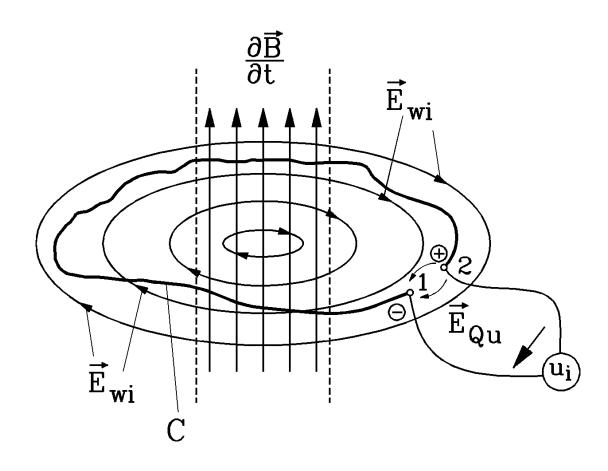
Elektrische Maschinen und Antriebe

Vorlesungsinhalt

- 1. Einleitung
- 2. Drehfelder in elektrischen Maschinen
- 3. Mathematische Analyse von Luftspaltfeldern
- 4. Spannungsinduktion in Drehstrommaschinen
- 5. Die Schleifringläufer-Asynchronmaschine
- 6. Die Kurzschlussläufer-Asynchronmaschine
- 7. Antriebstechnik mit der Asynchronmaschine
- 8. Die Synchronmaschine
- 9. Erregereinrichtungen und Kennlinien
- 10. Gleichstromantriebe

Spannungsinduktion in Drehstrommaschinen



Elektrische Maschinen und Antriebe

- 4. Spannungsinduktion in Drehstrommaschinen
 - 4.1 FARADAY'sches Induktionsgesetz (1831)

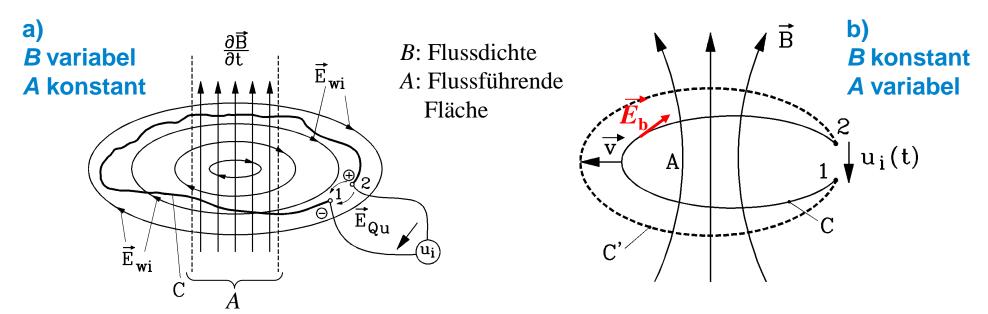
Wiederholung

- 4.2 Spannungsinduktion in eine Ständerspule
- 4.3 Spannungsinduktion in eine Drehfeldwicklung
- 4.4 Selbstinduktivität je Strang einer Drehfeldwicklung
- 4.5 Gegeninduktivität je Strang zweier Drehfeldwicklungen

FARADAY'sches Induktionsgesetz

Wiederholung

Anderung von Φ : a) B ändert sich, b) Fläche A ändert sich mit Geschwindigkeit ν



$$u_{Mess,21} = -u_i = d\Phi/dt \Rightarrow u_{Mess,12} = u_i$$

Jede Änderung des mit der Leiterschleife C verketteten Flusses Φ ruft eine induzierte Spannung u_i hervor; die induzierte Spannung ist die negative Änderung des Flusses Φ .

$$u_i = -d\Phi/dt$$

$$u_i = -d\Phi/dt$$
 Fluss: $\Phi = \int \vec{B} \cdot d\vec{A}$ $[\Phi] = V \cdot s = Weber$

$$[\Phi] = V \cdot s = Weber$$

Flussverkettung ψ

Wiederholung

$$u_i = -d\Phi/dt$$

Fluss:
$$\Phi = \int_A \vec{B} \cdot d\vec{A}$$

$$[\Phi] = V \cdot s = Weber$$

- Hat die Schleife N Windungen in Serie, so ist u_i N-mal so groß: $u_i = -N \cdot d\Phi / dt$.
- Flussverkettung $\Psi = N \cdot \Phi \implies u_i = -d\Psi/dt$

$$u_i = -d\Psi/dt$$

$$[\Psi] = \mathbf{V} \cdot \mathbf{s}$$

- Anderung von Ψ: a) B ändert sich, b) Fläche A ändert sich mit Geschwindigkeit v
- $\frac{d\Phi}{dt} = \frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A} = \int_{A-korot} \frac{\partial B}{\partial t} \cdot d\vec{A} \int_{C} (\vec{v} \times \vec{B}) \cdot d\vec{s}$ (Produktre gel beim Differenzieren)

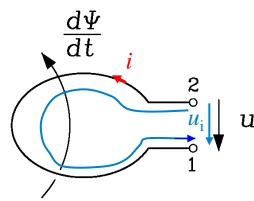
$$u_{i} = \oint_{N \cdot C} (\vec{E}_{wi} + \vec{E}_{b}) \cdot d\vec{s} = N \cdot \int_{A} -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} + N \cdot \oint_{C} (\vec{v} \times \vec{B}) \cdot d\vec{s} = -\frac{d\Psi}{dt}$$

Ruh- und Bewegungsinduktion

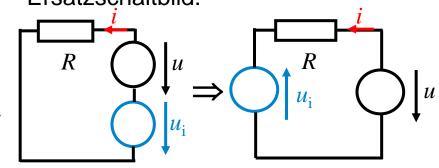
Wiederholung

Ruhinduktion	Bewegungsinduktion					
Flussdichte B zeitlich veränderlich	Flussdichte B zeitlich konstant					
Spule ruht	Spule bewegt sich mit Geschwindigkeit v					
$u_i = -d\Psi/dt = -N \cdot d\Phi/dt$						
$u_i = -\partial \Psi / \partial t = \oint \vec{E}_{wi} \cdot d\vec{s}$	$u_i = \oint (\vec{v} \times \vec{B}) \cdot d\vec{s} = \oint \vec{E}_b \cdot d\vec{s}$					
Wirbelfeldstärke \vec{E}_{wi} rot $\vec{E}_{wi} = -\partial \vec{B}/\partial t$	Bewegungsfeldstärke $\vec{E}_b = \vec{v} \times \vec{B}$					
Anwendung des Induktionsgesetzes:						
TransformatorspulenStänderspulen in Drehfeldmaschinen	Rotierende Ankerwicklung in Gleichstrommaschinen					
Transformatorische Induktion	Rotatorische Induktion					

Induktion in eine Leiterschleife - Ersatzschaltbild



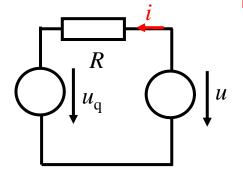
Ersatzschaltbild:



R: Schleifen-Widerstand u: Klemmenspannung u_i : induzierte Spannung $u_q = -u_i$: Quellen-Spannung

$$u_q = -u_i = d\Psi/dt$$

$$u_i = -d\Psi/dt$$
 $u = R \cdot i + d\Psi/dt$
 $u + u_i = R \cdot i$ $u = R \cdot i + u_q$



Verbraucher-Zählpfeilsystem für *u*, *i*

Beispiel:

- a) Leerlaufende Schleife: $i = 0 \Rightarrow u = -u_i = u_q = d \mathcal{V}/dt$
- b) Leerlauf-Spannungsmessung, $R_{\text{Mess}} >> R$ an 2-1, $u = 0:0 + u_i = (R + R_{Mess}) \cdot i$ $u_{Mess} = u_{21} = -R_{Mess} \cdot i = -u_i \cdot R_{Mess} / (R + R_{Mess}) \approx -u_i \Longrightarrow u_{12} = u_i$

Induktionsgesetz als "LENZ'sche Regel"

Wiederholung

Der von der induzierten Spannung u_i getriebene Strom $i_k = -i$ erregt ein Eigenfeld B_e , das der Ursache von u_i , nämlich der Flussverkettungsänderung, entgegen wirkt.

Beispiel:

Ruhinduktion: Kurzgeschlossene ruhende Spule:

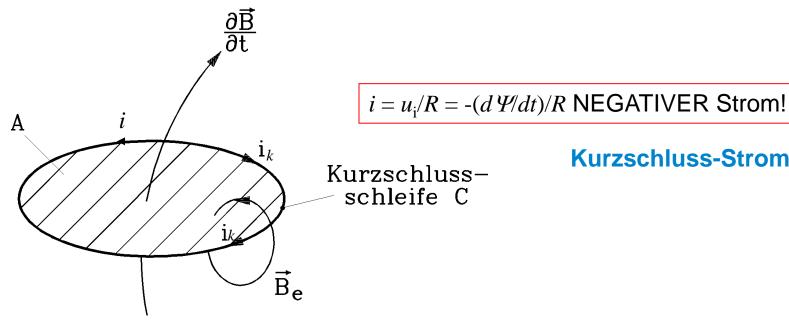
- Das zeitlich veränderliche Fremdfeld B nimmt von unten nach oben durch die Schleifenfläche A zu und **induziert** die Wirbelfeldstärke E_{Wi}
- Die **linkswendig** mit $\partial \vec{B} / \partial t$ verkettete Feldstärke E_{Wi} treibt in C einen **Kurzschlussstrom** $i_k = -i$.
- Strom i_k erregt (**Durchflutungssatz !)** ein **rechtswendig** mit i_k verkettetes **Eigenfeld** $\boldsymbol{B}_{\mathrm{e}}$.

