Lücken" dar, daher ist in Wirklichkeit ebenfalls $X_d > X_a$, typisch: $X_a = (0.8 \dots 0.9) \cdot X_d$.

Schenkelpolmaschine Zeigerdiagramm je Strang: Spannungen, Ströme

$$\underline{U}_{s} = R_{s} \cdot \underline{I}_{s} + jX_{s\sigma} \cdot \underline{I}_{s} + jX_{qh} \cdot \underline{I}_{sq} + jX_{dh} \cdot \underline{I}_{sd} + \underline{U}_{p}$$
$$\underline{U}_{p} = jX_{dh} \cdot \underline{I'}_{f}$$

Induzierte Hauptfeldspannung <u>U_h</u>: $\underline{U}_{h} = j\omega_{s} \cdot \underline{\Psi}_{h} / \sqrt{2} = \underline{U}_{ah} + \underline{U}_{dh}$

$$\underline{U}_{qh} = j\omega_s L_{dh} \underline{I}_{sd} + \underline{U}_p$$
$$\underline{U}_{dh} = j\omega_s L_{qh} \underline{I}_{sq}$$

Ständerspannung, Polradspannung, Ständerstrom:

- Polradwinkel 9.
- Phasenwinkel φ_{s} , wie bei Vollpolmaschine definiert!
- Beispiel: Generator, übererregt

Wirkleistung der Schenkelpolmaschine für $R_{\rm s} = 0$

Gewählt: <i>d</i> -Achse = Re-Achse, <i>q</i> -Achse = Im-Achse:		
$\underline{U}_s = U_{sd} + jU_{sq} \qquad \underline{I}_s = I_{sd} + jI_{sq}$	q, Im <u>U</u> p	jX _q I _{sq}
$\boldsymbol{R}_{s} = \boldsymbol{0}: \ \underline{U}_{s} = jX_{d} \cdot \underline{I}_{sd} + jX_{q} \cdot \underline{I}_{sq} + \underline{U}_{p}$ $\Rightarrow U_{sd} = iY_{sd} + iV_{sd} + iU_{sd} + iU_{sd}$	r	$jX_{d}\underline{I}_{\mathrm{sd}}$
$ \underbrace{ \underbrace{ \bigcup_{s} = JX_{d} \cdot I_{sd} - X_{q} \cdot I_{sq} + JU_{p}}_{Sq} }_{U_{sq}} \underbrace{ \underbrace{ \bigcup_{sd} = -X_{q} \cdot I_{sq}}_{U_{sq}} }_{U_{sq}} \underbrace{ \underbrace{ \bigcup_{sq} = -X_{q} \cdot I_{sq}}_{U_{sq}} }_{U_{sq}} \underbrace{ \bigcup_{sq} = -X_{q} \cdot I_{sq}}_{U_{sq}} \underbrace{ \bigcup_{sq} = -X_{q} \cdot I_{sq}} $		<u>U</u> _{sd}
$P_{e} = m_{s} \cdot U_{s} \cdot I_{s} \cdot \cos \varphi_{s} = m_{s} \cdot \operatorname{Re} \left\{ U_{s} \cdot I_{s}^{*} \right\} = m_{s} \cdot (U_{sd} \cdot I_{sd} + U_{sd} \cdot I_{s})$	a)	U
$P_e = m_s \cdot (-X_q \cdot I_{sq} \cdot I_{sd} + X_d \cdot I_{sd} \cdot I_{sq} + U_p \cdot I_{sq})$ \underline{I}_{sd}	φ_{s}	9 9
$P_e = m_s \cdot (U_p \cdot I_{sq} + (X_d - X_q) \cdot I_{sq} \cdot I_{sd})$	<u>I</u> s	0 d, Re
		<u>–</u> sq

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 76 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Drehmoment $M_{\rm e}$ der Schenkelpolmaschine für $R_{\rm s} = 0$

