Elektrische Maschinen und Antriebe

Vorlesungsinhalt

- 1. Einleitung
- 2. Drehfelder in elektrischen Maschinen
- 3. Mathematische Analyse von Luftspaltfeldern
- 4. Spannungsinduktion in Drehstrommaschinen
- 5. Die Schleifringläufer-Asynchronmaschine
- 6. Die Kurzschlussläufer-Asynchronmaschine
- 7. Antriebstechnik mit der Asynchronmaschine
- 8. Die Synchronmaschine
- 9. Erregereinrichtungen und Kennlinien
- 10. Gleichstromantriebe

6. Die Kurzschlussläufer-Asynchronmaschine

Quelle: Fa. Breuer, Deutschland

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 2 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Einsatzgebiete von Käfigläufer-Asynchronmaschinen

• Asynchronmaschinen direkt am Netz: konstante Statorfrequenz

Motor: Läufer dreht langsamer als Drehfeld

- Festdrehzahlantrieb, zumeist als robuster "Normmotor",
- für Pumpen, Gebläse, Kompressoren,
- für Bearbeitungsmaschinen in sehr großer Stückzahl im Einsatz,

Generator: Läufer dreht schneller als Drehfeld, muss angetrieben werden

- Windgeneratoren, kleinere Wasserkraftwerke, ...
- Asynchronmaschinen mit Umrichterspeisung: veränderliche Statorfrequenz und Stator-Spannungsamplitude
 - Drehzahlvariabel, oft geregelt,
 - übernimmt viele Aufgaben
 a) in der Industrie, b) in der Traktion,...,
 da die Asynchronmaschine robust ist.

Norm-Asynchronmaschine

Norm-Asynchronmotor vierpolig Oberflächenkühlung Rippengehäuse Lüfter mit Luftführung

> Quelle: Siemens, Deutschland

Asynchronmotoren mit Umrichterspeisung

Quelle: ELIN EBG Motoren GmbH, Österreich

Wassermantelgekühlte 100 kW-Fahrmotoren für die U-Bahn (Alu-Käfig-Läufer)

Quelle: Siemens AG, Deutschland

Umrichtergespeister Industriemotor, 1 MW, Kupferkäfig, aufgesetzter Luft-Luft-Kühler, dahinter: Umrichter

Querschnitt: Käfigläufer-Asynchronmotor

Läuferkäfig = Käfigwicklung

Läufer-Kurzschlusskäfig: Q_r leitfähige Stäbe (Kupfer, Aluminium) in Q_r Nuten, die stirnseitig durch je einen *leitfähigen* Ring kurz geschlossen sind.

Jeder Stab ist ein eigener Strang, daher: Strangzahl m_r = Stabzahl Q_r

Kurzschlussläufer-Asynchronmaschine (1)

TECHNISCHE UNIVERSITÄT DARMSTADT

• KUPFER-Kurzschlusskäfig:

für große Leistungen > 50 ... 100 kW Massive, blanke Kupferstäbe in Läufernuten, Stirnseite durch je einen hartgelöteten Kupferring kurzgeschlossen.

Quelle: Fa. Breuer, Deutschland

- Aluminium-Druckguss- oder Aluminium-Schleuderguss-Käfig bei kleineren Leistungen: Angegossene "Lüfterflügel" an den Ringen verbessern Kühlung. Fallweise: Kupfer-Druckguss-Käfig
- Je zwei Stäbe bilden mit zwei Ringabschnitten eine Läufermasche, in die das Ständerdrehfeld eine Spannung induziert. Der Läuferstabstrom erzeugt mit dem Luftspaltfeld des Ständers das elektromagnetische Drehmoment.

Kurzschlussläufer-Asynchronmaschine (2)

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 9 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Elektrische Maschinen und Antriebe

UNIVERSITÄT DARMSTADT

Zusammenfassung Aufbau von Käfigläufer-Asynchronmaschinen

- Dreisträngige Ständer-Drehfeldwicklung am Sinus-Drehspannungssystem
- Ständerwicklung erzeugt Drehfeld mit ausgeprägter Grundwelle (diese rotiert mit "Synchrondrehzahl")
- Läufer: Käfigwicklung
- Käfig: Jeder Stab ist ein "Wicklungsstrang"; kurzgeschlossen über zwei Ringe
- Käfig aus Kupfer oder Aluminium-Druckguss

Elektrische Maschinen und Antriebe

- 6. Die Kurzschlussläufer-Asynchronmaschine
 - 6.1 Ströme und Spannungen im Käfigläufer
 - 6.2 Stromverdrängung in den Stäben des Läuferkäfigs
 - 6.3 Käfigformen und Anlaufmomenterhöhung

