Energy Converters – CAD and System Dynamics

TECHNISCHE UNIVERSITÄT DARMSTADT

- 1. Basic design rules for electrical machines
- 2. Design of Induction Machines
- 3. Heat transfer and cooling of electrical machines
- 4. Dynamics of electrical machines
- 5. Dynamics of DC machines
- 6. Space vector theory
- 7. Dynamics of induction machines
- 8. Dynamics of synchronous machines

Source: SPEED program **Energy Converters - CAD and System Dynamics**

7. Dynamics of induction machines

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 2 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

7. Dynamics of induction machines **Per unit calculation (p.u.)**

Example: Ohm's law:

- $U = 10 \text{ V}, R = 2 \Omega$: How big is current *I*?
- Rated voltage and current: $U_N = 5 \text{ V}, I_N = 5 \text{ A}$

(i) Calculated with physical numbers: $I = U/R = 10 \text{ V}/2 \Omega = 5 \text{ A}$.

- Check of physical units: $V/\Omega = V/((V/A) = A$ (ii) Calculated with per unit numbers: $u = U/U_N = 10/5 = 2, Z_N = U_N/I_N = 5/5 = 1 \Omega$. $r = R/Z_N = 2/1 = 2 \qquad \Rightarrow i = u/r = 2/2 = \frac{1}{2}$ Note: $i = \underline{1p.u}$ is equal to $i = I/I_N = \underline{1} \Rightarrow I = i \cdot I_N = 1 \cdot 5 A = 5 A$

Drawback: p.u. have the physical units 1, so checking of results of analytical calculations by physical units check is <u>no longer possible</u>.

Benefits: The calculation result gives <u>directly an impression of the degree of loading</u> of the electric device.

7. Dynamics of induction machines Basic rules for per unit calculation

- Values for per unit calculation are taken from machine data plate
- In three phase systems the **rated impedance** Z_N has to be calculated with **phase values** = ratio of rated **phase** voltage versus **rated** phase current.
- Data plate voltage & current values are ALWAYS line values !
- Electric machine models are based on phase values in order to be independent from the kind of winding connection (Y or D). For per unit voltage, current and impedance calculation: rated <u>phase</u> values are taken.
- Symbols for per unit values are **small letters** (*u*(*t*), *i*(*t*), ...).
- For time varying voltage, current etc. in physical units **capital letters** are used here (*U*(*t*), *I*(*t*), ...).

7. Dynamics of induction machines Typical data plate of electric machine

• *Example:* Six-pole cage AC induction machine:

Type MKG-222 M06 F3B-9	Motor Company/2003
AC-Motor	Nr. 691 502
400 V Y	84 A
45 kW	1490/3000 /min S1
75 Hz	$\cos\varphi = 0.88$
Th.Cl. F	IP 44

• We calculate from the data plate the rated *u* & *i* phase values and the rated impedance:

$$U_{N,ph} = U_N / \sqrt{3} = 400 / \sqrt{3} = 231 \text{ V} \approx 230 \text{ V}, I_{N,ph} = I_N$$
$$Z_N = U_{N,ph} / I_{N,ph} = 230 / 84 = \underline{2.74} \Omega$$

7. Dynamics of induction machines Summary of per unit values (1)

- Per unit time: $\tau = \omega_N \cdot t$
- Per unit electric angular frequency: $\omega_s = \Omega_s / \omega_N$ $\omega_r = \Omega_r / \omega_N$
- Per unit mechanical angular frequency: $\omega_m = \Omega_m \cdot p / \omega_N$
- Per unit electric resistance: $r_s = R_s / Z_N$ $r'_r = R'_r / Z_N$ $Z_N = U_{N,ph} / I_{N,ph}$

e.g.:
$$f_N = 50$$
Hz, $t = 1$ s: $\tau = \omega_N \cdot t = (2\pi \cdot 50) \cdot 1 = 314.16$ 50 cycles: $50 \cdot 2\pi = 50 \cdot 6.28 = 314.16$

e.g.:
$$f_{\rm N} = 50$$
Hz, $f_s = 150$ Hz: $\Omega_s = 2\pi f_s = 2\pi \cdot 150$ /s = 942.5/s
 $\omega_{\rm N} = 2\pi \cdot 50 = 314.16$ /s $\omega_{\rm s} = \Omega_s / \omega_{\rm N} = 942.5/314.16 = 3.0$

e.g.:
$$f_{\rm N} = 50$$
Hz, $\omega_{\rm N} = 314.16/$ s, $n = 1000/$ min, $2p = 8$:
 $\Omega_m = 2\pi n = 2\pi \cdot (1000/60) = 104.7/$ s
 $(\Omega_{\rm syn} = 2\pi \cdot f_{\rm N} / p = 2\pi \cdot 50/4 = 78.54/$ s) $\omega_m = \Omega_m / \Omega_{\rm syn} = 104.7/78.54 = 1.33$
 $\omega_m = \Omega_m \cdot p / \omega_{\rm N} = 104.7 \cdot 4/314.16 = 1.33$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 7 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Summary of per unit values (2)

- Per unit inductance: $x_s = \omega_N \cdot L_s / Z_N$ $x_h = \omega_N \cdot L_h / Z_N$ $x'_r = \omega_N \cdot L'_r / Z_N$
- Per unit electric voltage: $u_s = U_s / (\sqrt{2}U_{N,ph})$ $u'_r = U'_r / (\sqrt{2}U_{N,ph})$
- Per unit electric current: $i_s = I_s / (\sqrt{2}I_{N,ph})$ $i'_r = I'_r / (\sqrt{2}I_N)$

- Per unit magnetic flux linkage: $\psi = \Psi / \Psi_N$

$$i'_{r} = I'_{r} / (\sqrt{2I_{N,ph}})$$
$$\Psi_{N} = \frac{\sqrt{2} \cdot U_{N,ph}}{\omega_{N}}$$

e.g.: $L_s = 10mH$, $Z_N = 2\Omega$, $f_N = 50Hz$: $x_s = \omega_N \cdot L_s / Z_N = (2\pi \cdot 50) \cdot 0.01 / 2 = 1.57$ $(X_s = \omega_N \cdot L_s = (2\pi \cdot 50) \cdot 0.01 = 3.14\Omega)$ $x_s = X_s / Z_N = 3.14 / 2 = 1.57$ e.g.: $\Psi = 3$ Vs, $U_{N,ph} = 231V$, $f_N = 50Hz$: $\Psi_N = \frac{\sqrt{2} \cdot U_{N,ph}}{\omega_N} = \frac{\sqrt{2} \cdot 231}{2\pi \cdot 50} = 1.04Vs$ $\Psi = \Psi / \Psi_N = 3/1.04 = 2.885$

<u>*Result:*</u> High flux linkage = high iron saturation must be expected!