- EI. Wirkleistung: $P_e = m_s \cdot (U_p \cdot I_{sq} + (X_d X_q) \cdot I_{sq}I_{sd})$
- Elektromagnetisches Drehmoment:

$$M_e = \frac{P_m}{\Omega_m} = \frac{P_m}{\Omega_{syn}} = \frac{P_e}{\Omega_{syn}} = \frac{m_s}{\Omega_{syn}} \cdot \left(U_p \cdot I_{sq} + (X_d - X_q) \cdot I_{sd} \cdot I_{sq} \right)$$

⇒ Zwei Drehmomentanteile:

- a) prop. U_p wie bei Vollpolmaschine
- b) "Reluktanz"moment wegen $X_d \neq X_q$
- Für Reluktanzmoment ist KEINE Läufererregung erforderlich ($U_p = 0$)!
 - ⇒ Robuster Läuferaufbau OHNE Wicklung möglich: Reluktanz-Synchronmaschine: Meist für Leistungen < 50 kW!</p>

Elektrische Maschinen und Antriebe

Zusammenfassung: Ständerspannungsgleichung der Schenkelpolmaschine

- Unterschiedliche Ständerinduktivität für Längs- und Querachse $L_d \neq L_q$
- Pollücke in Querachse verringert Querinduktivität L_q der Ständerwicklung
- Vollpolmaschine ist Sonderfall der Schenkelpolmaschine für $L_{d} = L_{q}$

Vollpolmaschine:
$$P_e = m_s \cdot U_p I_{sq}$$
Schenkelpolmaschine: $P_e = m_s \cdot (U_p I_{sq} + (X_d - X_q) \cdot I_{sq} I_{sd})$

- $L_{\rm d} = L_{\rm q}$: NUR Querstrom macht Drehmoment: $M_{\rm e} \sim I_{\rm sq}$

"Feldorientierte Regelung": $M_e \sim I_{sq} = I_{s\perp}$: Stromkomponente normal auf $\underline{I'}_f \sim \underline{\Phi}_p$

Elektrische Maschinen und Antriebe

- 8. Die Synchronmaschine
 - 8.1 Funktionsprinzip und Läuferbauweisen
 - 8.2 Ständerspannungsgleichung der Vollpolmaschine
 - 8.3 Betriebsverhalten der Vollpolmaschine am "starren" Netz
 - 8.4 Ständerspannungsgleichung der Schenkelpolmaschine
 - 8.5 Betriebsverhalten der Schenkelpolmaschine am "starren" Netz
 - (8.6 Verlustbilanz bei Synchronmaschinen)
 - 8.7 Synchrongeneratoren im Inselbetrieb

Drehmoment $M_{\rm e}$ als Funktion von $U_{\rm s}$ und \mathscr{G} für $R_{\rm s} = 0$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 80 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

TECHNISCHE UNIVERSITÄT

DARMSTADT

Drehmoment-Polradwinkel-Kurve $M_{\rho}(\mathcal{G})$ für $R_s = 0$

Reluktanzmoment

Motor

 $-\pi$

Vollpol-

maschine

π

Betrag des Kippwinkels $|\mathcal{G}_{p}| < 90^{\circ}$, $M_{p0} > \frac{p \cdot m_s}{\omega_s} \cdot \frac{U_s U_p}{X_d}$ da Kippmoment des Reluktanzmoments bei +45°.

> Betrag des Kippmoments |*M*_{p0}| durch Reluktanzmoment erhöht.

Ersatz-Drehfederkonstante c_a größer als bei Vollpolmaschine,

da Reluktanzmoment mitwirkt (= steilere $M_{\rm e}(\mathcal{G})$ -Kennlinie).