 B_e ist der Ursache von u_i , nämlich der Feldänderung $\partial \vec{B} / \partial t$ entgegen gerichtet.

Induzierung einer Kurzschluss-Schleife

Beispiel:

Kurzgeschlossene Schleife: $u=0 \Rightarrow i=u_i/R=-u_q/R=-(d\Psi/dt)/R$ NEGATIVER Strom!

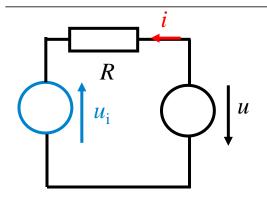


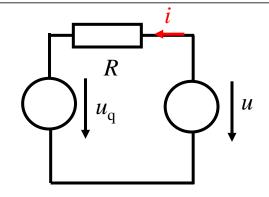
Kurzschluss-Strom: $i_k = -i$

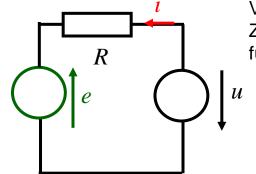
Das Feld $B_{\rho}(i_k)$ bremst die resultierende Feldänderung = "Magnetische Trägheit"!

Induktion in eine Leiterschleife -Ersatzschaltbildvarianten

Wiederholung







Verbraucher-Zählpfeilsystem für u, i

*u*_i: Induzierte Spannung

$$u_i = -d\Psi/dt$$

$$\sum_{i} u_k = 0 = u + u_i - R \cdot i \qquad \sum_{i} u_k = 0 = u - u_q - R \cdot i$$

u_a: Quellen-Spannung

$$u_q = d\Psi/dt$$

$$\sum_{k} u_{k} = 0 = u - u_{q} - R \cdot i$$

e: "Elektromotorische Kraft" (EMK)

$$e = d\Psi/dt$$

$$\sum_{k} u_{k} = \sum_{k} e_{k} \Longrightarrow u - R \cdot i = e$$

$$u_a = -u_i = e = d\Psi/dt$$

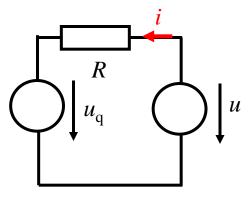
$$u_q = -u_i = e = d\Psi/dt$$
 $u = R \cdot i + d\Psi/dt$

R: Schleifen-Widerstand *u*: Klemmenspannung

Wir verwenden im ESB die "Quellenspannung", bezeichnen sie aber auch (wie in manchen Lehrbüchern üblich) mit " u_i " (also $d\Psi/dt$)!

Induzierte Spannung – Selbst- und Gegeninduktion

Ersatzschaltbild: Verbraucher-Zählpfeilsystem für u, $i = i_1$



$$u = R \cdot i + d\Psi/dt$$
$$u_q = -u_i = d\Psi/dt$$

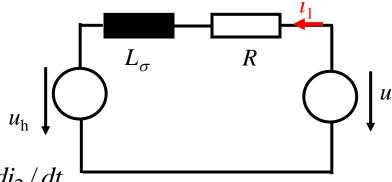
L: Selbstinduktivität

M: Gegeninduktivität eines Fremdstromsystems i_2

Gesamtflussverkettung der Schleife: $\Psi = L \cdot i_1 + M \cdot i_2$

Streuinduktivität: $L_{\sigma} = L - M$

Hauptfeldspannung: $u_h = M \cdot d(i_1 + i_2)/dt$



Hauptflussverkettung:

$$\Psi_h = M \cdot (i_1 + i_2)$$

Streuflussverkettung:

$$\Psi_{\sigma} = L_{\sigma} \cdot i_1$$

$$u_{q} = d\Psi/dt = L \cdot di_{1}/dt + M \cdot di_{2}/dt$$

$$u_{q} = (L-M) \cdot di_{1}/dt + M \cdot d(i_{1}+i_{2})/dt$$

$$u_{q} = d\Psi_{\sigma}/dt + d\Psi_{h}/dt$$

$$u = R \cdot i_1 + L_{\sigma} \cdot di_1 / dt + u_h$$

Elektrische Maschinen und Antriebe

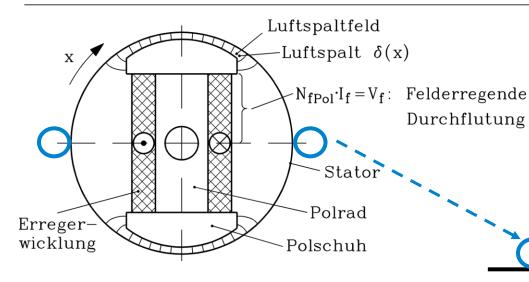
Zusammenfassung: *FARADAY* sches Induktionsgesetz (1831)

- Allgemeines Induktionsgesetz: Induzierte Spannung u_i = negative Änderung der Flussverkettung Ψ
- Ruh- und Bewegungsinduktion als zwei Sonderformen, auch "Transformatorische" und "rotatorische" Spannungsinduktion genannt
- Lenz´sche Regel: "Bremsende" Wirkung des Magnetfelds B_e , das vom Strom i erregt wird, der zufolge der induzierten Spannung u_i fließt

Elektrische Maschinen und Antriebe

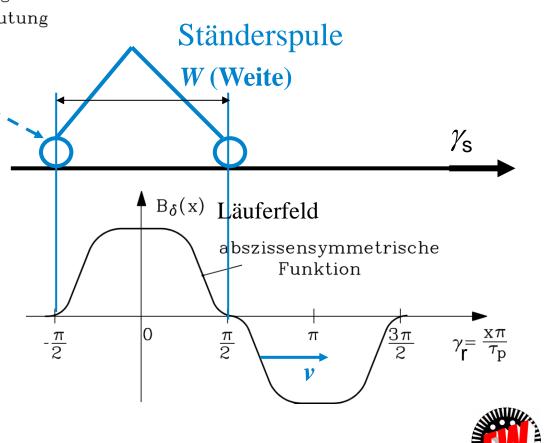
- 4. Spannungsinduktion in Drehstrommaschinen
 - 4.1 FARADAY'sches Induktionsgesetz (1831)
 - 4.2 Spannungsinduktion in eine Ständerspule
 - 4.3 Spannungsinduktion in eine Drehfeldwicklung
 - 4.4 Selbstinduktivität je Strang einer Drehfeldwicklung
 - 4.5 Gegeninduktivität je Strang zweier Drehfeldwicklungen

Gegeninduktion: Spannungsinduktion in Ständer-Spulen durch ein gleichstromerregtes Läuferfeld (Polradfeld)

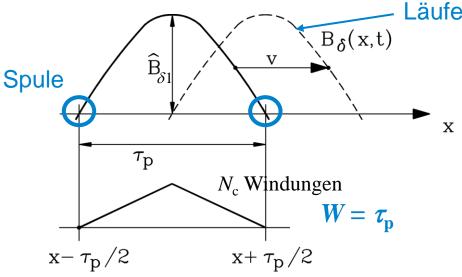


 2p-poliges Polrad dreht mit der Drehzahl n (Umfangs-Geschwindigkeit v)

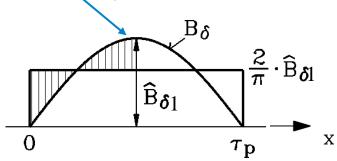
- Mit der Ständerspule verketteter Polradfluss
 \mathcal{Y}\text{ andert bei einer Polrad-Umdrehung}
 2p-mal seine Polarit\text{\text{at}}.
- \Rightarrow Frequenz der in der Ständerspule induzierten Spannung: f = n.



Grundwellen-Flussverkettung in ungesehnte Ständerspule



Läuferfeld-Grundwelle $\mu = 1$



$$\Phi_c = \frac{2}{\pi} \cdot \tau_p \cdot l \cdot \hat{B}_{\delta 1}$$

• Sinus-Wanderwelle $B_{\delta 1}(x,t) = \hat{B}_{\delta 1} \cdot \cos(x\pi/\tau_p - \omega t)$ bewirkt Spulenwechselfluss $\Phi_c(t)$

$$\Phi_{c}(t) = l \int_{-\tau_{p}/2}^{\tau_{p}/2} B_{\delta 1}(x,t) \cdot dx = \frac{2}{\pi} \cdot \tau_{p} \cdot l \cdot \hat{B}_{\delta 1} \cdot \sin(\pi/2) \cdot \cos \omega t = \Phi_{c} \cdot k_{p1} \cdot \cos \omega t = \Phi_{c1} \cdot \cos \omega t$$

Wechselflussverkettung $\Psi_c(t) = N_c \cdot \Phi_c(t)$

Grundwellen-Fluss in einer ungesehnten Ständerspule

Herleitung

$$\Phi(t) = \int_{-\tau_p/2}^{\tau_p/2} l \cdot B_{\delta 1}(x,t) \cdot dx = \int_{-\tau_p/2}^{\tau_p/2} l \cdot \hat{B}_{\delta 1} \cdot \cos(x\pi/\tau_p - \omega t) \cdot dx =$$