Induzierte Stabspannungen

- Grundwelle des Ständerdrehfelds (Amplitude \hat{B}_{δ_s}) bewegt sich relativ zum Läufer mit Geschwindigkeit $s v_{syn} = v_{syn} - v_m$.
- Zwei im Abstand τ_p liegende Stäbe = "Läufermasche" mit Fluss Φ

Maschenfluss $\Phi(t) = \Phi \cdot \sin(2\pi \cdot s \cdot f_s \cdot t)$ $\Phi = \frac{2}{\pi} \tau_p l \hat{B}_{\delta,s}$

• Maschenspannung mit Frequenz $f_r = s \cdot f_s$ induziert: $u_{i,c}(t) = -d\Phi(t)/dt$

$$\hat{U}_{i,c} = 2\pi \cdot sf_s \cdot \frac{2}{\pi} \tau_p l\hat{B}_{\delta,s} = s \cdot 2(2f_s\tau_p) \cdot l \cdot \hat{B}_{\delta,s} = s \cdot 2v_{syn} \cdot l \cdot \hat{B}_{\delta,s}$$

 $B_{\delta,s}$ Je Stab: v_{syn} halbe Spannung $\hat{U}_{i.Stab} = \hat{U}_{i,c} / 2 =$ Stator 1 = Stabspannung: $s \cdot v_{svn} = v$ \mathbf{O} \sim $\hat{U}_{i,Stab} = s \cdot v_{svn} \cdot \hat{B}_{\delta,s} \cdot l$ $E = (-\vec{v}) \times B$ Vm $\underline{\hat{U}}_{i,c} = -j \cdot 2\pi \cdot sf_s \cdot \frac{2}{\pi} \tau_p l \underline{\hat{B}}_{\delta,s}$ $U_i \sim |\vec{v} \times \vec{B}|$

Rotor

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 12 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Induzierte Stabspannung bilden Spannungsstern

• **<u>Beispiel</u>**: Vierpoliger Käfigläufer mit Q,/p = 14 Stäben/Polpaar

Je zwei Spannungszeiger benachbarter Stäbe sind um den Läufernutenwinkel

 $\alpha_{Qr} = \frac{2\pi \cdot p}{O_{..}} = \frac{2\pi \cdot 2}{28} = \pi/7$ phasenverschoben.

Die Spannungen in Stab 1 und 15, 2 und 16 usw. sind phasengleich.

Magnetische Spannung und Luftspaltfeld einer Käfigwicklung

• Symmetrisches *m*_r-Drehstromsystem:

In jedem Stab ein gegenüber dem Nachbarstab phasenversetzter Sinusstrom (Stabstrom). Jeder Stab ist ein eigener Strang (Strangzahl $m_r = Q_r$)

• <u>Beispiel</u>: $Q_r = 28$ Stäbe, 2p = 4: Stabstromsystem wiederholt sich nach $Q_r/p = 14$ Stäben, Phasenverschiebung (Nutenwinkel) $\alpha_Q = 2\pi p/Q_r = \pi/7$.

Entsprechungen zwischen dreisträngiger Ständerwicklung und Käfigwicklung

- Jeder Stab = 1 Strang mit einer halben Windung: N = ½.
 Sehnungs- und Zonenfaktor = 1.
 μ : Ordnungszahl der Oberwellen der Feldverteilung einer Läuferwicklung
- Entsprechungen zw. Stator- u. Rotor-Größen:
 - a) Für die Bestimmung der Feldamplituden:

$$N \rightarrow 1/2, \quad m \rightarrow Q_r, \quad k_{w,v} \rightarrow 1, \quad I \rightarrow I_{Stab}, \quad v \rightarrow \mu$$

- b) Für die Bestimmung der Ordnungszahlen:
- Je Polpaar: 2m Zonen (m = 3: 6: +U, -W, +V, -U, +W, -V) $\rightarrow Q_r/p$ Zonen im Käfig

$$v = 1 + 2m \cdot g$$
 $g = 0, \pm 1, \pm 2, \dots$ $\mu = 1 + \frac{Q_r}{p} \cdot g_r$ $g_r = 0, \pm 1, \pm 2, \dots$
c) Frequenz: Statorfrequenz $f_s \rightarrow \text{Rotorfrequenz } f_r$

FOURIER-Reihe des Luftspaltfelds einer Käfigwicklung

• FOURIER-Reihe:

$$V_r(x_r,t) = \sum_{\mu=1,...}^{\infty} \frac{\sqrt{2}}{\pi} \frac{Q_r}{p} \frac{1}{2} \frac{1}{\mu} I_{Stab} \cdot \cos(\frac{\mu\pi x_r}{\tau_p} - 2\pi f_r t)$$