TECHNISCHE UNIVERSITÄT

DARMSTADT

 $\frac{\pi}{2}$ $\frac{\pi}{2}$ Schenkelpol maschine $X_d > X_a$ Generator TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 81 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

M_{p0}

1.0

0,5

 π

Synchron-Reluktanzmaschine für $R_s = 0$

- Läufer ohne Wicklung, aber mit großen Pollücken: X_d > X_q
- Läufer will sich STETS in die Ständerfeld-Achse drehen, damit Feldlinien möglichst KURZEN Weg über den Luftspalt zurück legen müssen: Ergibt Reluktanzmoment!
- Reluktanzmaschinen: Meist kleinere Leistung < 50 kW

TECHNISCHE UNIVERSITÄT

DARMSTADT

Synchronmaschine als "Phasenschieber,, $\cos \varphi_s = 0$ Gültig für Vollpol- u. Schenkelpolmaschine (hier: $R_s = 0$)

- Synchronmaschine am "starren" Netz \underline{U}_s = konst.: Angetrieben durch Hilfsmotor, aber: Keine Wirkleistungsumsetzung: $P_e = M_e = \vartheta = 0$, $\cos \varphi_s = 0$.
- Phasenwinkel φ_s entweder induktiv oder kapazitiv = Phasenschieber: $\sin \varphi_s = 1$ oder -1!
- Ersatzschaltbild: $R_s = 0$: $\underline{U}_s = \underline{U}_p + jX_d \cdot \underline{I}_s$, $\underline{I}_m = \underline{I}_s + \underline{I'}_f$, $\underline{I}_{sq} = 0$, $\underline{I}_s = \underline{I}_{sd}$

Großer $I_{\rm f}$ (übererregt): Maschine ist kapazitiver Verbraucher

Kleiner *I*_f (untererregt): Maschine ist induktiver Verbraucher

Anwendung: Blindleistungskompensation im Netz!

Synchronmaschine <u>unerregt</u> am Netz Gültig für Vollpol- u. Schenkelpolmaschine (hier: $R_s = 0$)

- Synchronmaschine angetrieben am "starren" Netz \underline{U}_{s} = konst.
- KEIN Erregerstrom = Unerregt am Netz: $I_{\rm f} = 0 \Rightarrow U_{\rm p} = 0$.
- Ständerwicklung als induktive Reaktanz X_d am Netz.
- Sie "zieht, induktiven Strom I_s als Magnetisierungsstrom $I_m!$

Dauerkurzschluss der Synchronmaschine Gültig für Vollpol- u. Schenkelpolmaschine (hier: $R_s = 0$)

U

- Synchronmaschine angetrieben, vom Netz getrennt.
- Statorklemmen dauernd kurz geschlossen: $\underline{U}_{s} = 0$.
- Erregerstrom $I_{\rm f}$ bewirkt $U_{\rm p}$.
- <u>U</u> treibt Ständer-Kurzschlussstrom I_{sk} , durch X_d (und R_s) begrenzt): $I_{sk} \approx U_p/X_d$!
- Dauerkurzschlussstrom durch Erregerstrom linear veränderbar!

$$R_{s} = 0: \quad 0 = \underline{U}_{p} + jX_{d}\underline{I}_{s} \qquad jX_{d}\underline{I}_{sk}$$

$$\underline{U}_{p} \qquad \underline{U}_{s} = 0 \qquad \underline{I}_{sk}$$

$$\underline{I}_{s} = \underline{I}_{sk} \approx -\frac{\underline{U}_{p}(I_{f})}{jX_{d}} = j \cdot \frac{\underline{U}_{p}(I_{f})}{X_{d}}$$

Synchrongenerator als Netzspannungsquelle

- Viele Synchrongeneratoren parallel = "Netz"
- *Beispiel: N* parallele Vollpol-Generatoren gleicher Leistung:

Resultierende Polradspannung: \underline{U}_{p}

Resultierender Nennstrom: $\underline{I}_{sN} \rightarrow \underline{I}_{sN} \cdot N$

Resultierende Impedanz: $\underline{Z}_{d} = (R_{s} + j X_{d})/N$

• Unendlich viele Synchrongeneratoren parallel = "starres Netz"

 $N \rightarrow \infty$: Resultierende Polradspannung: $\underline{U}_{p} = \underline{U}_{s}$ Resultierende Impedanz ist Null: $\underline{Z}_{d} = 0$

Unendlich hoher Kurzschlussstrom: $\underline{U}_{s} = 0$: $\underline{I}_{sk} = \underline{U}_{p}/\underline{Z}_{d} \rightarrow \infty$, daher unendlich hohe Netz-Kurzschlussleistung!