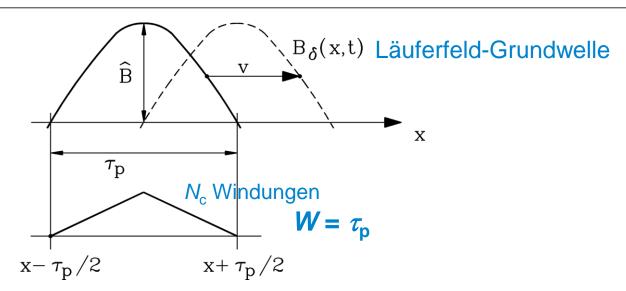
$$= \int_{-\pi/2}^{\pi/2} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta 1} \cdot \cos(\gamma - \omega t) \cdot d\gamma = l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta 1} \cdot \sin(\gamma - \omega t) \Big|_{-\pi/2}^{\pi/2} =$$

$$= l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta 1} \cdot \left(\sin(\frac{\pi}{2} - \omega t) - \sin(-\frac{\pi}{2} - \omega t) \right) = \underbrace{\frac{2}{\pi} \cdot \tau_p \cdot l \cdot \hat{B}_{\delta 1} \cdot \sin(\pi/2)}_{\Phi_{c1}} \cdot \cos \omega t = \Phi_{c1} \cdot \cos \omega t$$

$$W = \tau_p: \quad k_{p1} = \sin\left(\frac{W}{\tau_p} \cdot \frac{\pi}{2}\right) = \sin(\pi/2) = 1$$

$$\boldsymbol{\varPhi}_{c1} = \frac{2}{\pi} \cdot \boldsymbol{\tau}_p \cdot \boldsymbol{l} \cdot \hat{\boldsymbol{B}}_{\delta 1} \cdot \boldsymbol{k}_{p1}$$

Grundwellen-Spannungsinduktion in ungesehnte Ständerspule



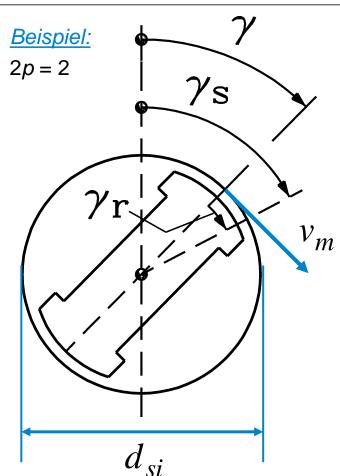
$$\Psi_c(t) = N_c \cdot \Phi_c(t) \Rightarrow -d\Psi_c/dt = -d(N_c \cdot \Phi_{c1} \cdot \cos \omega t) = \omega \cdot N_c \cdot \Phi_{c1} \cdot \sin \omega t$$

• Induzierte Spulen-Sinus-Wechselspannung: $u_{i,c}(t) = -d\Psi_c(t)/dt = \hat{U}_{i,c} \cdot \sin \omega t$

• Amplitude:
$$\hat{U}_{i,c} = \omega \cdot N_c \cdot \Phi_{c1} = 2\pi \cdot f \cdot N_c \cdot \frac{2}{\pi} \cdot \tau_p \cdot l \cdot \hat{B}_{\delta 1} \cdot k_{p1}$$

ungesehnte Spule: $k_{p1} = \sin(\pi/2) = 1$

Ständer- und läuferfestes Koordinatensystem



 $\gamma_s(t)$: Umfangswinkel im ständerfesten Koordinatensystem

 $\gamma_r(t)$: Umfangswinkel im läuferfesten Koordinatensystem

"elektrische Grade":
$$2p\, \tau_p = p\cdot 2\tau_p \Longleftrightarrow p\cdot 2\pi$$

Umrechnung des Umfangswinkels vom läuferfesten in das ständerfeste Koordinatensystem ("Galilei-Transformation"):

$$\gamma_s(t) = \gamma_r + \gamma(t) = \gamma_r + p \cdot \Omega_m \cdot t$$

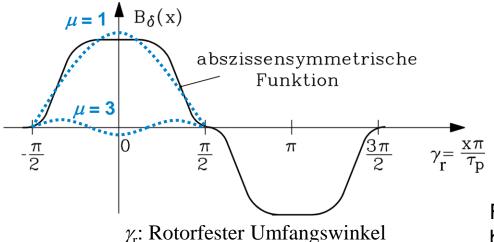
$$\Omega_m = 2\pi \cdot n = \frac{v_m}{d_{si}/2}$$
 $p\Omega_m = 2\pi \cdot n \cdot p = 2\pi \cdot f = \omega$

Feldwelle des gleichstromerregten Polradfelds

$$\mu = 1, 3, 5, 7, 9, \dots$$

$$B_{\delta\mu}(\gamma_r) = \hat{B}_{\delta\mu} \cdot \cos(\mu\gamma_r) = \hat{B}_{\delta\mu} \cdot \cos(\mu\gamma_s - \mu p\Omega_m t) = \hat{B}_{\delta\mu} \cdot \cos(\frac{\mu\pi x}{\tau_p} - \omega_\mu t)$$

Läuferfester Umfangswinkel $\gamma_{\rm r}$ Ständerfester Umfangswinkel $\gamma_{\rm s}$



$$\omega_{\mu} = \mu \cdot \omega$$

$$\gamma_{r} = \frac{x\pi}{\tau_{p}} \qquad f_{\mu} = \frac{\omega_{\mu}}{2\pi} = \frac{\mu \cdot p \cdot \Omega_{m}}{2\pi} = \mu \cdot p \cdot n = \mu \cdot f$$

Frequenz der μ -ten Läuferfeld-Oberwelle f_{μ} bezüglich dem Ständer μ -mal so groß wie jene der Grundwelle mit μ = 1.

Oberwellen-Spannungsinduktion in ungesehnte Ständerspule

Rotierendes Läuferfeld (Drehzahl n): = FOURIER-Summe von Grund- und Oberwellen:

$$B_{\delta,\mu}(x,t) = \hat{B}_{\delta\mu} \cdot \cos(\frac{\mu x \pi}{\tau_p} - \mu \cdot \omega \cdot t), \quad \mu = 1, 3, 5, 7, \dots \quad \omega = 2\pi \cdot n \cdot p$$

• Spulen-Wechsel-Fluss $\Phi_{c\mu}(t) = l \int_{\tau_p/2}^{\tau_p/2} B_{\delta,\mu}(x,t) dx = \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} l \hat{B}_{\delta\mu} \cdot \sin(\frac{\mu\pi}{2}) \cdot \cos(\mu\omega t)$ (bei $W = \tau_p$) (bei $W = \tau_n$)

• Induzierte Spannung:
$$u_{i,c,\mu} = -N_c \cdot \frac{d\Phi_{c\mu}}{dt} = \mu \cdot \omega \cdot N_c \cdot \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} \cdot l \cdot \hat{B}_{\delta\mu} \cdot k_{p\mu} \cdot \sin(\mu\omega t)$$

$$\hat{U}_{i,c,\mu} = \lambda \cdot \omega \cdot N_c \cdot \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} \cdot l \cdot \hat{B}_{\delta\mu} \cdot k_{p\mu} \sim \hat{B}_{\delta\mu} \cdot k_{p\mu}$$

 \Rightarrow In die Ständerspule wird nicht nur die "Nutz"-Spannung (Frequenz $f = n \cdot p$) durch die Grundwelle $\mu = 1$ induziert, sondern auch Zusatz-Störspannungen mit kleineren Amplituden, aber höheren Frequenzen, durch die Oberwellen ($\mu > 1$).

Störende Oberschwingungsspannungen

$$\varPhi_{c\mu} = \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} \cdot l \cdot \hat{B}_{\delta\mu} \cdot k_{p\mu} \Rightarrow \hat{U}_{i,c,\mu} = \mu \cdot \omega \cdot N_c \cdot \varPhi_{c\mu} = \omega \cdot N_c \cdot \frac{2}{\pi} \cdot \tau_p \cdot l \cdot \hat{B}_{\delta\mu} \cdot k_{p\mu}$$

• Kleinere Spannungs-Amplitude $\hat{U}_{i,c,\mu}$ proportional $k_{n\mu}\cdot\hat{B}_{\delta\mu}$

ABER: deutlich höhere Frequenz $f_{\mu} = \mu \omega/(2\pi)!$

• **Ungesehnte Spule:**

Sehnungsfaktor:
$$W = \tau_p$$
: $k_{p\mu} = \sin\left(\mu \cdot \frac{W}{\tau_p} \cdot \frac{\pi}{2}\right) = \sin(\mu \pi/2) = (-1)^{(\mu-1)/2}$ mit $\mu = 1, 3, 5, ...$ ist $nur 1, -1, 1, -1, ...$

Sehnungsfaktor ändert nur das Vorzeichen (= Phasenlage 180° statt 0°), aber <u>nicht</u> die Amplitude $\hat{U}_{i,c,\mu}$