(Index r: Rotor)

$$B_{\delta r}(x_r,t) = \mu_0 \cdot V_r(x_r,t) / \delta = \sum_{\mu=1,\dots}^{\infty} \hat{B}_{\delta r,\mu} \cdot \cos(\frac{\mu \cdot \pi \cdot x_r}{\tau_p} - 2\pi \cdot f_r \cdot t)$$

 \sim

mit den Ordnungszahlen

$$\mu = 1 + \frac{Q_r}{p} \cdot g_r$$
 $g_r = 0, \pm 1, \pm 2, \dots$

• <u>Beispiel</u>: $Q_r = 28$ Stäben, 2p = 4: Ordnungszahlen $\mu = 1, -13, 15, -27, 29, ...$ Amplituden $\hat{B}_{\delta r, \mu}$ sinken proportional $1/\mu$

Je mehr Stäbe pro Pol, desto besser nähert sich die stufenförmige Verteilung $V_r(x_r, t)$ der gewünschten Sinusgrundwellen-Funktion an!

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 16 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Elektrische Maschinen und Antriebe

Zusammenfassung: FOURIER-Reihe des Felds einer Käfigwicklung

- Käfigwicklung = kurzgeschlossene "Maschen"
- Jeder Stab ist ein Wicklungsstrang
- Das Drehfeld des Käfigs nähert sich besser an die Grundwelle an als die 3-strängige Ständerwicklung (wegen der höheren Strangzahl $Q_r > m_s = 3$)
- Verwendung in Käfigläufer-Asynchronmaschinen

Stabströme, Stabkräfte und Drehmoment

- Läuferstabströme bilden symmetrischen Stromstern, der eine Läufer-Luftspaltfeld-Grundwelle $\hat{B}_{\delta r, \mu=1}$ erregt, die bzgl. dem Ständer mit v_{syn} dreht.
- Diese Läufer-Grundwelle überlagert sich mit dem Ständerdrehfeld zum resultierenden Luftspaltfeld.
- Die Läuferstabströme bilden mit der Ständerfeldwelle eine LORENTZ-Kraft je Stab:

$$\hat{F}_{Stab} = \hat{I}_{Stab} \cdot l \cdot \hat{B}_{\delta,s}$$

• Alle Stabkräfte bilden mit dem Hebelarm $d_r/2$ das elektromagnetische Drehmoment M_e

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 18 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Abschätzung des Drehmoments bei Nennschlupf s_N (= kleiner Schlupf s)

Herleitung

TECHNISCHE UNIVERSITÄT DARMSTADT

- Läuferstabstrom: $\hat{\underline{I}}_{Stab} = \frac{\hat{\underline{U}}_{i,Stab}}{R_{..} + j \cdot s \omega_{s} L_{r}} = \frac{-j \cdot s \cdot v_{syn} \hat{B}_{\delta,s} \cdot l}{R_{r} + j \cdot s \omega_{s} L_{r}} \approx \frac{-j \cdot s \cdot v_{syn} \hat{B}_{\delta,s} \cdot l}{R_{r}}$
- Läuferstabkraft am Ort γ_r : $F_{Stab}(\gamma_r) = I_{Stab}(\gamma_r) \cdot l \cdot B_{\delta,s}(\gamma_r)$
- Feld- und Stabstromverteilung sind sinusförmig: $I_{Stab}(\gamma_r) = \hat{I}_{Stab} \cdot \sin(\gamma_r) \qquad B_{\delta,s}(\gamma_r) = \hat{B}_{\delta,s} \cdot \sin(\gamma_r)$
- Mittlere Stabkraft: $F_{Stab,av} = \frac{1}{2\pi} \int_{0}^{2\pi} \hat{F}_{Stab} \cdot \sin^{2}(\gamma_{r}) \cdot d\gamma_{r} = \hat{F}_{Stab} / 2$ $M_e(s) \sim s \quad |s| \ll 1$
- Drehmoment *M*_e:

$$M_e = Q_r \cdot F_{Stab,av} \cdot (d_r/2)$$

$$M_e(s) \approx Q_r \cdot \frac{s \cdot v_{syn} \cdot (\hat{B}_{\delta,s} \cdot l)^2}{2R_r} \cdot \frac{d_r}{2} \sim s$$

Ringabschnittsströme

- **Ringabschnittströme** fließen in den **Ringabschnitten:** z. B. zwischen den Stäben Nr. 2 (Stabstrom I_2) und Nr. 3 (Stabstrom I_3) der Ringabschnittstrom I_{23} .
- *KIRCHHOFF* sche Knotenregel: $I_{12} + I_2 I_{23} = 0$. Daher sind Ringabschnittsströme

ebenfalls um Nutenwinkel α_{Qr} phasenverschoben und bilden Ringstrom"stern".