7. Dynamics of induction machines Per unit electric phase voltage and current

- In dynamic calculations instantaneous values U(t), I(t) are derived as results.
- Therefore in AC machinery the per unit calculation is done with the momentary peak values (amplitudes) of the stationary sinusoidal rated operational values.

 $u_{s}(\tau) = U_{s}(t)/(\sqrt{2} \cdot U_{N,ph})$ $i_{s}(\tau) = I_{s}(t)/(\sqrt{2} \cdot I_{N,ph})$

• Example: Sinusoidal rated operation: $I_U(t) = \sqrt{2} \cdot I_{N,ph} \cdot \sin(2\pi f_N t)$ i_U $i_U(\tau) = I_U(t)/(\sqrt{2} \cdot I_{N,ph}) = 1 \cdot \sin(\tau)$ $i_U(\tau) = I_U(t)/(\sqrt{2} \cdot I_{N,ph}) = 1 \cdot \sin(\tau)$ One RATED "per-unit" period is ALWAYS 2π , independent from rated frequency f_N $e.g.: t = \frac{1}{f_N}: \tau = \omega_N \cdot t = 2\pi \cdot \frac{f_N}{f_N} = 2\pi$

7. Dynamics of induction machines Summary of per unit values (3)

a) Per unit torque:

- **Reference:** Rated <u>apparent</u> torque $M_{\rm B}$ = rated APPARENT power $S_{\rm N}$ vs. synchronous speed !

- This $M_{\rm B}$ includes power factor $\cos \varphi_{\rm N}$ and machine efficiency $\eta_{\rm N}$!

$$m = M / M_B \qquad M_B = \frac{S_N}{\omega_N / p}$$

Note:

Induction motor operation: Rated apparent torque $M_{\rm B}$ is bigger than rated torque $M_{\rm N}$:

$$M_{B} = \frac{S_{N}}{\omega_{N} / p} = \frac{P_{N} / (\cos \varphi_{N} \cdot \eta_{N})}{\frac{\Omega_{mN}}{1 - s_{N}}} = \frac{P_{N}}{\Omega_{mN}} \cdot \frac{1 - s_{N}}{\cos \varphi_{N} \cdot \eta_{N}} = M_{N} \cdot \frac{1 - s_{N}}{\cos \varphi_{N} \cdot \eta_{N}}$$
$$M_{B} = M_{N} \cdot \frac{1 - s_{N}}{\cos \varphi_{N} \cdot \eta_{N}}$$

b) Per unit moment of inertia:

- Rotor inertia J is calculated from T_J as per unit starting time constant τ_J .

$$\tau_J = \omega_N \cdot T_J \qquad T_J = J \cdot \frac{\omega_N / p}{M_B}$$

Per unit calculation from data plate values

Example: 4-pole cage induction motor	400 V Y 18.5 kW 50 Hz Th.Cl. F	34.5 A 1465 /min $\cos \varphi = 0.84$ IP 54	S1 $J = 0.054 \text{ kgm}^2$
---	---	---	---------------------------------

$$Z_{N} = U_{N,ph} / I_{N,ph} = 231/34.5 = \underline{6.67 \ \Omega} \qquad S_{N} = 3 \cdot U_{N,ph} \cdot I_{N,ph} = 3 \cdot 231 \cdot 34.5 = \underline{23.9 \text{ kVA}}$$

$$M_{B} = \frac{S_{N}}{\Omega_{syn,N}} = \frac{23909}{2\pi \cdot 50/2} = \underline{152.2 \text{ Nm}} \qquad M_{N} = \frac{P_{N}}{\Omega_{mN}} = \frac{18500}{2\pi \cdot (1465/60)} = \underline{120.6 \text{ Nm}}$$

$$s_{N} = \frac{1500 - 1465}{1500} = 0.0233 \qquad \eta_{N} = \frac{P_{N}}{S_{N} \cos \varphi_{N}} = \frac{18.5}{23.9 \cdot 0.84} = 0.9215$$

$$\frac{M_{B}}{M_{N}} = \frac{152.2}{120.6} = 1.262 = \frac{1 - s_{N}}{\cos \varphi_{N} \cdot \eta_{N}} = \frac{1 - 0.0233}{0.84 \cdot 0.9215} \qquad \hat{\Psi}_{N} = \frac{\sqrt{2} \cdot 231}{314} = \underline{1.036 \text{ Vs}}$$

$$T_{J} = 0.054 \cdot \frac{314}{2} \cdot \frac{1}{152.23} = \underline{0.056 \text{ s}} \qquad \tau_{J} = \omega_{N}T_{J} = 314 \cdot 0.056 = \underline{17.58}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 11 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Dynamic p.u. equations

• Voltage equation per phase
a) in physical units:
b) in per unit system:

$$u(\omega_N t) = \frac{U(t)}{\sqrt{2} \cdot U_{N,ph}} = \frac{R \cdot I(t)}{\sqrt{2} \cdot U_{N,ph}} \cdot \frac{\sqrt{2} \cdot I_{N,ph}}{\sqrt{2} \cdot I_{N,ph}} + \frac{d\Psi(t)}{\frac{\sqrt{2} \cdot U_{N,ph}}{\omega_N}} \cdot d(\omega_N t) \rightarrow \underbrace{u(\tau) = r \cdot i(\tau) + \frac{d\psi(\tau)}{d\tau}}_{U(\tau) = \tau \cdot i(\tau) + \frac{d\psi(\tau)}{d\tau}}$$

• Mechanical equation

a) in physical units:
$$J \cdot \frac{d\Omega_m(t)}{dt} = M_e(t) - M_s(t)$$

b) in per unit system:

$$\omega_N \cdot J \cdot \frac{\omega_N / p}{M_B} \cdot \frac{d\Omega_m(t)}{\frac{\omega_N}{p} d(\omega_N t)} = \frac{M_e(t) - M_s(t)}{M_B} \rightarrow \underbrace{\tau_J \cdot \frac{d\omega_m(\tau)}{d\tau} = m_e(\tau) - m_s(\tau)}_{\underline{M_B}}$$

Energy Converters – CAD and System Dynamics

Summary: Per unit calculation

- Name-plate data used for per-unit calculation
- Usually phase quantities used for p.u.
- Not the rated real torque M_N , but the rated apparent torque M_B used for p.u.
- Fast estimate of percentage of loading of a device possible by p.u. values