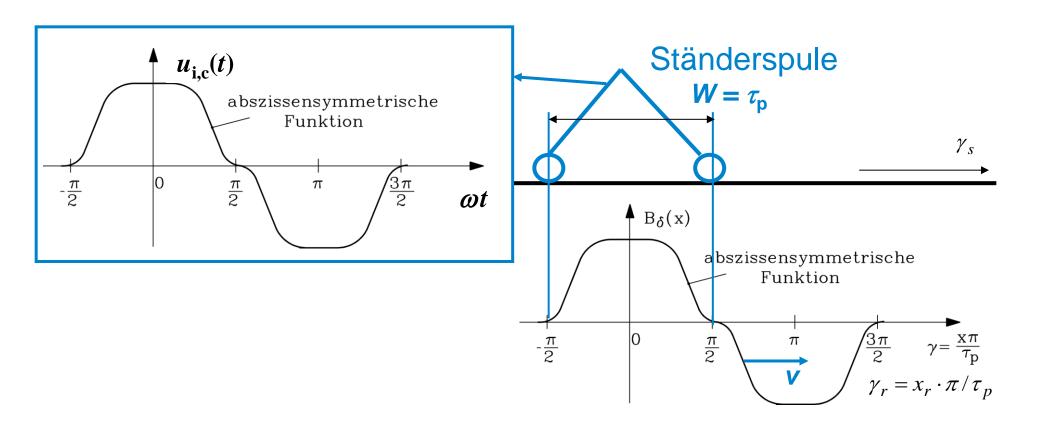
Beispiel: Induzierte Spulen-Spannung (Synchrongenerator)

- Zwölfpoliger Synchrongenerator: n = 500/min, 2p = 12, Ständerspule $N_c = 2$, $W = \tau_p = 0.5 \text{ m}$, l = 1 m
- Grundfrequenz der induzierten Spannung: $f = n \cdot p = (500 / 60) \cdot 6 = 50 \text{ Hz}$
- Läuferfluss in der Spule je Ordnungszahl μ : $\Phi_{c\mu} \sim \hat{B}_{\delta\mu} \cdot k_{p\mu} / \mu$, $W / \tau_p = 1 \Longrightarrow \left| k_{p\mu} \right| = 1$
- Induzierte Spannung bei gegebenen Feld-Amplituden $\hat{B}_{\delta\mu}$ des Läuferfelds: $U_{i,c\mu} \sim \hat{B}_{\delta\mu} \cdot k_{p\mu}$

μ	$\hat{B}_{\!\delta\!\mu}$	$\hat{B}_{\delta\!\mu}$ / $\hat{B}_{\delta 1}$	f_{μ}	$arPhi_{c\mu}$	$U_{i,c\mu} = \hat{U}_{i,c\mu} / \sqrt{2}$	$\left \hat{U}_{i,c\mu}/\hat{U}_{i,c1}\right $
-	Т	%	Hz	mWb	V	%
1	0.9	100	50	286.5	127.2	100
3	0.15	16.7	150	-15.9	-21.2	16.7
5	0.05	5.6	250	3.3	7.1	5.6
7	0.05	5.6	350	-2.3	-7.1	5.6

• In einer **ungesehnten Spule** $(k_{p\mu} = \pm 1)$ ist die induzierte Spannungskurvenform <u>identisch</u> mit der induzierenden Feldkurvenform !

Gegeninduktion: Räumlicher Luftspaltfeldverlauf $B_{\delta}(x)$ und zeitlicher Verlauf $u_{i,c}(t)$ der induzierten Spannung sind bei einer ungesehnten Spule IDENTISCH!



Elektrische Maschinen und Antriebe

Zusammenfassung: Spannungsinduktion in eine Ständerspule

- Induktion in eine ruhende Spule mit der Weite W = Polteilung $\tau_{\rm p}$
- Induzierte Spannungskurvenform = räumliche Form der Radialfeldkurve
- Beweis wurde über FOURIER-Reihe der Feldverteilung geführt

Elektrische Maschinen und Antriebe

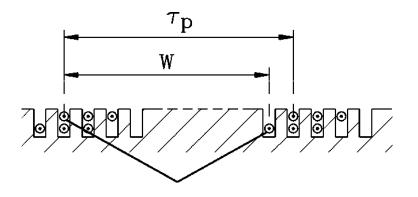
- 4. Spannungsinduktion in Drehstrommaschinen
 - 4.1 FARADAY'sches Induktionsgesetz (1831)
 - 4.2 Spannungsinduktion in eine Ständerspule
 - 4.3 Spannungsinduktion in eine Drehfeldwicklung
 - 4.4 Selbstinduktivität je Strang einer Drehfeldwicklung
 - 4.5 Gegeninduktivität je Strang zweier Drehfeldwicklungen

Spannungsinduktion in gesehnte Spule (1)

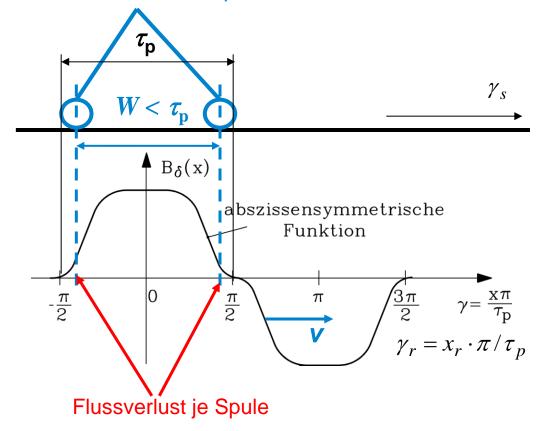
Sehnung: Spulenweite $W \neq \tau_p$:

Beispiel:

$$m = 3$$
, $q = 3$, $W/\tau_p = 8/9$



Gesehnte Ständerspule



Spannungsinduktion in gesehnte Spule (2)

Sehnung: Spulenweite $W \neq \tau_p$:

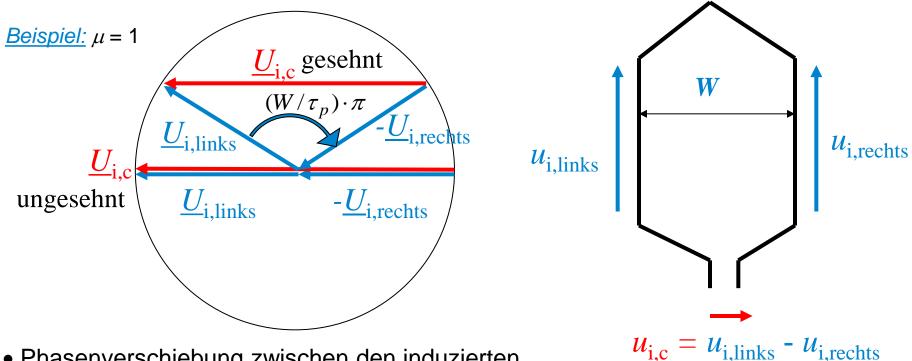
$$\Phi_{c\mu}(t) = \int_{-W/2}^{W/2} l \cdot \hat{B}_{\delta\mu} \cdot \cos(\frac{\mu \cdot \pi \cdot x}{\tau_p} - \mu \cdot \omega \cdot t) \cdot dx = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \cos(\mu \cdot \gamma - \mu \cdot \omega \cdot t) \cdot d\gamma = \int_{-\frac{W}{\tau_p} \cdot \frac{\pi}{2}}^{\frac{W}{\tau_p} \cdot \frac{\pi}{2}} l \cdot \frac{\tau_p}{\pi} \cdot \hat{B}_{\delta\mu} \cdot \hat{B}_{$$

$$= \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} \cdot l \cdot \hat{B}_{\delta\mu} \cdot \sin(\mu \cdot \frac{\pi}{2} \cdot \frac{W}{\tau_p}) \cdot \cos(\mu \cdot \omega \cdot t) = \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} \cdot l \cdot \hat{B}_{\delta\mu} \cdot k_{p\mu} \cdot \cos(\mu \cdot \omega \cdot t) = \Phi_{c\mu} \cdot \cos(\mu \cdot \omega \cdot t)$$

Verketteter Fluss ist um den **Sehnungsfaktor** $k_{p,\mu}$ kleiner als bei der ungesehnten Spule.

$$k_{p,\mu} = \sin\left(\mu \cdot \frac{\pi}{2} \cdot \frac{W}{\tau_p}\right)$$

Spannungsinduktion in gesehnte Spule (3)



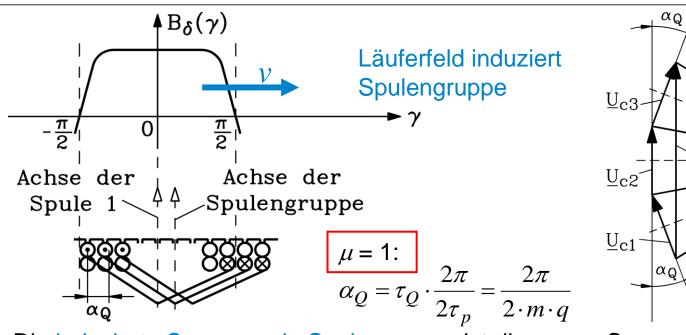
• Phasenverschiebung zwischen den induzierten Spannungen der linken und rechten Spulenseite:

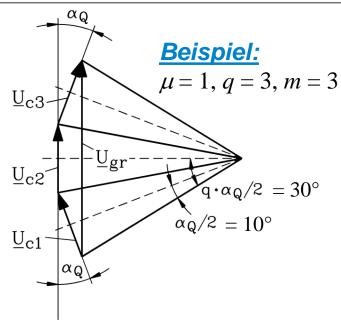
a) ungesehnt:
$$\pi$$
 b) gesehnt: $(W/\tau_p) \cdot \pi$
• Sehnungsfaktor: $k_{p,1} = \frac{U_{i,c}}{U_{i,links} + U_{i,rechts}} = \frac{2 \cdot \sin\left(\frac{W}{\tau_p} \cdot \frac{\pi}{2}\right)}{2} = \sin\left(\frac{W}{\tau_p} \cdot \frac{\pi}{2}\right)$

$$k_{p,1} = \sin\left(\frac{\pi}{2} \cdot \frac{W}{\tau_p}\right)$$

$$k_{p,1} = \sin\left(\frac{\pi}{2} \cdot \frac{W}{\tau_p}\right)$$

Spannungsinduktion in eine Spulengruppe

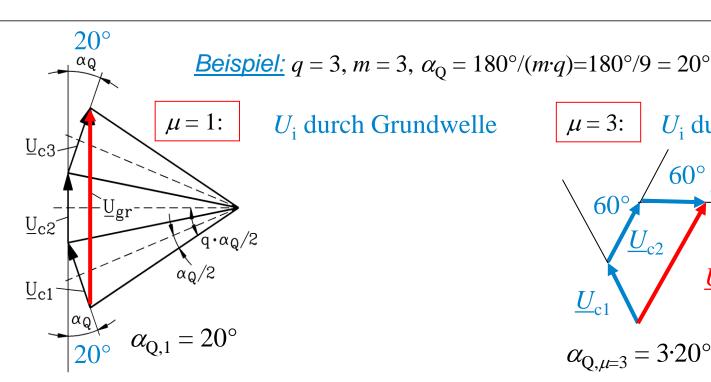




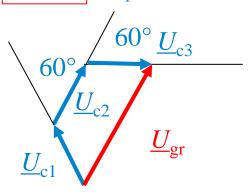
- Die induzierte Spannung je Spulengruppe ist die geom. Summe aus q Spulenspannungen, die um den Phasenwinkel $\alpha_{Q,\mu} = \mu \cdot 2\pi/(2 \cdot m \cdot q)$ phasenverschoben sind:

• Zonenfaktor:
$$k_{d,\mu} = \frac{\hat{U}_{i,gr,\mu}}{q \cdot \hat{U}_{i,c,\mu}} = \frac{2 \cdot \sin \left(q \cdot \frac{\alpha_{Q,\mu}}{2} \right)}{q \cdot 2 \cdot \sin \left(\frac{\alpha_{Q,\mu}}{2} \right)} = \frac{\sin \left(\mu \cdot \frac{\pi}{2m} \right)}{q \cdot \sin \left(\mu \cdot \frac{\pi}{2m \cdot q} \right)}$$

Zonenfaktor $k_{\mathrm{d},\mu}$ bei Oberwelleninduktion $\mu > 1$



 U_i durch 3. Oberwelle



$$\alpha_{Q,\mu=3} = 3.20^{\circ} = 60^{\circ}$$

Das Verhältnis von U_{qr} zur Summe der Spulen-Spannungszeiger U_{c} ist bei den Oberwellen (bis auf die Nutharmonischen) deutlich kleiner als bei der Grundwelle.

$$k_{d,1} = \frac{\hat{U}_{i,gr,1}}{3\hat{U}_{i,c,1}} = \frac{2\sin\left(3\frac{20^{\circ}}{2}\right)}{3\cdot2\sin\left(\frac{20^{\circ}}{2}\right)} = 0.9598$$

$$k_{d,3} = \frac{\hat{U}_{i,gr,3}}{3\hat{U}_{i,c,3}} = \frac{2\sin\left(3\frac{60^{\circ}}{2}\right)}{3\cdot2\sin\left(\frac{60^{\circ}}{2}\right)} = 0.6667$$

Gegeninduktion: Spannungsinduktion in einen Wicklungsstrang

- 2p-polige Maschine,
- Zweischichtwicklung: 2p Spulengruppen mit je q gesehnten Spulen.
- Induzierte Spannung je Strang (Effektivwert) durch Läufergrundwelle:

$$U_{i1} = \sqrt{2} \cdot \pi \cdot f \cdot N \cdot k_{w1} \cdot \frac{2}{\pi} \tau_p \cdot l \cdot \hat{B}_{\delta 1}$$

$$N = 2p \cdot q \cdot N_c / a \qquad k_{w1} = k_{d1} \cdot k_{p1}$$

Induzierte Spannung je Strang (Effektivwert) durch μ-te Läuferoberwelle:

$$U_{i,\mu} = \sqrt{2} \cdot \pi \cdot \mu \cdot f \cdot N \cdot k_{w,\mu} \cdot \frac{2}{\pi} \cdot \frac{\tau_p}{\mu} \cdot l \cdot \hat{B}_{\delta\mu}$$

$$\frac{U_{i,\mu}}{U_{i1}} = \frac{k_{w,\mu} \cdot \hat{B}_{\delta\mu}}{k_{w1} \cdot \hat{B}_{\delta1}}$$

Beispiel:

Spannungsinduktion in einen Wicklungsstrang

Beispiel: Zwölfpoliger Synchrongenerator: $n = 500/\min$, 2p = 12, f = 50 Hz

a) Ständerwicklung: $N_c = 2$, q = 2, $W = (5/6) \cdot \tau_p$, a = 1, $\tau_p = 0.5$ m, l = 1 m

b) Strangwindungszahl: $N = 2pqN_c/a = 12 \cdot 2 \cdot 2/1 = 48$

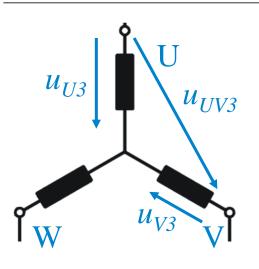
$$\Phi_{c\mu} \sim \hat{B}_{\delta\mu} \cdot k_{p\mu} / \mu$$

$$U_{i,\mu} \sim \hat{B}_{\delta\mu} \cdot k_{w\mu} = \hat{B}_{\delta\mu} \cdot k_{p\mu} \cdot k_{d\mu}$$

μ	$\hat{B}_{\delta\mu}$	$\hat{B}_{\delta\mu}$ / $\hat{B}_{\delta1}$	f_{μ}	$arPhi_{c\mu}$	$U_{i,\mu}$	$\left \hat{U}_{i,\mu}/\hat{U}_{i,1}\right $
-	Т	%	Hz	mWb	V	%
1	0.9	100	50	276.7	2850.1	100
3	0.15	16.7	150	-11.3	-254.6	8.9
5	0.05	5.6	250	8.0	11.4	0.4
7	0.05	5.6	350	-0.6	-11.4	0.4

Durch Sehnung $k_{p\mu}$ & Spulengruppe $k_{d\mu}$ werden Spannungsoberschwingungen <u>verringert.</u>

Sternschaltung: Keine "dritte" Oberschwingung



$$u_{U3}(t) = \hat{U}_3 \cdot \cos(3\omega t)$$

$$u_{V3}(t) = \hat{U}_3 \cdot \cos(3(\omega t - 2\pi/3)) = \hat{U}_3 \cdot \cos(3\omega t) = u_{U3}(t)$$

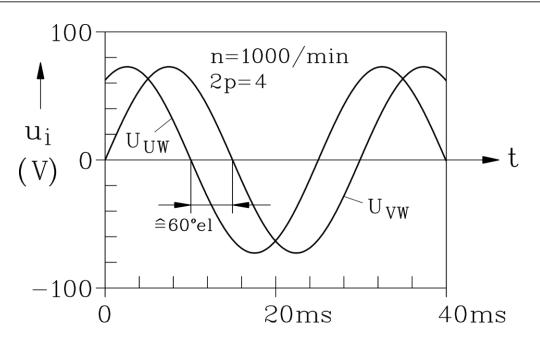
$$u_{W3}(t) = \hat{U}_3 \cdot \cos(3(\omega t - 4\pi/3)) = \hat{U}_3 \cdot \cos(3\omega t) = u_{U3}(t)$$

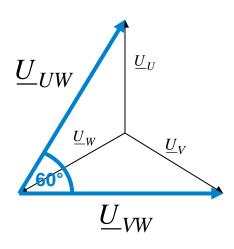
$$u_{UV3}(t) = u_{U3}(t) - u_{V3}(t) = u_{U3}(t) - u_{U3}(t) = 0$$

- Ständerwicklung in **Sternschaltung**: Dritte harmonische Oberschwingungsspannungen in allen 3 Strängen U, V, W IN Phase, und daher IDENTISCH!
- Daher enthalten die verketteten Spannungen KEINE 3. harmonische
 Oberschwingungsspannung (auch nicht: 9-te, 15-te, ...).
 (Die harmonischen Strangspannungen würden Oberschwingungsströme IN PHASE treiben).
- Bei isoliertem Sternpunkt können diese NICHT fließen (1. Kirchhoff-Gesetz: "Knotenregel")

$$\underline{I}_3 = \underline{U}_3 / \underline{Z}_3 \implies \underline{I}_{U3} + \underline{I}_{V3} + \underline{I}_{W3} = 3\underline{I}_3 = 0 \implies \underline{I}_3 = 0$$