Ringabschnitts- und Stabströme

• Ringabschnittsströme sind wie die Stabströme um Nutenwinkel α_{Qr} phasenverschoben und bilden Ringstrom"stern". Stab- und Ring-

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 21 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Ringabschnittswiderstand

- $I_2 = 2I_{12} \cdot \sin(\alpha_{Qr}/2) \implies I_{Stab} = 2I_{Ring} \cdot \sin(p\pi/Q_r)$
- Widerstand im Ringabschnitt ΔR_{Ring} : Der Ersatzwiderstand ΔR_{Ring}^* wird zum Stabwiderstand R_{Stab} addiert, so dass die Stromwärmeverluste im Käfig richtig bestimmt werden:

$$P_{Cu,r} = Q_r \cdot R_{Stab} \cdot I_{Stab}^2 + 2Q_r \cdot \Delta R_{Ring} \cdot I_{Ring}^2 = Q_r \cdot (R_{Stab} + \Delta R_{Ring}^*) \cdot I_{Stab}^2$$
$$\Delta R_{Ring}^* = \Delta R_{Ring} / (2 \cdot \sin^2(p\pi/Q_r))$$
$$R_{Stab,ers} = R_{Stab} + \Delta R_{Ring}^*$$
$$R_{Stab,ers} = R_r \quad I_{Stab} = I_r$$

Strom- und Spannungs-Übersetzungsverhältnis der Käfigwicklung

- Jeder Stab ist ein eigener Wicklungsstrang: N_r je Strang 1/2, Strangzahl $m_r = Q_r$, Wicklungsfaktor $k_{wr} = 1$, Strangwiderstand R_r .
- Spannungs- und Stromübersetzungsverhältnis \ddot{u}_{U} , \ddot{u}_{I} sind unterschiedlich:

Spannungs-*ü*: $\ddot{u}_U = \frac{k_{w,s} \cdot N_s}{k_{w,r} \cdot N_r}$ $\ddot{u}_U U_r = U'_r$ Strom-*ü*: $\ddot{u}_I = \frac{k_{w,s} \cdot N_s \cdot m_s}{k_{w,r} \cdot N_r \cdot m_r} = \frac{2 \cdot k_{w,s} \cdot N_s \cdot m_s}{Q_r}$ $\frac{I_r}{\ddot{u}_I} = \frac{I_{Stab}}{\ddot{u}_I} = I'_r$

Übersetzungsverhältnis der Käfigwicklung

• Läufer-Selbst- und Gegeninduktivität:

$$\begin{split} \ddot{u}_{U}\ddot{u}_{I}L_{rh} &= \left(\frac{k_{w,s}N_{s}}{k_{w,r}N_{r}}\right)^{2}\frac{m_{s}}{m_{r}} \cdot \mu_{0}N_{r}^{2}k_{w,r}^{2} \cdot \frac{2m_{r}}{\pi^{2}}\frac{l\tau_{p}}{p\delta} = \mu_{0}N_{s}^{2}k_{w,s}^{2} \cdot \frac{2m_{s}}{\pi^{2}}\frac{l\tau_{p}}{p\delta} = L_{sh} \\ s \rightarrow r : \quad \ddot{u}_{U} \cdot M_{rs} &= \frac{k_{w,s}N_{s}}{k_{w,r}N_{r}} \cdot \mu_{0} \cdot N_{r}k_{w,r} \cdot N_{s}k_{w,s} \cdot \frac{2m_{s}}{\pi^{2}}\frac{l\tau_{p}}{p\delta} = \mu_{0}N_{s}^{2}k_{w,s}^{2} \cdot \frac{2m_{s}}{\pi^{2}}\frac{l\tau_{p}}{p\delta} = L_{sh} \\ r \rightarrow s : \quad \ddot{u}_{I} \cdot M_{sr} &= \frac{k_{w,s}N_{s}m_{s}}{k_{w,r}N_{r}m_{r}} \cdot \mu_{0} \cdot N_{s}k_{w,s} \cdot N_{r}k_{w,r} \cdot \frac{2m_{r}}{\pi^{2}}\frac{l\tau_{p}}{p\delta} = \mu_{0}N_{s}^{2}k_{w,s}^{2} \cdot \frac{2m_{s}}{\pi^{2}}\frac{l\tau_{p}}{p\delta} = L_{sh} \\ \bullet \text{Resultat:} \quad R_{r}' = \ddot{u}_{U}\ddot{u}_{I}R_{r} \quad , \quad L_{r\sigma}' = \ddot{u}_{U}\ddot{u}_{I}L_{r\sigma} \quad , \quad \ddot{u}_{U}M_{rs} = \ddot{u}_{I}M_{sr} = \ddot{u}_{U}\ddot{u}_{I}L_{rh} = \underline{L_{h}} \end{split}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 24 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