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

7. Dynamics of induction machines
Three phase dynamic voltage equation

$$\begin{aligned}
u_{s,U}(\tau) &= r_s \cdot i_{s,U}(\tau) + \frac{d\psi_{s,U}(\tau)}{d\tau} \\
u_{s,V}(\tau) &= r_s \cdot i_{s,V}(\tau) + \frac{d\psi_{s,V}(\tau)}{d\tau} \\
u_{s,W}(\tau) &= r_s \cdot i_{s,W}(\tau) + \frac{d\psi_{s,W}(\tau)}{d\tau} \\
u_{s,W}(\tau) &= r_s \cdot i_{s,W}(\tau) + \frac{d\psi_{s,W}(\tau)}{d\tau} \\
u_{s,W}(\tau) &= r_s \cdot i_{s,W}(\tau) + \frac{d\psi_{s,W}(\tau)}{d\tau} \\
u_{s,0}(\tau) &= r_s \cdot i_{s,0}(\tau) + \frac{d\psi_{s,0}(\tau)}{d\tau} \\
voltage space vector: \\
\underbrace{u_{s,0}(\tau) &= \frac{2}{3} \cdot \left(u_{s,U}(\tau) + \underline{a} \cdot u_{s,V}(\tau) + \underline{a}^2 \cdot u_{s,W}(\tau)\right)}_{U_{s,0}(\tau) &= \frac{1}{3} \cdot \left(u_{s,U}(\tau) + u_{s,V}(\tau) + u_{s,W}(\tau)\right)}
\end{aligned}$$

7. Dynamics of induction machines Stator and rotor reference frame

 $\gamma_s(t)$: Circumference angle in stator reference frame

 $\gamma_r(t)$: Circumference angle in rotor reference frame

"elecrical degrees": $2p\tau_p = p\cdot 2\tau_p \Leftrightarrow p\cdot 2\pi$

Relationship between circumference angles in stator and rotor reference frame: ("*Galilei*-transformation"):

$$\gamma_s(t) = \gamma_r + \gamma(t) = \gamma_r + p \cdot \Omega_m \cdot t$$

 $\Omega_m = 2\pi \cdot n = \frac{v_m}{d_{si}/2} \qquad p\Omega_m = 2\pi \cdot n \cdot p$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 16 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Reference frames = Co-ordinate systems

- Stator reference frame (s): α -axis is Re_s-axis, β -axis is Im_s-axis
- Rotor reference frame (r): *d*-axis is Re_r-axis, *q*-axis is Im_r-axis
- Arbitrary reference frame (K): A-axis is Re_{K} -axis, B-axis is Im_{K} -axis

7. Dynamics of induction machines Space vector *V* in different reference frames

<u>Rotor reference frame</u> is shifted by rotation angle $\gamma(t)$, measured in "electric degrees":

$$\gamma(t) = p \cdot \int_{0}^{t} \Omega_{m}(t) \cdot dt + \gamma_{0} = \int_{0}^{t} \frac{\Omega_{m}(t)}{\omega_{N} / p} \cdot \omega_{N} \cdot dt + \gamma_{0} = \int_{0}^{\tau} \omega_{m}(\tau) \cdot d\tau + \gamma_{0} = \gamma(\tau)$$

in stator reference frame s	in rotor reference frame r	in reference frame K
$\underline{V}_{(s)} = V \cdot e^{j\alpha}$	$\underline{V}_{(r)} = V \cdot e^{j\alpha} \cdot e^{-j\gamma}$	$\underline{V}_{(K)} = V \cdot e^{j\alpha} \cdot e^{-j\delta}$
	$\underline{V}_{(r)} = \underline{V}_{(s)} \cdot e^{-j\gamma}$	$\underline{V}_{(K)} = \underline{V}_{(s)} \cdot e^{-j\delta}$

Space vector coordinate transformation:

- from stator reference frame to reference frame K: multiplication by $\cdot e^{-j\delta(\tau)}$
- from rotor reference frame to frame K : by multiplication with $\cdot e^{-j(\delta(\tau)-\gamma(\tau))}$.

$$\underline{V}_{(K)} = V \cdot e^{j\alpha} \cdot e^{-j\delta} = V \cdot e^{j\alpha} \cdot e^{-j\gamma} \cdot e^{j\gamma} \cdot e^{-j\delta} = \underline{V}_{(r)} \cdot e^{-j(\delta-\gamma)}$$

7. Dynamics of induction machines Three phase rotor dynamic voltage equation

• Space vector rotor voltage equation: in rotor reference frame

$$\underline{u'_{r}}(\tau) = r'_{r} \cdot \underline{i'_{r}}(\tau) + \frac{d\underline{\psi'_{r}}(\tau)}{d\tau} \bigg|_{(r)}$$
Subscript (r) means:
"in rotor reference frame"

$$u'_{r0}(\tau) = r'_{r} \cdot \underline{i'_{r0}}(\tau) + \frac{d\underline{\psi'_{r0}}(\tau)}{d\tau} \bigg|_{(r)}$$

Note: Cage induction machine:

*Q*_r phases: May be treated as a 3-phase machine, transformed into space vector formulation !

Transformation of voltage equation between reference frames

• Rule for differentiation of product of two functions:

$$\frac{d\left(\underline{\psi}_{s}(\tau)\cdot e^{-j\delta(\tau)}\right)}{d\tau} = e^{-j\delta(\tau)}\cdot\frac{d\underline{\psi}_{s}(\tau)}{d\tau} + \underline{\psi}_{s}(\tau)\cdot\frac{d\left(e^{-j\delta(\tau)}\right)}{d\tau} = e^{-j\delta(\tau)}\cdot\frac{d\underline{\psi}_{s}(\tau)}{d\tau} - j\cdot\underline{\psi}_{s}(\tau)\cdot e^{-j\delta(\tau)}\cdot\frac{d\left(\delta(\tau)\right)}{d\tau}$$

• Transformation of voltage equations into arbitrary co-ordinate system K:

$$\underline{u}_{s(K)} = \underline{u}_{s} \cdot e^{-j\delta} = r_{s} \cdot \underline{i}_{s} \cdot e^{-j\delta} + \frac{d\underline{\psi}_{s}}{d\tau} \cdot e^{-j\delta} = r_{s} \cdot \underline{i}_{s(K)} + \frac{d\underline{\psi}_{s(K)}}{d\tau} + j \cdot \frac{d\delta}{d\tau} \cdot \underline{\psi}_{s(K)}$$
$$\underline{u}_{r(K)}' = \underline{u}_{r}' \cdot e^{-j(\delta-\gamma)} = r_{r}' \cdot \underline{i}_{r}' \cdot e^{-j(\delta-\gamma)} + \frac{d\underline{\psi}_{r}'}{d\tau} \cdot e^{-j(\delta-\gamma)} = r_{r}' \cdot \underline{i}_{r(K)}' + \frac{d\underline{\psi}_{r(K)}'}{d\tau} + j \cdot \frac{d(\delta-\gamma)}{d\tau} \cdot \underline{\psi}_{r(K)}'$$

$$\underline{u}_{s(K)} = r_s \cdot \underline{i}_{s(K)} + \frac{d \underline{\psi}_{s(K)}}{d\tau} + j \cdot \frac{d \delta}{d\tau} \cdot \underline{\psi}_{s(K)}$$
$$\underline{u'}_{r(K)} = r'_r \cdot \underline{i'}_{r(K)} + \frac{d \underline{\psi'}_{r(K)}}{d\tau} + j \cdot \frac{d(\delta - \gamma)}{d\tau} \cdot \underline{\psi'}_{r(K)}$$