<u>Messung:</u> Sternschaltung: Keine "dritte" Oberschwingung





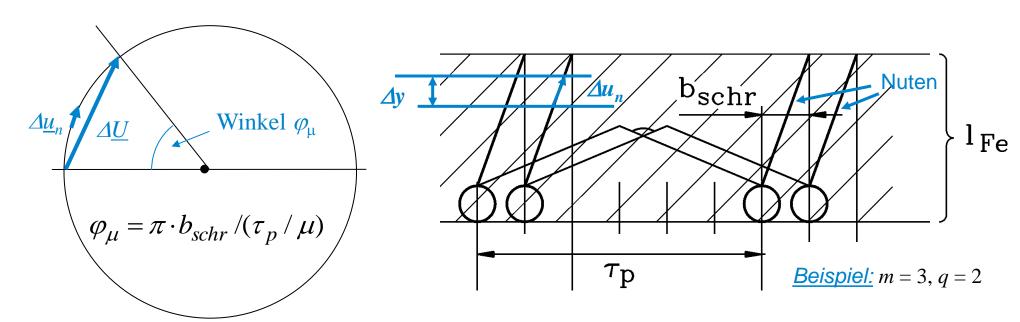
- Gemessene verkettete Leerlaufspannung bei 1000/min:
 4-poliger PM-Synchrongenerator, q = 3, n = 1000/min, Sternschaltung, geschrägte Nuten:
 ⇒ Leerlaufspannung nahezu ideal sinusförmig
- Fourier-Analyse der verketteten Leerlaufspannung: μ = 1: 33.5 Hz, 74.8 V μ = 5: 167.0 Hz, 0.34 V μ > 5: Amplituden vernachlässigbar klein

Nutschrägung: Glättet die nutharmonischen *U*-Oberschwingungen

Ergänzung

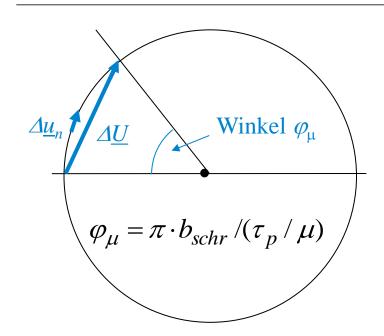
- Schrägung der Nuten um das Maß b_{schr}
- Schrägung bewirkt eine Phasenverschiebung der induzierten Spannung in einer Spulenseite am Beginn und Ende bezüglicher μ -ten induzierenden Feldoberwelle um

$$\varphi_{\mu} = \pi \cdot b_{schr} / (\tau_p / \mu)$$



Schrägungsfaktor für Spannungsinduktion

Ergänzung



- Resultierende induzierte Spannung <u>∆</u><u>U</u> je Spulenseite in einer Nut ⇒
- $\Delta \underline{U}$ ist Summe aller differentiell kleiner Spannungsanteile $\Delta \underline{u}_n \to d\underline{u}$ längs der differentiell kurzen Spulenseitenabschnitte $\Delta y \to dy$

Schrägungsfaktor χ_{μ}

$$\chi_{\mu} = \frac{\left|\sum_{n=1}^{\infty} \Delta \underline{u}_{n}\right|}{\sum_{n=1}^{\infty} \left|\Delta \underline{u}_{n}\right|} = \frac{\left|\Delta \underline{U}\right|}{\sum_{n=1}^{\infty} \left|\Delta \underline{u}_{n}\right|} = \frac{2 \cdot \sin(\varphi_{\mu}/2)}{\varphi_{\mu}} = \frac{\sin S_{\mu}}{S_{\mu}} \qquad S_{\mu} = \frac{\mu \pi b_{schr}}{2\tau_{p}}$$

Wirkung des Schrägungsfaktors

Ergänzung

Beispiel: Sechspolige Maschine, Drehzahl 1500/min, 5/6-gesehnte Spulen, q=2, Nutschrägung um eine Statornutteilung: $b_{schr} = \tau_{Qs}$

$$U_{i,\mu} \sim \hat{B}_{\delta\mu} \cdot k_{w\mu} \cdot \chi_{\mu}$$

Läuferfeld: Ordnungs- zahl	Stator- frequenz	Flussdichte- Amplitude	Wicklungs- faktor	Schrägungs- faktor	Induzierte Strang- spannung	Induzierte verkettete Spannung
μ	μf	$B_{\delta\mu}$	$k_{ m w\mu}$	Χμ	$U_{\mathrm{i}\mu}$	$U_{ m i}$ μLL
1	75 Hz	100 %	0.933	0.989	100 %	100 %
3	225 Hz	-26.1 %	-0.50	0.900	12.73 %	0
5	375 Hz	7.9 %	0.067	0.738	0.42 %	0.42 %
7	525 Hz	1.2 %	-0.067	0.527	0.05 %	0.05 %
9	675 Hz	-6.0 %	0.50	0.300	0.98 %	0
11	825 Hz	8.0 %	-0.933	0.090	0.73 %	0.73 %
13	975 Hz	-8.0 %	0.933	-0.076	0.61 %	0.61 %

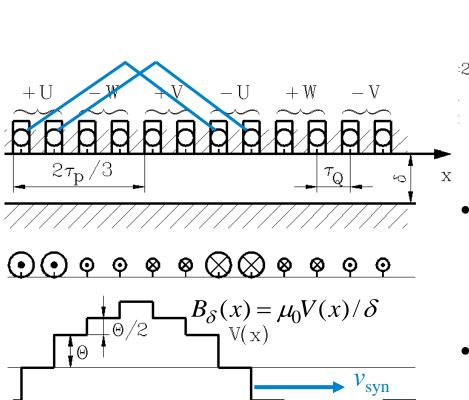
Nutharmonisch

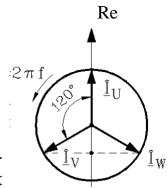
Zusammenfassung: Spannungsinduktion in eine Drehfeldwicklung

- Induktion in gesehnte ruhende Spulengruppen
- Es tritt wieder der Wicklungsfaktor k_{wu} auf
- Wicklungsfaktor $k_{w\mu}$, Sternschaltung und Schrägung bewirken nahezu sinusförmige induzierte Stator-Spannungskurvenform, obwohl Rotor-Feldverteilung von Sinusform abweicht!
- Beweis wurde über FOURIER-Reihe der Feldverteilung geführt
- Netzspannung ist also deswegen (nahezu) sinusförmig,
 weil Generatoren eine gesehnte verteilte Y-Schaltungs-Wicklung haben,
 und nicht, weil das Rotor-Magnetfeld sinusförmig verteilt ist!

- 4. Spannungsinduktion in Drehstrommaschinen
 - 4.1 FARADAY'sches Induktionsgesetz (1831)
 - 4.2 Spannungsinduktion in eine Ständerspule
 - 4.3 Spannungsinduktion in eine Drehfeldwicklung
 - 4.4 Selbstinduktivität je Strang einer Drehfeldwicklung
 - 4.5 Gegeninduktivität je Strang zweier Drehfeldwicklungen

Selbstinduktionswirkung durch das magnetische Ständerdrehfeld in der Ständerwicklung





- Das vom Stator-Drehstromsystem $\underline{I}_{\mathrm{s}}$ erregte Stator-Luftspalt-Drehfeld B_{δ} induziert in die drei Ständer-Wicklungsstränge U, V, W durch SELBSTINDUKTION eine Spannung $U_{\mathrm{i,s}}$ mit Statorfrequenz $f=f_{\mathrm{s}}$
- ullet Dieser Spannung wird die Selbstinduktivität $L_{
 m h,gesamt}$ zugeordnet.

$$U_{i,s} = \omega_s \cdot L_{h,gesamt} \cdot I_s$$

Felddarstellung für: $i_U = \hat{I}_{\scriptscriptstyle S}$, $i_V = i_W = -\hat{I}_{\scriptscriptstyle S}$ / 2

Beispiel:

 $m_s = 3$, q = 2, $W/\tau_p = 1$

Drehfeldwicklung: Selbstinduktion - Hauptinduktivität

• Die Ständer-Luftspalt-Grundwelle $\nu = 1$, erregt vom Ständerstrom I_s , induziert die Ständerwicklung, von der sie erregt wurde, infolge **Selbstinduktion**.

$$B_{\delta,s,1}(x,t) = \hat{B}_{\delta,s,1} \cdot \cos\left(\frac{\pi \cdot x}{\tau_p} - \omega_s \cdot t\right) \qquad \hat{B}_{\delta,s,1} = \frac{\mu_0}{\delta} \cdot \frac{\sqrt{2}}{\pi} \cdot \frac{m_s}{p} \cdot N_s \cdot \frac{k_{ws,1}}{1} \cdot I_s \qquad m_s = 3$$

- Ständer-Feldwelle ist von ω_s -frequenten Strom I_s erregt: Daher hat induzierte Spannung die Frequenz f_s .
- Effektivwert der induzierten Selbstinduktions-Spannung je Strang:

$$U_{i,s,v=1} = \sqrt{2} \cdot \pi \cdot f_s \cdot N_s \cdot k_{w,s,1} \cdot \frac{2}{\pi} \cdot \tau_p \cdot l \cdot \hat{B}_{\delta,s,1}$$

• Hauptinduktivität je Feldwelle: $U_{i,s,\nu=1} = \omega_s \cdot L_h \cdot I_s$

$$L_h = \mu_0 \cdot (N_s \cdot k_{w,s,1})^2 \cdot \frac{2m_s}{\pi^2} \cdot \frac{l \cdot \tau_p}{p \cdot \delta}$$

$$\mu_{\text{Fe}} \to \infty$$

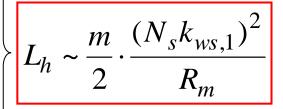
Drehfeldwicklung: Grundwellen-Hauptinduktivität L_h