T-Ersatzschaltbild der Käfigläufer-Asynchronmaschine

- Erweiterung der Spannungsgleichungen mit \ddot{u}_U , \ddot{u}_I : $U_{s} = j\omega_{s} \cdot \ddot{u}_{I}M_{sr} \cdot (I_{r}/\ddot{u}_{I}) + j\omega_{s}L_{h}I_{s} + j\omega_{s}L_{s\sigma}I_{s} + R_{s}I_{s}$ $j\omega_{r}\ddot{u}_{U}M_{rs}\underline{I}_{s} + j\omega_{r}\ddot{u}_{U}\ddot{u}_{I}L_{r,h}\cdot(\underline{I}_{r}/\ddot{u}_{I}) + j\omega_{r}\ddot{u}_{U}\ddot{u}_{I}L_{r\sigma}\cdot(\underline{I}_{r}/\ddot{u}_{I}) + \ddot{u}_{U}\ddot{u}_{I}R_{r}\cdot(\underline{I}_{r}/\ddot{u}_{I}) = 0$ $\underline{U}_{s} = j\omega_{s}L_{h}\underline{I}_{r} + j\omega_{s}L_{h}\underline{I}_{s} + j\omega_{s}L_{s\sigma}\underline{I}_{s} + R_{s}\underline{I}_{s}$ $0 = js\omega_{s}L_{h}\underline{I}_{s} + js\omega_{s}L_{h}\underline{I}_{r} + js\omega_{s}L_{r\sigma}\underline{I}_{r} + R_{r}'\underline{I}_{r}'$ $0 = \frac{R'_r}{I'_r} \cdot \underline{I'}_r + jX'_{r\sigma} \cdot \underline{I'}_r + jX_h \cdot (\underline{I}_s + \underline{I'}_r)$ $\underline{U}_{s} = R_{s} \cdot \underline{I}_{s} + jX_{s\sigma} \cdot \underline{I}_{s} + jX_{h} \cdot (\underline{I}_{s} + \underline{I'}_{r})$ $jX \sigma_r$ R_r'/s **T-Ersatzschaltbild:** $\mathrm{jX}_{\sigma_{\mathbf{s}}}$ R_s jXh Ir' Us lm
- Fazit: Es tritt prinzipiell dasselbe Ersatzschaltbild wie beim Schleifringläufer auf.

Elektrische Maschinen und Antriebe

TECHNISCHE UNIVERSITÄT DARMSTADT

Zusammenfassung: Ströme und Spannungen im Käfigläufer

- Ständer-Grundfeld-Drehwelle wie bei Schleifringläufer-Maschine aus dreisträngiger Drehfeldwicklung
- Jeder Läuferstab bildet einen Läuferstrang
- Vielsträngiges Läuferstrom- und –spannungssystem
- Unterschiedliches Strom- und Spannungsübersetzungsverhältnis \ddot{u}_{I} , \ddot{u}_{U}
- Eliminierung des Ringabschnitts-Stromsystems
- T-Ersatzschaltbild je Strang für Strom- und Drehmomentberechnung
- Berechnungsmethode für Kippmoment, Kippschlupf, Drehmoment-Kurve und Stromortskurve wie bei Schleifringläufer-Asynchronmaschine

Elektrische Maschinen und Antriebe

- 6. Die Kurzschlussläufer-Asynchronmaschine
 - 6.1 Ströme und Spannungen im Käfigläufer
 - 6.2 Stromverdrängung in den Stäben des Läuferkäfigs
 - 6.3 Käfigformen und Anlaufmomenterhöhung

Feldbild einer Käfigläufer-Asynchronmaschine bei s = 1

Hauptfluss: Verkettet Stator- mit Rotorwicklung; Feldlinien gehen daher über den Luftspalt

Streufluss: Ist nur mit Stator- oder Rotorwicklung verkettet, Feldlinien gehen NICHT über den Luftspalt

Beispiel:

Vierpoliger Keilstabläufer:

Feldbild bei Läuferstillstand (*n* = 0)

- Läuferfrequenz = Ständerfrequenz
- Läuferstrom ist NAHEZU gegenphasig zum Ständerstrom

Stator-Nutstreufluss

Nutstreufeld B_Q in den Läufernuten

TECHNISCHE UNIVERSITÄT DARMSTADT

• Wenn die Stromdichte $J_{=} = I_{Stab} / A_{Stab}$ gleichmäßig über dem Stabquerschnitt verteilt ist, so nimmt das Nutstreufeld B_{Q} , das quer zur Nutachse gerichtet ist, linear mit der Stabhöhe *x* zu.