• *"Starres" Netz:* $\underline{U}_{p} = \underline{U}_{s}$ <u>Unabhängig</u> vom Belastungsstrom <u>*I*</u>_s sind Amplitude und Frequenz von $u_{s}(t)$ KONSTANT = eingeprägte Spannung!

Elektrische Maschinen und Antriebe

Zusammenfassung: Betriebsverhalten der Schenkelpolmaschine am "starren" Netz

- Zusätzlich zum Synchronmoment tritt Reluktanzmoment auf
- Betrag des Polrad-Kippwinkels |9p| kleiner als 90°
- Reluktanzmaschine als Sonderfall der unerregten Schenkelpolmaschine ($I_{\rm f} = 0$)
- Besondere Betriebsfälle von Vollpol- und Schenkelpolmaschine: unerregt, Dauerkurzschluss, Phasenschieber.

Elektrische Maschinen und Antriebe

- 8. Die Synchronmaschine
 - 8.1 Funktionsprinzip und Läuferbauweisen
 - 8.2 Ständerspannungsgleichung der Vollpolmaschine
 - 8.3 Betriebsverhalten der Vollpolmaschine am "starren" Netz
 - 8.4 Ständerspannungsgleichung der Schenkelpolmaschine
 - 8.5 Betriebsverhalten der Schenkelpolmaschine am "starren" Netz
 - (8.6 Verlustbilanz bei Synchronmaschinen: siehe Skript)
 - 8.7 Synchrongeneratoren im Inselbetrieb

Synchrongenerator im Inselbetrieb

- <u>Beispiele</u>: Lichtmaschine (Kfz), Bordnetzgenerator (Flugzeug, Schiff), Generatorstation mit "Insel"-Netz (Insel, Notstrombetrieb, ...)
- Keine "starre" Spannung U_s vorhanden: Synchronmaschine angetrieben, erregt mit I_f , Polradspannung U_p als "eingeprägte" Quellenspannung, U_s belastungs<u>abhängig</u>.
- Daher keine $M_e \sim \sin \vartheta$ Abhängigkeit, weil U_s nicht konstant; kein Kippen bei $\vartheta = \pm 90^{\circ}$.

12 V DC-Kfz-Lichtmaschine (Kfz), 12-polig, $m_s = 3$, $q_s = 1$, 1 ... 3 kW

Synchrongenerator im Inselbetrieb

- Lastimpedanz: allgemein \underline{Z}_L (hier: $\underline{Z}_L = R_L + jX_L$)
- <u>Beispiel:</u>

OHM'sch-induktive Last \underline{Z}_L (VZS: Laststrom $\underline{I}_L = -\underline{I}_s$)

Leistungsbilanz im Inselbetrieb

$$I_{s} = -I_{L}, \quad I_{s} = I_{L}$$

$$I_{s} = -I_{L}, \quad I_{s} = I_{L}$$

$$VZS: Generator P_{e} < 0, \quad VZS: Verbraucher P_{L} > 0: \quad -P_{e} = P_{L}$$

$$-P_e = -3 \cdot U_s I_s \cos \varphi_s = P_L = 3U_s I_L \cos \varphi_L$$
$$\varphi_L - \varphi_s = \pi : \cos \varphi_s = -\cos \varphi_L$$

Generator übererregt = KAPAZITIV, Verbraucher INDUKTIV $-Q_e = -3 \cdot U_s I_s \sin \varphi_s = Q_L = 3U_s I_L \sin \varphi_L$ $-Q_e = Q_L$ $\varphi_L - \varphi_s = \pi : \sin \varphi_s = -\sin \varphi_L$

Wirk- und Blindleistung sind im "abgeschlossenen System" INSELNETZ ausgeglichen: $P_e + P_L = 0$, $Q_e + Q_L = 0$.