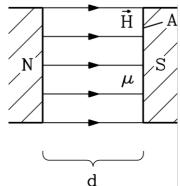
• Hauptinduktivität: Je Strang der Grundwelle $L_{h,v=1} = L_h$ bei $\mu_{Fe} \to \infty$:

$$L_h = \mu_0 \cdot (N_s \cdot k_{w,s,1})^2 \cdot \frac{2m_s}{\pi^2} \cdot \frac{l \cdot \tau_p}{p \cdot \delta}$$

• Merkmale: $L_h \sim \mu_0 \cdot (N_s \cdot k_{w,s,1})^2$

Effektive Windungszahl je Strang: $N_s \cdot k_{w,s,1}$ Magnetische Reluktanz ("magn. Widerstand"): $R_m = \frac{1}{\mu_0} \cdot \frac{\delta}{l \cdot \tau_p}$ $L_h \sim \frac{m}{2} \cdot \frac{(N_s k_{ws,1})^2}{R_m}$





$$R_m = \frac{1}{\mu} \cdot \frac{d}{A}$$

 $R_m = \frac{1}{\mu} \cdot \frac{d}{A}$ Analogon: Elektrischer Widerstand: $R = \frac{1}{\kappa} \cdot \frac{d}{A}$ $(\kappa: \text{ elektr. Leitfähigkeit})$

$$R_m = \frac{V}{\Phi} = \frac{H \cdot d}{B \cdot A} = \frac{H \cdot d}{\mu \cdot H \cdot A} = \frac{d}{\mu \cdot A}$$

Selbstinduktionswirkung aller Ständerdrehfeldwellen

$$U_{i,s} = \omega_s \cdot L_{h,gesamt} \cdot I_s$$

$$U_{i,s}/U_{i,s,v=1} = L_{h,gesamt}/L_h > 1$$

• Definition der "Oberfelder-Streuziffer": $L_{h,gesamt} = (1 + \sigma_o) \cdot L_h$

 σ_0 : Oberfelder-Streuziffer bei $m_s = 3$, $q \ge 1$: Sehr klein: ca. 0.01 ... 0.09

$$q > 1$$
 $q = 1$

 Oberfelder | v| > 1 sind zwar Luftspaltfelder, aber "stören"; sie werden daher als "Streu"feld betrachtet:

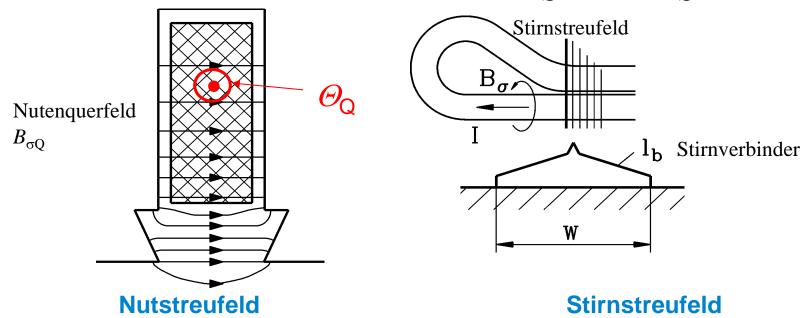
Oberfelder-Streuinduktivität
$$L_{\sigma,o}$$
: $L_{\sigma,o} = \sigma_o \cdot L_h \approx (0.01 \dots 0.09) \cdot L_h$

Selbstinduktion: Nut- und Stirn-Streuinduktivität

- Magnetfelder
- in den Nuten (Nutenquerfeld $B_{\sigma Q}$) und
- um die **Stirnverbinder** (Stirnstreufeld B_{σ})

erreichen den Läufer NICHT und können daher dort keine Kräfte und damit keinen Energieumsatz bewirken = Streufelder (Index σ)

• Streufelder induzieren in der Ständerwicklung ebenfalls Selbstinduktionsspannungen: Nutstreuinduktivität $L_{\sigma Q}$, Stirnstreuinduktivität $L_{\sigma b}$: $U_{i\sigma,Q+b} = \omega \cdot (L_{\sigma Q} + L_{\sigma b}) \cdot I_s$



Grundwellen-Hauptfluss einer Drehfeldmaschine

- Hauptfluss Φ_h :
 - Wird aus den Feldgrundwellen von Stator- und Rotorfeld gebildet ($\nu = \mu = 1$).
- Nur diese beiden $v = \mu = 1$ bilden gemeinsam das Drehmoment $M_{\rm e}$, das wegen
 - a) der Sinuswellenform von Stator- und Rotorgrunddrehwelle,
 - b) der gleichen Geschwindigkeit und Polzahl
 - ZEITLICH KONSTANT ist: $M_e(t) = M_e = \text{konst.}$
- Oberwellen: $v \neq 1$, $\mu \neq 1$:
- Oberwellen des Stators ($\nu \neq 1$) werden als Stator-Oberwellenstreuung L_{soo} betrachtet, die (nahezu) NICHT zur Drehmomentbildung beitragen.
- Rotoroberwellen z. B. des Läuferfelds der Asynchronmaschine ($\mu \neq 1$) werden ebenso als Rotor-Oberwellenstreuung L_{roo} zusammengefasst (siehe Kap. 5).

Streufluss-Definition in einer Drehfeldmaschine

Streufluss Φ_{σ} :

- a) <u>Echter Streufluss</u> ist nur mit jeweils Stator- oder Rotorwicklung verkettet (Nut- und Stirnstreuung $\Phi_{\sigma Q}$, $\Phi_{\sigma b}$): Feldlinien gehen NICHT über den Luftspalt
- b) "Unechter" Streufluss: Stator- bzw. Rotoroberwellenstreuung $L_{\rm soo}$, $L_{\rm roo}$:

 Nur deren jeweilige Selbstinduktionswirkung wird HIER berücksichtigt (Ihre Gegeninduktionswirkung (= "Parasitäreffekt") wird hier vernachlässigt)

Reaktanzen-Definition in einer Drehfeldmaschine

a) Stator-Streureaktanz:

$$X_{s\sigma} = \omega \cdot L_{s\sigma} = \omega \cdot L_{s\sigma Q} + \omega \cdot L_{s\sigma b} + \omega \cdot L_{s\sigma o}$$

Nutstreuinduktivität $L_{\sigma Q}$

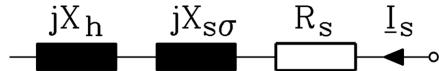
Stirnstreuinduktivität $L_{\sigma b}$

Oberfelder-Streuinduktivität $L_{\sigma o}$

b) Hauptreaktanz: (m/2-Wert des einsträngigen Betriebs)

$$X_h = \omega L_h$$

c) Ersatzschaltbild für einen Wicklungsstrang:



Zusammenfassung: Selbstinduktivität je Strang einer Drehfeldwicklung

- Selbstinduktivität $L_{\rm s}$ je Strang (z.B.: U) ist wegen der Verkettung mit den anderen beiden Strängen (V, W) eigentlich eine Summe aus Selbstinduktivität $L_{\rm UU}$ und zwei Gegeninduktivitäten $M_{\rm UV}$, $M_{\rm UW}$
- Grundwelle ν = 1 führt zur Hauptinduktivität $L_{\rm h}$
- Echte Streuinduktivitäten durch Nut- und Stirnstreufluss $L_{\rm \sigma Q}, L_{\rm \sigma b}$
- Selbstinduktivität proportional zu Windungszahlquadrat und Flussfläche: $L \sim N^2 \cdot \tau_{\rm p} l_{\rm Fe}$
- Invers proportional zum Luftspalt δ ("magnetischer Widerstand" δ ~ $R_{\rm m}$): L ~ $1/R_{\rm m}$

Ab nun: Nur <u>Grundwellen</u>betrachtung: $v = 1, k_{ws,1} = k_{ws}$ $\mu = 1, k_{wr,1} = k_{wr}$

Oberwellenwirkung in (kleiner) Oberwellen-"Streu"induktivität $L_{\sigma o}$ zusammengefasst

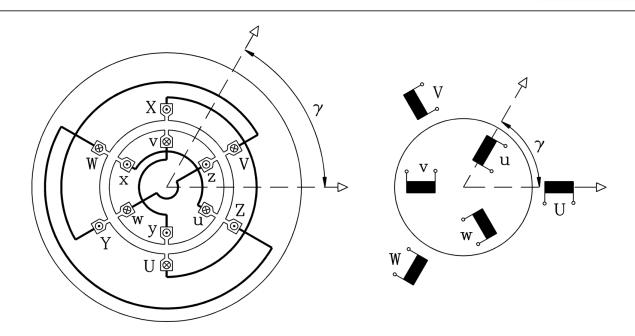
- 4. Spannungsinduktion in Drehstrommaschinen
 - 4.1 FARADAY sches Induktionsgesetz (1831)
 - 4.2 Spannungsinduktion in eine Ständerspule
 - 4.3 Spannungsinduktion in eine Drehfeldwicklung
 - 4.4 Selbstinduktivität je Strang einer Drehfeldwicklung
 - 4.5 Gegeninduktivität je Strang zweier Drehfeldwicklungen

Drehfeldwicklungen in Stator und Rotor

Beispiel:

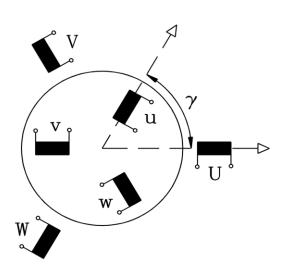
$$m_{\rm s}=m_{\rm r}=3,$$

 $Q_{\rm s}=Q_{\rm r}=6,$
 $q_{\rm s}=q_{\rm r}=1,$
Verdrehwinkel
 $\gamma=\gamma_{\rm el}=60^{\circ}$



- Im Ständer und im Läufer je eine Drehfeldwicklung angeordnet:
 - im Stator: Stränge U-X, V-Y, W-Z, Index s,
 - im Rotor: Stränge u-x, v-y, w-z, Index r.
- Rotor steht still, ist gegenüber dem Stator um Winkel γ verdreht (= Winkel zwischen den Wicklungsachsen (Spulenmitten) des Rotors und Stators). $\gamma = 2\pi$, wenn der Rotor gegenüber dem Stator um $2\tau_p$ verdreht ist.