• Durchflutungssatz: $\oint_C \vec{H} \cdot d\vec{s} = H_Q(x) \cdot b_r = J_= \cdot x \cdot b_{Stab} \quad J_= = I_{Stab} / (h_{Stab} \cdot b_{Stab}) \quad B_Q = \mu_0 H_Q$

$$B_Q(x) = \mu_0 J_{=} \cdot \frac{x \cdot b_{Stab}}{b_r} = \mu_0 \cdot \frac{I_{Stab}}{b_r} \cdot \frac{x}{h_{Stab}}, 0 \le x \le h_{Stab} \text{ und } B_Q = \mu_0 \cdot \frac{I_{Stab}}{b_r} \text{ , } h_Q \ge x \ge h_{Stab}$$

Wirbelstrombildung in den Stäben des Läuferkäfigs

- Querfeld B_Q pulsiert mit Läuferfrequenz f_r und durchsetzt den Stab in seiner Breitseite. Stab bildet eine "massive Kurzschlussschleife".
- *FARADAY* sches Induktionsgesetz: $B_Q \sim \Phi_Q$ induziert Spannung $u_i = -d \Phi_Q/dt$, die einen **Wirbelstrom I**_{Ft} im Stab treibt. Dessen Eigenfeld B_{QFt} ist der ihn verursachenden Nutquerfeldänderung $\partial B_Q/\partial t$ entgegen gerichtet (*LENZ* sche Regel).
- Daher fließt der Wirbelstrom I_{Ft} im oberen Stabbereich IN Richtung des Stabstroms I_{Stab} , im unteren Stabbereich aber ENTGEGEN dem Stabstrom.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 30 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Stromverdrängung im Läuferstab

• *Fazit 1*:

Durch $I_{\rm Ft}$ ist die Stromdichteverteilung im oberen Stabbereich höher als im unteren (Stromverdrängung zur Staboberkante, Haut- oder Skineffekt) $\Rightarrow I_{\rm Ft}$ fließt! Die Verluste steigen; damit steigt der "effektive" Rotorstab-Widerstand $R_{\rm r.~}$!

• *Fazit 2*:

Das resultierende Nutstreufeld $B_{Q_{\sim}}$ wird wegen B_{QFt} verringert \Rightarrow Die Läufernutstreuinduktivität $L_{r\sigma}$ sinkt!

Abschätzung des Wirbelstroms im Läufer-Stab bei kleinen Läuferfrequenzen (*s* << 1)

Herleitung

Nutstreuwechselfluss: $\Phi_Q \approx B_Q \cdot h_{Stab} \cdot l/2$ Induzierte Spannung: $\hat{U}_i = 2\pi f_r \cdot \Phi_Q$ $B_Q = \mu_0 \frac{I_{Stab}}{b_r}$ "Schleifen"-Widerstand: $R \approx 2l/(\kappa \cdot b_{Stab} h_{Stab}/2) = 4R_{Stab}$

Wirbelstrom im Läuferstab

$$\xi = h_{Stab} \cdot \sqrt{\pi \cdot f_r \cdot \mu_0 \cdot \kappa \cdot \frac{b_{Stab}}{b_r}}$$

Ergebnis: Wirbelstrom I_{Ft} und damit Stromverdrängung nimmt ZU

- mit höherer Läuferfrequenz f_r ,
- mit größerer Stabhöhe h_{Stab},
- mit höherer elektrischer Stab-Leitfähigkeit ĸ,
- mit höherer Permeabilität μ des Leiters (Kupfer und Alu haben aber nur $\mu = \mu_0$!)

"Äquivalente" Erhöhung des Stabwiderstands zur Berücksichtigung der Wirbelstromverluste für kleinen Schlupf

- Bei kleinen Läuferfrequenzen
$$f_r \ll f_s: 0 < \xi <<1$$

 $P_{\sim} = R_{Stab} \cdot I_{Stab}^2 + 4R_{Stab} \cdot I_{Ft}^2 = R_{Stab} \cdot I_{Stab}^2 \cdot (1 + \xi^4 / 4)$
 $F_{=} = R_{Stab} \cdot I_{Stab}^2$
 $k_R = \frac{P_{\sim}}{P_{=}} \approx 1 + \xi^4 / 4$
- Bei exakter Lösung der Maxwell-
Gleichungen ergibt sich:
 $k_R = \frac{P_{\sim}}{P_{=}} \approx 1 + 4 \cdot \xi^4 / 45$
Herleitung:
aus den Maxwell-Gleichungen:
siehe "Kap. 1: Bildergalerie"
 $k_R \approx 1 + 4\xi^4 / 45$
 $k_R \approx 1 +$