Inselbetrieb: Strom-Spannungs-Kennlinie $U_s(I_s)$ bei induktiver Last und $R_s = 0$ (1)

$$\underline{Z}_{L} = j\omega L_{L} = jX_{L}$$
$$\underline{U}_{p} + jX_{d} \underline{I}_{s} = \underline{U}_{s} = -jX_{L}\underline{I}_{s}$$

<u>Leerlauf</u>: $Z_{\rm L} \rightarrow \infty I_{\rm s} = 0 \Rightarrow U_{\rm s} = U_{\rm p} = U_{\rm s0}$ <u>Kurzschluss</u>: $Z_{\rm L} = 0$: $U_{\rm s} = 0 \Rightarrow I_{\rm s} = U_{\rm p}/X_{\rm d} = I_{\rm sk}$

Inselbetrieb: Strom-Spannungs-Kennlinie $U_s(I_s)$ bei induktiver Last und $R_s = 0$ (2)

- Induktive Last: Im Zeigerdiagramm: Spannungsfälle auf einer Geraden: $U_s = U_p X_d I_s$
- Spannung U_s SINKT linear mit zunehmendem Laststrom I_s !

$$u = \frac{U_s}{U_p} = 1 - \frac{I_s}{U_p / X_d} = 1 - i \qquad u = \frac{U_s}{U_p}, \quad i = \frac{I_s}{U_p / X_d} = \frac{I_s}{I_{sk} / X_d}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 93 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Inselbetrieb: Strom-Spannungs-Kennlinie $U_{s}(I_{s})$ bei OHM'scher Last $R_{\rm L}$ und $R_{\rm s} = 0$ (1)

Pythagoras: $U_p^2 = U_s^2 + (X_d I_s)^2$

<u>Ohm'sche Last:</u> $\underline{U}_{s} = R_{L} \cdot \underline{I}_{L} = -R_{L} \cdot \underline{I}_{s}$ $\underline{U}_{p} + jX_{d}\underline{I}_{s} = \underline{U}_{s} = -R_{L}\underline{I}_{s}$ $jX_d I_s$ Rechter \underline{U}_p Winkel! Spannungsfälle bilden rechtwinkliges Dreieck: $\underline{U}_{s} = R_{L}\underline{I}_{L} = -R_{L}\underline{I}_{s}$

Inselbetrieb: Strom-Spannungs-Kennlinie $U_{s}(I_{s})$ bei OHM'scher Last $R_{\rm L}$ und $R_{\rm s} = 0$ (2)

Einheitskreis: $\mu^2 + i^2 = 1$

ist Viertelkreissegment !

Inselbetrieb: $U_{s}(I_{s})$ -Kurve bei Resonanz: Kapazitive Last $X_{C} = X_{d}$ und $R_{s} = 0$

- <u>Kapazitive Last:</u> $\frac{1}{i \cdot \omega C} = -j \cdot \frac{1}{\omega C} = -j \cdot X_C$
- **Resonanz:** $X_{c} = X_{d}$, hier: Ungedämpft!

$$\underline{U}_{p} + jX_{d}\underline{I}_{s} = \underline{U}_{s} = -jX_{C}\underline{I}_{L} = jX_{C}\underline{I}_{s}$$

$$\underline{I}_{s} = \frac{\underline{U}_{p}}{j(X_{C} - X_{d})} \to \infty, \quad \underline{U}_{s} = jX_{C}\underline{I}_{s} \to \infty$$
$$\underline{i} = \frac{1}{j \cdot ((X_{C} / X_{d}) - 1)} \Longrightarrow i = \frac{1}{\sqrt{(\frac{X_{C}}{X_{d}})^{2} - 1}} \to \infty$$

- In der Realität wird I_s durch Widerstand R_s etc. begrenzt!
- Meist ist X_c deutlich größer als X_d, da C sehr klein!
- Daher Resonanz selten!