7. Dynamics of induction machines Transformer and rotary induction

7. Dynamics of induction machines Mainly used reference frames (1)

Reference frame	Angular rotation of reference frame
stator reference frame (α, β)	$\delta(\tau) = 0 : \omega_K = \frac{d\delta}{d\tau} = 0$
rotor reference frame (<i>d</i> , <i>q</i>)	$\delta = \gamma : \omega_K(\tau) = \frac{d\gamma}{d\tau} = \omega_m$
synchronous reference frame (<i>a</i> , <i>b</i>)	$\frac{d\delta(\tau)}{d\tau} = \omega_K(\tau) = \frac{\Omega_{syn}(\tau)}{\omega_N / p} = \frac{\Omega_s(\tau)}{\omega_N} = \omega_s$

Stator and rotor equation in stator reference frame (α - β -system):

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 22 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Mainly used reference frames (2)

Stator reference frame (
$$\alpha$$
, β) $\delta(\tau) = 0$: $\omega_K = \frac{d\delta}{d\tau} = 0$
 $\underline{u}_{s(s)} = r_s \cdot \underline{i}_{s(s)} + \frac{d\underline{\psi}_{s(s)}}{d\tau} \qquad 0 = r'_r \cdot \underline{i'}_{r(s)} + \frac{d\underline{\psi'}_{r(s)}}{d\tau} - \underline{j} \cdot \omega_m \cdot \underline{\psi'}_{r(s)}$

Rotor reference frame (d, q)
$$\delta = \gamma : \omega_K(\tau) = \frac{d\gamma}{d\tau} = \omega_m$$

$$\underline{u}_{s(r)} = r_s \cdot \underline{i}_{s(r)} + \frac{d\underline{\psi}_{s(r)}}{d\tau} + j \cdot \omega_m \cdot \underline{\psi}'_{s(r)} \qquad 0 = r'_r \cdot \underline{i}'_{r(r)} + \frac{d\underline{\psi}'_{r(r)}}{d\tau}$$

Synchronous reference frame (*a*, *b*)
$$\omega_K(\tau) = \frac{\Omega_{syn}(\tau)}{\omega_N / p} = \frac{\Omega_s(\tau)}{\omega_N} = \omega_s$$

$$\underline{u}_{s(syn)} = r_{s} \cdot \underline{i}_{s(syn)} + \frac{d \underline{\psi}_{s(syn)}}{d\tau} + j \cdot \omega_{s} \cdot \underline{\psi}_{s(syn)}$$
$$\underline{u'}_{r(syn)} = r_{r}' \cdot \underline{i'}_{r(syn)} + \frac{d \underline{\psi'}_{r(syn)}}{d\tau} + j \cdot (\omega_{s} - \omega_{m}) \cdot \underline{\psi'}_{r(syn)}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 23 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Example: Voltage equations in stator reference frame

• In stator reference frame: α - β -system: components:

7. Dynamics of induction machines Transformer and rotary part of induction

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 25 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Summary: Dynamic voltage equations and reference frames of induction machine

- Space vector formulation allows one voltage equation instead of three U, V, W
- One stator and one rotor voltage equation
- Different reference frames may be used: stator, rotor, arbitrary
- Voltage induction separated into "transformer" and "rotary" part

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

7. Dynamics of induction machines Main flux linkage

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 28 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Dynamic stator and rotor flux linkages

- Stator and rotor space current vector excite ALSO leakage flux linkage:

$$\underline{\psi}_{s\sigma}(\tau) = x_{s\sigma} \cdot \underline{i}_{s}(\tau) \qquad \underline{\psi}'_{r\sigma}(\tau) = x'_{r\sigma} \cdot \underline{i}'_{r}(\tau)$$
Per unit stray inductance: $x_{s\sigma} = \frac{\omega_N \cdot L_{s\sigma}}{Z_N}$, $x'_{r\sigma} = \frac{\omega_N \cdot L'_{r\sigma}}{Z_N}$

- Resulting flux linkage in stator and rotor:

$$\underline{\psi}_{s} = (x_{h} + x_{s\sigma}) \cdot \underline{i}_{s} + x_{h} \cdot \underline{i}_{r} = x_{s} \cdot \underline{i}_{s} + x_{h} \cdot \underline{i}_{r} = x_{s\sigma} \cdot \underline{i}_{s} + x_{h} \cdot \underline{i}_{m} = \underline{\psi}_{s\sigma} + \underline{\psi}_{h}$$

$$\underline{\psi}_{r}' = x_{h} \cdot \underline{i}_{s} + (x_{h} + x_{r\sigma}') \cdot \underline{i}_{r}' = x_{h} \cdot \underline{i}_{s} + x_{r}' \cdot \underline{i}_{r}' = x_{h} \cdot \underline{i}_{m} + x_{r\sigma}' \cdot \underline{i}_{r}' = \underline{\psi}_{h} + \underline{\psi}_{r\sigma}'$$

- Total leakage flux space vector is described by *Blondel's* total leakage coefficient:

$$\sigma = 1 - \frac{x_h^2}{x_s \cdot x_r'}$$

Flux linkage equations independent of reference frame

Flux linkage equation independent of reference frame!
Example: (s)
$$\rightarrow$$
 (K)
 $\underline{\psi}_{s(K)} = \underline{\psi}_{s(s)} \cdot e^{-j\delta}, \underline{i}_{s(K)} = \underline{i}_{s(s)} \cdot e^{-j\delta}, \underline{i}'_{r(K)} = \underline{i}'_{r(s)} \cdot e^{-j\delta}$
 $\underline{\psi}_{s(s)} = x_s \cdot \underline{i}_{s(s)} + x_h \cdot \underline{i}'_{r(s)}$
 $\underline{\psi}_{s(K)} = x_s \cdot \underline{i}_{s(K)} + x_h \cdot \underline{i}'_{r(K)} = x_s \cdot \underline{i}_{s(s)} \cdot e^{-j\cdot\delta} + x_h \cdot \underline{i}'_{r(s)} \cdot e^{-j\cdot\delta}$
 $\underline{\psi}_{s(K)} = (\underbrace{x_s \cdot \underline{i}_{s(s)} + x_h \cdot \underline{i}'_{r(s)}}_{\underline{\psi}_{s(s)}}) \cdot e^{-j\cdot\delta} = \underline{\psi}_{s(s)} \cdot e^{-j\cdot\delta} = \underline{\psi}_{s(K)}$

Calculation of p.u. stator and rotor flux linkages (1)

Example 1:

Induction machine operated at three-phase symmetrical sinus voltage system ($u_s = 1$) with rated frequency $\omega_s = 1$.