Auswirkung der Stromverdrängung

- Bei hoher Läuferfrequenz (z. B. s = 1): Stabstrom fließt hauptsächlich im oberen Stabbereich \Rightarrow Verringerter Stabquerschnitt wirksam. Der "Wechselstrom-Widerstand" R_{Stab} ist höher als der Gleichstrom-Widerstand R_{Stab} !

- Die Schwächung des Nut-Streufelds B_Q verringert den Nutstreufluss. Die Wechselstrom-Induktivität $L_{\sigma,Stab}$ ist kleiner als die Gleichstrom-Induktivität $L_{\sigma,Stab}$!

$$R_{Stab\sim} = k_R \cdot R_{Stab=} > R_{Stab=}$$

$$L_{\sigma,Stab\sim} = k_L \cdot L_{\sigma,Stab=} < L_{\sigma,Stab=}$$

- Bei niedriger Läuferfrequenz (z. B. $s = s_N$) tritt (nahezu) keine Stromverdrängung auf !

Abschätzung der Widerstandserhöhung bei hoher Läuferfrequenz = bei großer Stromverdrängung ($s \approx 1$)

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 36 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Widerstandszunahme k_R und Induktivitätsabnahme k_L

• "Reduzierte Leiterhöhe" ξ (dimensionslos) enthält alle Einflussparameter !

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 37 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Beispiel: Stromverdrängung beim "Hochstab"

• Kupferstab:

- Bei 75°C beträgt die elektrische Leitfähigkeit $\kappa_{Cu} = 50.10^6$ S/m.
- Stabbreite = Nutbreite: $b_{stab} = b_r$,
- Permeabilität: $\mu_{C_{\mu}} = \mu_0 = 4\pi \cdot 10^{-7} \, \text{Vs/(Am)}$
- Anfahren der Asynchronmaschine: s = 1: Läuferfrequenz $f_r = 50$ Hz
- Stabhöhe: $h_{\text{Stab}} = 3 \text{ cm}$
- Eindringtiefe: $d_E = 1/\sqrt{\pi f_r \mu_{Cu} \kappa \frac{b_{Stab}}{b_r}} = 1/\sqrt{\pi \cdot 50 \cdot 4\pi \cdot 10^{-7} \cdot 50 \cdot 10^6 \cdot 1} = 0.0101 \,\mathrm{m} = 1.01 \,\mathrm{cm}$
- reduzierte Leiterhöhe: $\xi = h_{Stab} / d_E = 3/1.01 = 2.98 \approx 3.0$

Aus Kurve $k_{\rm R}(\xi)$ folgt: $k_{\rm R}(3) = 3$, Aus Kurve $k_{\rm I}(\xi)$ folgt: $k_{\rm I}(3) = 0.5$!

- Fazit:
- Der Läuferstabwiderstand erhöht sich auf das 3-fache ! $k_R \approx \xi = 2.98 \approx 3.0$ Die Läufer-Nutstreuinduktivität sinkt auf 50% ab. $k_L \approx 1.5/\xi = 1.5/2.98 \approx 0.5$
- Merkregel:

Bei 50 Hz ist die Widerstandserhöhung eines Kupfer-Rechteckstabs $k_R = h_{Stab} |cm|$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 38 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Anlaufmomenterhöhung durch Stromverdrängung

• Erhöhung der Läuferverluste P_{Cu,r} führt zur Erhöhung des Anlaufdrehmoments M₁:

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 39 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Elektrische Maschinen und Antriebe

TECHNISCHE UNIVERSITÄT DARMSTADT

Zusammenfassung: Stromverdrängung in den Stäben des Läuferkäfigs

- Läuferstäbe haben großen Querschnitt, wo Wirbelströme bei Anlauf fließen
- Wirbelströme erhöhen Anlaufmoment
- Wirbelströme erhöhen Läuferverluste und senken Läuferstreuinduktivität
- Wirbelstromeffekt wirkt etwa zwischen Anlauf und Kippschlupf
- Kein Wirbelstromeffekt im Nennbetrieb =
 - = keine zusätzlichen dauernden Verluste

Elektrische Maschinen und Antriebe

- 6. Die Kurzschlussläufer-Asynchronmaschine
 - 6.1 Ströme und Spannungen im Käfigläufer
 - 6.2 Stromverdrängung in den Stäben des Läuferkäfigs
 - 6.3 Käfigformen und Anlaufmomenterhöhung