Drehfeld-Wicklungsparameter



	Stator	Rotor
Polzahl	2 <i>p</i>	2 <i>p</i>
Strangzahl	$m_{\!\scriptscriptstyle \rm S}$	m_{r}
Windungszahl	$N_{\!\scriptscriptstyle m S}$	N_r
Sehnung	W_{s} / τ_{p}	W_r / τ_p
Lochzahl / Nutzahl	$q_{\rm s}$ / $Q_{\rm s}$	q_r / \dot{Q}_r
Wicklungsfaktor (Grundwelle)	$k_{\!\scriptscriptstyle WS}$	k_{wr}

- Polzahlen von Stator- und Rotorwicklung sind identisch 2p, aber Wicklungen i. A. nicht.
- Vermeidung von magnetischen Rastmomenten:

$$Q_r \neq Q_s$$

Gegeninduktivität je Strang zweier Drehfeldwicklungen $s \rightarrow r$

• **Gegeninduktion:** Stator-Luftspalt-Grundwelle induziert in Rotorwicklung:

$$B_{\delta,s}(x,t) = \hat{B}_{\delta,s} \cdot \cos(\frac{\pi x}{\tau_p} - \omega_s t) \text{ mit Amplitude } \hat{B}_{\delta,s} = \frac{\mu_0}{\delta} \cdot \frac{\sqrt{2}}{\pi} \cdot \frac{m_s}{p} \cdot N_s k_{ws} \cdot I_s \qquad \mu_{Fe} \to \infty$$

Effektivwert der induzierten Spannung je Strang in der Rotorwicklung:

$$U_{i,r} = \sqrt{2}\pi f_r \cdot N_r \cdot k_{wr} \cdot \frac{2}{\pi} \tau_p l \hat{B}_{\delta,s}$$

- Rotorfrequenz f_r (bei **ruhendem** Rotor n = 0): $f_r = f_s$.
- Grundwelle: Drehfeld-Gegeninduktivität je Strang M_{rs} : $U_{i,r} = \omega_r \cdot M_{rs} \cdot I_s$ $s \to r$

$$M_{rs} = \mu_0 \cdot N_s k_{w,s} \cdot N_r k_{w,r} \cdot \frac{2m_s}{\pi^2} \cdot \frac{1}{p} \cdot \frac{\tau_p \cdot l}{\delta}$$

Gegeninduktivität je Strang zweier **Drehfeldwicklungen r** → s

Gegeninduktion: Rotor-Luftspalt-Grundwelle induziert in Statorwicklung:

$$B_{\delta,r}(x,t) = \hat{B}_{\delta,r} \cdot \cos(\frac{\pi x}{\tau_p} - \omega_s t) \text{ mit Amplitude } \hat{B}_{\delta,r} = \frac{\mu_0}{\delta} \cdot \frac{\sqrt{2}}{\pi} \cdot \frac{m_r}{p} N_r k_{wr} \cdot I_r$$

Effektivwert der induzierten Spannung je Strang in der Statorwicklung:

$$U_{i,s} = \sqrt{2}\pi f_s \cdot N_s \cdot k_{ws} \cdot \frac{2}{\pi} \tau_p l \hat{B}_{\delta,r}$$
 Statorfrequenz f_s (bei ruhendem Rotor): $f_s = f_r$

• Grundwelle: Drehfeld-Gegeninduktivität je Strang M_{sr} : $U_{i,s} = \omega_s \cdot M_{sr} \cdot I_r$ $r \to s$

$$M_{sr} = \mu_0 \cdot N_s k_{w,s} \cdot N_r k_{w,r} \cdot \frac{2m_r}{\pi^2} \cdot \frac{1}{p} \cdot \frac{\tau_p \cdot l}{\delta}$$

$$\frac{M_{rs}}{M_{sr}} = \frac{m_s}{m_r}$$

$$\frac{M_{rs}}{M_{sr}} = \frac{m_s}{m_r}$$
 Anmerkung:

nur bei $m_s = m_r$:

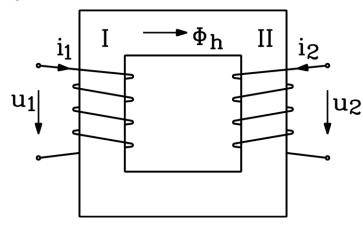
 $M_{sr} = M_{rs}$

Zur Erinnerung: Konventioneller Transformator

Ergänzung

- Galvanische Trennung zwischen Primär- und Sekundärspule = Potentialtrennung!
- Konstantes Übersetzungsverhältnis $\ddot{u} = N_1/N_2!$

Einphasentransformator



Primärspule

Sekundärspule

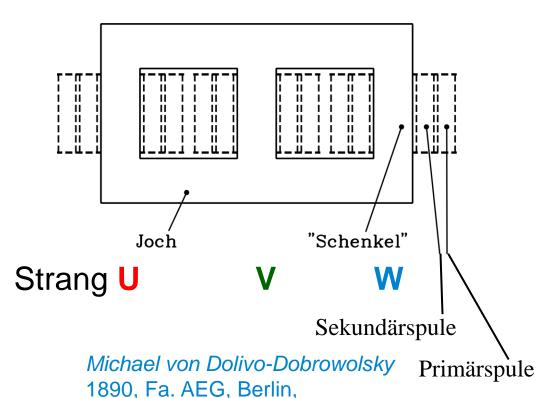
Windungszahl N_1

Windungszahl N_2

Blathy, Deri, Zipernovsky 1881, Fa. Ganz, Budapest, Österreich.-Ungar. Donaumonarchie

Drehstrom-Transformator

Deutsches Kaiserreich



Drehtransformator (1)

- Induzierte Rotor-Spannungen sind wegen Läufer-Verdrehung γ gegenüber den Selbstinduktionsspannungen im Stator um diesen Winkel γ phasenverschoben.
- Serienschaltung von Ständer- und Läuferstrang U und u (ebenso V und v, W und w)
 - ⇒ Man greift zwischen Eingangsklemme des Ständerstrangs und Ausgangsklemme des Läuferstrangs je Strang die Summenspannung ab:

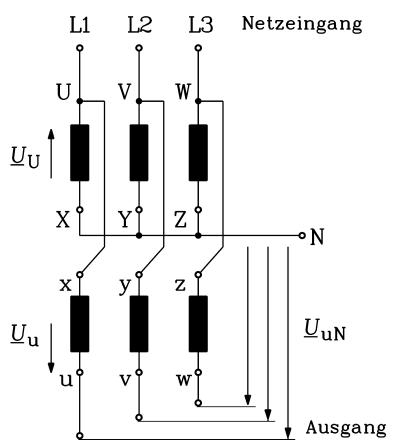
$$\underline{U} = \underline{U}_s + \underline{U}_r = U_s + U_r \cdot e^{-j\gamma} \text{ , z. B. } U_r = U_s : \quad \underline{U} = U_s + U_s \cdot e^{-j\gamma} = U_s \cdot \left(1 + e^{-j\gamma}\right)$$

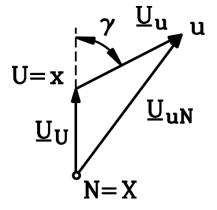
- Verdrehung des Läufers = kontinuierliche Winkel-Änderung γ .
- Mit dem Drehtransformator kann man kontinuierlich zwischen 0 und 2U_s die Spannung verändern.

Drehtransformator (2)

Verdrehung des Läufers = kontinuierliche Winkel-Änderung γ . Mit dem Drehtransformator kann man kontinuierlich zwischen 0 und $2U_s$ die Spannung verändern.

Keine galvanische Trennung!





Zusammenfassung: Gegeninduktivität je Strang zweier Drehfeldwicklungen

- Ständer- und Läuferdrehfeldwicklung induzieren
 - a) sich und
 - b) einander wie bei Transformator
- Nur Grundwellen für Gegeninduktion $\nu = 1$, $\mu = 1$ berücksichtigt
- Gegeninduktivität M proportional zu Windungszahlprodukt $N_{\rm s}N_{\rm r}$ und Flussfläche: $M \sim \tau_{\rm p}l_{\rm Fe}$
- M umgekehrt proportional zum Luftspalt δ ("magnetischer Widerstand" δ ~ $R_{\rm m}$)
- Spannungsinduktion wegen Flussverkettung rotorstellungsabhängig
- Anwendung:
 Drehtransformator zur stufenlosen Spannungsamplitudenänderung