- Stator resistance neglected $r_s = 0$, calculation in stator reference frame:
- Inductance data: $x_h = 2.5$, $x_s = 2.6$, $x'_r = 2.58$:

No-load current \underline{i}_{s0} : $\underline{i}'_{r0} = 0$ voltage space vector: $\underline{u}_s = 1 \cdot e^{j\tau}$ flux linkage $\underline{\psi}_s = x_s \cdot \underline{i}_{s0}$ $\underline{u}_s = r_s \cdot \underline{i}_s + \frac{d\underline{\psi}_s}{d\tau} \approx \frac{d\underline{\psi}_s}{d\tau} = x_s \cdot \frac{d\underline{i}_{s0}}{d\tau} = e^{j\tau} \rightarrow$ $\rightarrow \underline{i}_{s0} = -j \cdot \frac{1}{x_s} \cdot e^{j\tau}$ $i_{s0} = \frac{1}{2.6} = \underline{0.38}$

Rotor flux linkage ψ_r at very high rotor slip is ZERO

- Induction machine: Rotor winding is short-circuited: $\underline{u'}_r(\tau) = 0 = 0 + j \cdot 0$
- At very high rotor slip the rotor flux linkage changes very fast: $r'_r \cdot \underline{i'}_r(\tau) \ll d\psi'_r(\tau)/d\tau$
- Rotor voltage equation in rotor ref. frame, very high rotor slip:

$$0 = \underline{u'}_r(\tau) = r'_r \cdot \underline{i'}_r(\tau) + d\underline{\psi'}_r(\tau) / d\tau \approx d\underline{\psi'}_r(\tau) / d\tau \qquad \Longrightarrow \underline{\psi'}_r(\tau) = \text{const.} = \mathbf{e}_r$$

Result:

- Rotor flux linkage at very high slip is **zero**! (No DC rotor flux: "const. = 0")
- Stator & rotor main flux $\underline{\psi}_h$ and rotor stray flux $\underline{\psi}_{r\sigma}$ cancel, so total rotor flux is zero!

Stator flux linkage ψ_s at high rotor slip is total leakage

<u>Very big</u> slip |Slip| >> 1: $\Psi_s = x_s \cdot \underline{i}_s + x_h \cdot \underline{i}'_r$ $\underline{\psi'}_r = 0 = x_h \cdot \underline{i}_s + x'_r \cdot \underline{i'}_r \qquad \Big\} \quad \underline{i'}_r = -(x_h / x'_r) \cdot \underline{i}_s$ Stator flux linkage: $\underline{\Psi}_{s} = x_{s} \cdot \underline{i}_{s} - (x_{h}^{2} / x_{r}') \cdot \underline{i}_{s} = x_{s} \underline{i}_{s} \cdot (1 - (x_{h}^{2} / (x_{r}' x_{s}))) = \sigma \cdot x_{s} \cdot \underline{i}_{s}$ or: $\underline{\psi}_s = x_{s\sigma} \cdot \underline{i}_s + x_h \cdot \underline{i}_s + x_h \cdot \underline{i}_r = x_{s\sigma} \cdot \underline{i}_s - x_h \cdot (x_r' / x_h) \cdot \underline{i}_r' + x_h \cdot \underline{i}_r' =$ $= x_{s\sigma} \cdot \underline{i}_{s} - x'_{r\sigma} \cdot \underline{i'}_{r} \qquad \qquad \underline{\psi}_{s} = \sigma \cdot x_{s} \cdot \underline{i}_{s} = x_{s\sigma} \cdot \underline{i}_{s} - x'_{r\sigma} \cdot \underline{i'}_{r}$ With $\underline{i'_r} = -(x_h / x'_r) \cdot \underline{i_s} \approx -\underline{i_s} : \psi_s = \sigma \cdot x_s \cdot \underline{i_s} = x_{s\sigma} \cdot \underline{i_s} - x'_{r\sigma} \cdot \underline{i'_r} \approx (x_{s\sigma} + x'_{r\sigma}) \cdot \underline{i_s}$ $\sigma \cdot x_{s} \approx x_{s\sigma} + x_{r\sigma}'$ Stator flux linkage is at high slip nearly Rotor flux linkage is equal to the total zero! leakage flux! <u>Example:</u> Slip = 1

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 33 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

2. Design of Induction Machines Rotor shielding effect at big slip

At big slip (already Slip = 1!) the rotor inner part is nearly free of flux ("rotor shielding effect")

At no-load (*Slip* = 0, rotor current zero)

Numerically calculated two-dimensional magnetic flux density *B* of a three-phase, 4-pole high voltage cage induction machine with wedge rotor slots (Q_s / Q_r = 60/44) at rated voltage

Calculation of per unit stator and rotor flux linkages (2)

Example 2:

Induction machine operated at three-phase symmetrical sinus voltage system $(u_s = 1)$ with rated frequency $\omega_s = 1$ at high slip (e.g.: *Slip* \ge 1):

- Calculation in stator reference frame:
- Inductance data: $x_h = 2.5$, $x_s = 2.6$, $x'_r = 2.58$:
- Current data at big slip:

 $|s| >> 1: |i'_r| = |-(x_h / x'_r) \cdot i_s| = (x_h / x'_r) \cdot |i_s| = (2.5 / 2.58) \cdot |i_s| = 0.97 \cdot |i_s| \implies \underline{i}_s \approx -\underline{i'}_r.$

Leakage inductances:

$$x_{s\sigma} = x_s - x_h = 2.6 - 2.5 = \underline{0.1}, \quad x'_{r\sigma} = x'_r - x_h = 2.58 - 2.5 = \underline{0.08}$$

- Total leakage coefficient: $\sigma = 1 \frac{x_h^2}{x_s \cdot x_r'} = 1 \frac{2.5^2}{2.6 \cdot 2.58} = \underline{0.068}$
- Stator flux linkage at $s \ge 1$: $|\underline{\psi}_s| = \sigma \cdot x_s \cdot |\underline{i}_s| = 0.068 \cdot 2.6 \cdot |\underline{i}_s| = 0.177 \cdot |\underline{i}_s|$ with total

leakage flux linkage $\left|\underline{\psi}_{s}\right| = \left|\underline{\psi}_{\sigma}\right| = \left|x_{s\sigma} \cdot \underline{i}_{s} - x'_{r\sigma} \cdot \underline{i'}_{r}\right| = \left|0.1 - 0.08 \cdot (-0.97)\right| \cdot \left|\underline{i}_{s}\right| = \underbrace{0.177 \cdot \left|\underline{i}_{s}\right|}_{\underline{}}$