Stabformen für die Anlaufmomenterhöhung

• Spezielle Stabformen für niedriges und hohes Anlaufmoment M₁:

Doppelstab-Läufer für sehr großes Anlaufmoment

SEHR VIEL Stromverdrängung: M_1 sehr groß!

g) Wechselstabkäfig,

Messing: Cu-Zn-Legierung: Zn-Anteil: 5 ... 20% κ (20°C) : 33 ... 19 MS/m κ / κ_{Cu} : 0.6 ... 0.33

- f) und h): Doppelstab (Doppelnut):
- ⇒ Rundstäbe aus Messing (hoher Widerstand) bewirken gemeinsam mit der Stromverdrängung hohe Läuferverluste, während der Unterstab fast stromlos ist (ANFAHREN, s = 1).
- ⇒ Bei Nennschlupf Stromfluss vor allem im Unterstab = geringe Stromwärmeverluste !

Momentenkennlinien von Asynchronmaschinen (1)

TECHNISCHE UNIVERSITÄT DARMSTADT

AK: Anlaufkäfig BK: Betriebskäfig

Unterschiedliche Läuferstab-Typen:

- 100% = Nennmoment der Maschine
- 100% = Synchrondrehzahl
- Schleifringläufer: Läuferwicklung aus Drähten geringen Querschnitts: keine Stromverdrängung; (wie bei Rundstabläufer)
- Keil- und Hochstab: erhöhtes Anlaufmoment (40% ... 80%)· $M_{\rm N}$
- **Doppelstabläufer:** Anlaufmoment bis ca. $160\% \cdot M_N$

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 44 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Momentenkennlinien von Asynchronmaschinen (2)

Bei hohen Stäben, die für hohes Anlaufmoment gedacht sind, ist bei kleinen Läuferfrequenzen $f_r < 0.1$; f_s , wo die Stromverdrängung nicht mehr wirkt, die Läuferstab-Streuinduktivität groß = = hohe Streuziffer σ . Daher sinkt das Kippmoment M_b .

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 45 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Hochstabläufer: Wirkung der Stromverdrängung

<u>Beispiel:</u>

Berechneter Statorstrom und Drehmoment über der Drehzahl: 550 kW, 4-polig, dreiphasig, Hochstab-Käfigläufer 6.6 kV, 50 Hz, $I_N = 59$ A $s = 1: k_I = 0.38, k_R = 4$

Mit Stromverdrängung (k_L, k_R) in den Rotorstäben

Ohne Stromverdrängung

 $(k_{\rm L} = 1, k_{\rm R} = 1)$

Drehmoment und Strom bei s = 1 sind kleiner.

Resultat:

- M_1 steigt um k_R auf das Vierfache!
- I_{s1} steigt wegen $k_L < 1$ an um ca. 15%.

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 46 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Einfluss des erhöhten Läuferwiderstands auf das Kreisdiagramm

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 47 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Kreisdiagrammdurchmesser (hier am Beispiel: $R_s = 0$)

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 48 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Einfluss der Stromverdrängung auf das "Kreisdiagramm"

TU Darmstadt, Institut für Elektrische Energiewandlung | Elektrische Maschinen und Antriebe, 6. / 49 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Widerstandserhöhung:

Ändert Kreisform nicht, sondern Schlupfbezifferung s nach links in Richtung des Punktes P₀

Streuinduktivität sinkt:

Zu jedem Schlupf *s* existiert wegen $k_{\rm R}(s), k_{\rm I}(s)$ ein eigener Kreis <u>K(s)</u> mit genau EINEM Betriebspunkt s!

Stromortskurve $\underline{I}_{s}(s)$ ist für $|s| > s_{b}$

Elektrische Maschinen und Antriebe

TECHNISCHE UNIVERSITÄT DARMSTADT

Zusammenfassung: Käfigformen und Anlaufmomenterhöhung

- Tiefe Läuferstäbe haben hohe Wirbelströme, daher: erhöhtes Anlaufmoment M_1
- Tiefe Stäbe haben aber hohen Nutstreufluss, daher: verringertes Kippmoment *M*_b
- ABER: Läufer-Nutstreufluss sinkt mit steigendem Schlupf s ($k_L < 1!$), daher: erhöhter Anlaufstrom $I_s(s = 1)$
- Doppelstab: Oberstab mit erhöhtem Widerstand = sehr hohes Anlaufmoment
- Stromverdrängung: Stromortskurve kein Kreis mehr jenseits Kippschlupf $|s| > s_b$