Inselbetrieb: $U_s(I_s)$ -Kurve für kapazitive Last $X_c > X_d$ und $R_s = 0$ (1)

- Kapazitive Last: Meist $X_{C} > X_{d}$ (kleine Kapazität!) $\underline{U}_{p} + jX_{d}\underline{I}_{s} = \underline{U}_{s} = -jX_{C}\underline{I}_{L} = jX_{C}\underline{I}_{s}$ $U_{s} = U_{p} + X_{d}I_{s}$
- Es ist \underline{U}_p in Phase mit \underline{U}_s und $U_s < U_p$ untererregt!
- Synchronmaschine ist induktiver Verbraucher.

Inselbetrieb: $U_s(I_s)$ -Kurve für kapazitive Last $X_c > X_d$ und $R_s = 0$ (2)

$$U_{s} = U_{p} + X_{d}I_{s}$$
 $u = \frac{U_{s}}{U_{p}} = 1 + \frac{I}{U_{p}}$

$$u = \frac{U_s}{U_p} = 1 + \frac{I_s}{U_p / X_d} = 1 + i$$

u(*i*)-Kennlinie beginnt im Leerlaufpunkt!

- Beispiel: "Selbsterregung der Synchronmaschine":
 - Unerregter Generator ($I_f = 0$) liegt an Kapazität (z. B. leerlaufende Freileitung)
- Eisenremanenz des rotierenden Polrads: Induzierte kleine Polradspannung $U_{p,rem}$, die Blindstrom I_s treibt, der $U_s >> U_{p,rem}$ bewirkt!
- Spannung STEIGT durch kapazitive Belastung AN (= FERRANTI-Effekt!)

Inselbetrieb: $U_s(I_s)$ -Kurve für kapazitive Last $X_c < X_d$ und $R_s = 0$ (1)

Kapazitive Last: Selten: X_c < X_d (große Kapazität!)

$$\underline{U}_{p} + jX_{d}\underline{I}_{s} = \underline{U}_{s} = jX_{C}\underline{I}_{s}$$
$$U_{s} = X_{d}I_{s} - U_{p}$$

• $\underline{U}_{p, \underline{I}'_{f}}$ sind in Gegenphase zu $\underline{U}_{s}, \underline{I}_{s}$: (GEGENERREGUNG)

Inselbetrieb: $U_s(I_s)$ -Kurve für kapazitive Last $X_c < X_d$ und $R_s = 0$ (2)

$$U_{s} = X_{d}I_{s} - U_{p}$$
 $u = \frac{U_{s}}{U_{p}} = \frac{I_{s}}{U_{p}/X_{d}} - 1 = i - 1$

u(*i*)-Kennlinie beginnt im Kurzschlusspunkt!

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 100 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Inselbetrieb: Strom-Spannungs-Kennlinie $U_s(I_s)$ Kennlinienübersicht (bei $R_s = 0$)

• Bei gemischt ohm sch-induktiver und ohm sch-kapazitiver Last sind die Kennlinien *u*(*i*) Ellipsenabschnitte (Herleitung im Skript!).

Inselbetrieb: $U_s(I_s)$ -Kurve bei Resonanz: Kapazitive Last $X_c = X_d$ und $R_s = 0$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 8. / 102 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Elektrische Maschinen und Antriebe

Zusammenfassung: Synchrongeneratoren im Inselbetrieb

- Kein Kippen möglich, da kein starres Netz vorhanden.
- Strom-Spannungs-Kennlinien $U_s(I_s)$ bei konstanter Drehzahl $n = \text{konst.}, I_f = \text{konst.}$ und veränderlicher el. Belastung (Z_L variabel).
- Überwiegend ohm'sch-induktive Last: Spannung U_s sinkt bei steigendem Strom I_s
- Bei kapazitiver Last: Spannungszunahme U_s bei steigendem Strom I_s: FERRANTI-Effekt
- Bei kapazitiver Last: "Selbsterregung" über Polradeisenremanenz möglich!
- Selbsterregung unerwünscht wegen des unkontrollierten Spannungsanstiegs $U_{s} > U_{p,rem}$.