TECHNISCHE UNIVERSITÄT

DARMSTADT

7. Dynamics of induction machines *Example:* Rotor flux linkage is ZERO at very big rotor slip

Summary: Dynamic flux linkage equations

- Stator and rotor current space vectors \underline{i}_s , $\underline{i'}_r$ excite resulting air gap flux linkage vector $\underline{\psi}_h$
- Flux linkage equations independent of reference frame
- Separation of main and stray flux $\underline{\psi}_{h}$, $\underline{\psi}_{\sigma}$ possible
- Physical separation of stator and rotor stray flux linkage $\underline{\psi}_{s\sigma}$, $\underline{\psi}_{r\sigma}'$ by measurement <u>not</u> possible
- Rotor total flux linkage $\underline{\psi'}_{r\sigma}$ decreases with increasing slip due to rotor short-circuit
- Saturation may be introduced by current-depending inductances $x_{\rm h}(i_{\rm m})$

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations

7.4 Torque equation

- 7.5 Dynamic equations of induction machines in stator reference frame
- 7.6 Solutions of dynamic equations for constant speed
- 7.7 Solutions of dynamic equations for induction machines with varying speed
- 7.8 Linearized transfer function of induction machines in synchronous reference frame
- 7.9 Inverter-fed induction machines with field-oriented control

7. Dynamics of induction machines Torque equation

- Introduction of flux linkage and current:

Amplitude of flux linkageAmplitude of current loading: $\hat{\Psi}_h = N_s \cdot k_{w1} \cdot \frac{2}{\pi} \tau_p l \cdot B_{\delta}$ $\hat{A}_s = \sqrt{2} \cdot k_{w1} \cdot A_s$ $\begin{pmatrix} A_s = \frac{2 \cdot m_s \cdot N_s \cdot I_s}{2p \cdot \tau_p} \end{pmatrix}$ $M_e = \frac{(p\tau_p)^2}{\pi} \cdot l \cdot \hat{A}_s \cdot B_{\delta} \cdot \cos \varphi_{\delta}$ $\stackrel{m_s = 3}{\Rightarrow} \Rightarrow$ $M_e = \frac{3}{2} \cdot p \cdot \hat{I}_s \cdot \hat{\Psi}_h \cdot \cos \varphi_{\delta}$

- Per unit torque equation:

$$m_e(\tau) = \frac{M_e(t)}{M_B} = \frac{\omega_N / p}{3 \cdot U_{N,ph} \cdot I_{N,ph}} \cdot \frac{3}{\sqrt{2} \cdot \sqrt{2}} \cdot p \cdot \hat{I}_s(t) \cdot \hat{\Psi}_h(t) \cdot \cos\varphi_\delta(t) = i_s(\tau) \cdot \psi_h(\tau) \cdot \cos\varphi_\delta(\tau)$$

$$m_e(\tau) = \frac{M_e(t)}{M_B} = i_s \cdot \psi_h \cdot \cos \varphi_\delta = i_{s\perp}(\tau) \cdot \psi_h(\tau)$$

Torque is product of main flux linkage vector and *orthogonal* component of current space vector !

7. Dynamics of induction machines Per unit torque equation

7. Dynamics of induction machines Per Rotor torque direction with stator current

- Positive counting of rotor torque in counter-clockwise sense!

(Mathematical positive counting sense!)

- Flux (linkage) space vector turns into direction of current space vector

7. Dynamics of induction machines Orthogonal vector components define torque

- Introduction of vector product: $m_e = i_{s\perp} \cdot \psi_h = i_{s\beta} \cdot \psi_{h\alpha} i_{s\alpha} \cdot \psi_{h\beta} = \operatorname{Im}\left\{\underline{i}_s \cdot \underline{\psi}_h^*\right\}$
- If stator current space vector component is 90° leading to flux linkage space vector \Rightarrow torque on rotor is positive.

7. Dynamics of induction machines Different formulations for the torque (1)

$$m_e = i_{s\perp} \cdot \psi_h = i_{s\beta} \cdot \psi_{h\alpha} - i_{s\alpha} \cdot \psi_{h\beta} = \operatorname{Im}\left\{\underline{i}_s \cdot \underline{\psi}_h^*\right\}$$

- Stator stray flux does not generate torque !

$$m_{e} = \operatorname{Im}\left\{ \dot{i}_{s} \cdot \underline{\psi}_{h}^{*} \right\} = \operatorname{Im}\left\{ \dot{i}_{s} \cdot \underline{\psi}_{s}^{*} \right\}$$
Proof:
$$m_{e} = \operatorname{Im}\left\{ \dot{i}_{s} \cdot \underline{\psi}_{h}^{*} \right\} = \operatorname{Im}\left\{ \dot{i}_{s} \cdot \left(x_{h} \underline{i}_{s}^{*} + x_{h} \underline{i}_{r}^{'*} \right) \right\} = \operatorname{Im}\left\{ \dot{i}_{s} \cdot \left(x_{s\sigma} \underline{i}_{s}^{*} + x_{h} \underline{i}_{s}^{*} + x_{h} \underline{i}_{r}^{'*} \right) \right\} =$$

$$= \operatorname{Im}\left\{ \dot{i}_{s} \cdot \left(\underline{\psi}_{s\sigma} + \underline{\psi}_{h} \right)^{*} \right\} = \operatorname{Im}\left\{ \dot{i}_{s} \cdot \underline{\psi}_{s}^{*} \right\}$$

- Stator flux does not generate torque with stator current !

$$m_{e} = \operatorname{Im}\left\{\!\!\!\!\begin{array}{l} \dot{i}_{s} \cdot \underline{\psi}_{h}^{*} \right\}\!\!\!= \operatorname{Im}\left\{\!\!\!\!\begin{array}{l} \dot{i}_{s} \cdot \left(\!x_{h} \underline{i}_{s}^{*} + x_{h} \underline{i}_{r}^{'*}\right)\!\!\!\right\}\!\!\!= \operatorname{Im}\left\{\!\!\!\begin{array}{l} \dot{i}_{s} \cdot x_{h} \underline{i}_{r}^{'*} \right\}\!\!\!\\ \text{-Note:} \quad \underline{z} = a + j \cdot b \Longrightarrow \underline{z}^{*} = a - j \cdot b \Longrightarrow \operatorname{Im}\left\{\!\!\!\begin{array}{l} \underline{z} \!\!\!\right\}\!\!= b = -\operatorname{Im}\left\{\!\!\!\begin{array}{l} \underline{z} \!\!\!& \ast \!\!\!\right\}\!\!\\ m_{e} = \operatorname{Im}\left\{\!\!\!\!x_{h} \cdot \underline{i}_{s} \cdot \underline{i}_{r}^{'*} \right\}\!\!= -\operatorname{Im}\left\{\!\!\!x_{h} \cdot \underline{i}_{s}^{*} \cdot \underline{i}_{r}^{'} \right\}\!\!$$

7. Dynamics of induction machines Different formulations for the torque (2)

$$m_{e} = i_{s\perp} \cdot \psi_{h} = i_{s\beta} \cdot \psi_{h\alpha} - i_{s\alpha} \cdot \psi_{h\beta} = \operatorname{Im} \left\{ \underline{i}_{s} \cdot \underline{\psi}_{h}^{*} \right\}$$
$$m_{e} = i_{s\beta} \cdot \psi_{s\alpha} - i_{s\alpha} \cdot \psi_{s\beta} = \operatorname{Im} \left\{ \underline{i}_{s} \cdot \underline{\psi}_{s}^{*} \right\}$$

- Other formulation for torque with rotor flux linkage !

$$m_{e} = -\operatorname{Im}\left\{x_{h} \cdot \underline{i}_{s}^{*} \cdot \underline{i}_{r}^{'}\right\} = -\operatorname{Im}\left\{x_{h} \cdot (\underline{i}_{s}^{*} + \underline{i}_{r}^{'*}) \cdot \underline{i}_{r}^{'}\right\} = -\operatorname{Im}\left\{x_{h} \cdot (\underline{i}_{s}^{*} + \underline{i}_{r}^{'*}) + x_{r\sigma}^{'} \cdot \underline{i}_{r}^{'*}\right\}$$
$$m_{e} = -\operatorname{Im}\left\{\underline{i}_{r}^{'} \cdot \underline{\psi}_{h}^{*}\right\} = -\operatorname{Im}\left\{\underline{i}_{r}^{'} \cdot \underline{\psi}_{r}^{'*}\right\} \Longrightarrow \qquad m_{e} = \psi_{r\beta}^{'} \cdot \underline{i}_{r\alpha}^{'} - \psi_{r\alpha}^{'} \cdot \underline{i}_{r\beta}^{'}$$

 $m_{\rm e}$ > 0 on rotor - If rotor current space vector component is 90° lagging to flux linkage space vector \Rightarrow torque on rotor is positive.

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 44 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

 $l_{r\alpha}$

 $\psi_{\rm h\beta}, \psi_{\rm r\beta}$

7. Dynamics of induction machines Different formulations for the torque (3)

- Torque formulation with rotor flux linkage and stator current (& vice versa)!

$$m_{e} = \operatorname{Im}\left\{ \underbrace{\dot{u}_{s} \cdot x_{h} \underline{i}_{r}^{\prime *}}_{s} \right\} = \operatorname{Im}\left\{ \frac{\underbrace{\psi_{s} - x_{h} \underline{i}_{-r}^{\prime }}_{x_{s}} \cdot x_{h} \underline{i}_{-r}^{\prime *}}_{x_{s}} \right\} = \operatorname{Im}\left\{ \underbrace{\frac{x_{h}}{x_{s}} \cdot \underline{\psi}_{-s} \cdot \underline{i}_{-r}^{\prime *}}_{s}}_{m_{e}} = \operatorname{Im}\left\{ \underbrace{x_{h} \underline{i}_{s} \cdot \underline{i}_{-r}^{\prime *}}_{s} \right\} = \operatorname{Im}\left\{ \underbrace{x_{h} \underline{i}_{s} \cdot \underline{i}_{-r}^{\prime *}}_{x_{r}^{\prime }}}_{s} \cdot \left(\underbrace{\frac{\underline{\psi}_{-r}^{\prime} - x_{h} \underline{i}_{s}}}{x_{r}^{\prime }} \right)^{*} \right\} = \operatorname{Im}\left\{ \underbrace{x_{h} \underline{i}_{s} \cdot \underline{i}_{-r}^{\prime *} \cdot \underline{i}_{-r}}_{s}}_{s} \right\} = \operatorname{Im}\left\{ \underbrace{x_{h} \underline{i}_{s} \cdot \underline{i}_{-r}^{\prime *} \cdot \underline{i}_{-r}}_{s}}_{s} \right\}$$

- Torque equation <u>independent</u> of reference frame! <u>Example:</u> (s) \rightarrow (K)

$$\underline{\psi}_{s(K)} = \underline{\psi}_{s(s)} \cdot e^{-j\delta}, \underline{i'}_{r(K)} = \underline{i'}_{r(s)} \cdot e^{-j\delta}, \underline{i'}_{r(K)}^* = \underline{i'}_{r(s)}^* \cdot e^{j\delta}$$
$$m_e = \operatorname{Im}\left\{\frac{x_h}{x_s} \cdot \underline{\psi}_{s(s)} \cdot \underline{i'}_{r(s)}^*\right\} = \operatorname{Im}\left\{\frac{x_h}{x_s} \cdot \underline{\psi}_{s(K)} \cdot e^{j\cdot\delta} \cdot \underline{i'}_{r(K)}^* \cdot e^{-j\cdot\delta}\right\} = \operatorname{Im}\left\{\frac{x_h}{x_s} \cdot \underline{\psi}_{s(K)} \cdot \underline{i'}_{r(K)}^*\right\}$$

Summary: Torque equation

- Orthogonal components of flux and current space vector yield torque
- Different formulations of torque with stator or rotor quantities
- Torque equation independent of reference frame
- Stray flux does not generate torque

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 48 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Dynamic equations in stator reference frame

- Set of dynamic equations
- Components
- In stator reference frame
- α β -system

VOLTAGE: 4 equations FLUX LINKAGE: 4 equations TORQUE: 1 equation 9 equations In TOTAL !

 $u_{s\alpha} = r_s \cdot i_{s\alpha} + d\psi_{s\alpha} / d\tau$ $u_{s\beta} = r_s \cdot i_{s\beta} + d\psi_{s\beta} / d\tau$ $0 = r'_r \cdot i'_{r\alpha} + d\psi'_{r\alpha} / d\tau + \omega_m \cdot \psi'_{r\beta}$ $0 = r'_r \cdot i'_{r\beta} + d\psi'_{r\beta} / d\tau - \omega_m \cdot \psi'_{r\alpha}$ $\psi_{s\alpha} = x_s \cdot i_{s\alpha} + x_h \cdot i_{r\alpha}'$ $\psi_{s\beta} = x_s \cdot i_{s\beta} + x_h \cdot i_{r\beta}'$ $\psi'_{r\alpha} = x_h \cdot i_{s\alpha} + x'_r \cdot i'_{r\alpha}$ $\psi'_{r\beta} = x_h \cdot i_{s\beta} + x'_r \cdot i'_{r\beta}$ $\tau_J \cdot \frac{d\omega_m}{d\tau} = (\psi'_{r\beta} \cdot i'_{r\alpha} - \psi'_{r\alpha} \cdot i'_{r\beta}) - m_s$

7. Dynamics of induction machines A different flux linkage formulation

$$\underline{\psi}_{s} = x_{s} \cdot \underline{i}_{s} + x_{h} \cdot \underline{i}_{r}' = x_{s} \cdot \underline{i}_{s} + x_{h} \cdot \frac{\underline{\psi}_{r}' - x_{h} \cdot \underline{i}_{s}}{x_{r}'} \qquad \underline{\psi}_{r}' = x_{h} \cdot \underline{i}_{s} + x_{r}' \cdot \underline{i}_{r}'$$

$$\underline{\psi}_{s} = x_{s} \cdot \underline{i}_{s} \cdot \left(1 - \frac{x_{h}^{2}}{x_{s}x_{r}'}\right) + \frac{x_{h}}{x_{r}'} \cdot \underline{\psi}_{r}' = \sigma \cdot x_{s} \cdot \underline{i}_{s} + \frac{x_{h}}{x_{r}'} \cdot \underline{\psi}_{r}'$$

$$\underline{\psi}_{s} = \sigma \cdot x_{s} \cdot \underline{i}_{s} + \frac{x_{h}}{x_{r}'} \cdot \underline{\psi}_{r}'$$

In the same way:

$$\underline{\psi'}_r = \sigma \cdot x'_r \cdot \underline{i'}_r + \frac{x_h}{x_s} \cdot \underline{\psi}_s$$

Previous different formulation for flux linkage, useful for MATLAB/Simulink model, in components in the stator reference frame:

$$\begin{split} \psi_{s\alpha} &= x_s \cdot i_{s\alpha} + x_h \cdot i'_{r\alpha} = \sigma \cdot x_s \cdot i_{s\alpha} + \frac{x_h}{x'_r} \cdot \psi'_{r\alpha} \\ \psi_{s\beta} &= x_s \cdot i_{s\beta} + x_h \cdot i'_{r\beta} = \sigma \cdot x_s \cdot i_{s\beta} + \frac{x_h}{x'_r} \cdot \psi'_{r\beta} \\ \psi'_{r\alpha} &= x_h \cdot i_{s\alpha} + x'_r \cdot i'_{r\alpha} = \sigma \cdot x'_r \cdot i'_{r\alpha} + \frac{x_h}{x_s} \cdot \psi_{s\alpha} \\ \psi'_{r\beta} &= x_h \cdot i_{s\beta} + x'_r \cdot i'_{r\beta} = \sigma \cdot x'_r \cdot i'_{r\beta} + \frac{x_h}{x_s} \cdot \psi_{s\beta} \end{split}$$

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Dynamic equations in stator reference frame for MATLAB/Simulink model WITHOUT mechanical equation

 $0 = r'_r \cdot i'_{r\alpha} + d\psi'_{r\alpha} / d\tau + \omega_m \cdot \psi'_{r\beta}$ $0 = r'_r \cdot i'_{r\beta} + d\psi'_{r\beta} / d\tau - \omega_m \cdot \psi'_{r\alpha}$

$$\psi_{s\alpha} = \sigma \cdot x_s \cdot i_{s\alpha} + \frac{x_h}{x'_r} \cdot \psi'_{r\alpha}$$

$$\psi_{s\beta} = \sigma \cdot x_s \cdot i_{s\beta} + \frac{x_h}{x'_r} \cdot \psi'_{r\beta}$$

$$\psi'_{r\alpha} = \sigma \cdot x'_r \cdot i'_{r\alpha} + \frac{x_h}{x_s} \cdot \psi_{s\alpha}$$

$$\psi'_{r\beta} = \sigma \cdot x'_r \cdot i'_{r\beta} + \frac{x_h}{x_s} \cdot \psi_{s\beta}$$

 $m_e = \psi'_{r\beta} \cdot i'_{r\alpha} - \psi'_{r\alpha} \cdot i'_{r\beta}$

Per unit formulation of equations in stator reference frame

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 52 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Formulation of equations in physical units

TECHNISCHE UNIVERSITÄT DARMSTADT

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 53 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Summary:

Dynamic equations of induction machines in stator reference frame

- In the α - β -frame:
 - 4 voltage equations, four flux linkage equations, one mechanical equation
- Mechanical equation may be replaced by more detailed description:
 - e.g. torsion oscillations (resonance frequencies)
- Time-step solution via RUNGE-KUTTA

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

Operation of induction machine <u>at constant speed</u>

- At constant speed **ONLY** voltage and flux linkage equations remain to be solved, **NO** torque equation !

- Equations are linear, so *Laplace* transformation is used to get transfer function "current from voltage".

Example:

Switching voltage to an already running motor:

e.g. **Y-D-start-up:** Motor is running after Y-start up with no-load speed ω_{m0} = const.: then stator winding is switched in D to three-phase grid voltage system.

Grid voltage: $u_U(\tau) = u \cdot \cos(\tau), u_V(\tau) = u \cdot \cos(\tau - 2\pi/3), u_W(\tau) = u \cdot \cos(\tau - 4\pi/3)$ Space vector: $\underline{u}_s(\tau) = \frac{2}{3} \cdot \left(u_U(\tau) + \underline{a} \cdot u_V(\tau) + \underline{a}^2 \cdot u_W(\tau) \right) = u \cdot e^{j\tau}$ Laplace transform: $\underline{u}_s = \frac{u}{s-j}$

Laplace-transform of voltage & flux linkage equations (in stator reference frame)

Initial conditions: <u>Example</u>: Flux, current, voltage is zero ! $\underline{\psi}_{s0} = 0, \underline{\psi}'_{r0} = 0$

$$(r_s + s \cdot x_s) \cdot \underline{\check{i}}_s + s \cdot x_h \cdot \underline{\check{i}}_r = \underline{\check{u}}_s (+\underline{\psi}_{s0}) (s - j \cdot \omega_m) \cdot x_h \cdot \underline{\check{i}}_s + (r'_r + (s - j \cdot \omega_m) \cdot x'_r) \cdot \underline{\check{i}}_r = 0(+\underline{\psi}'_{r0})$$

Unknowns: Stator and rotor current space vectors $\underline{i}_s(s), \underline{i}_r(s)$

TECHNISCHE UNIVERSITÄT

Solution of 2nd order linear algebraic equation system

$$\begin{split} \vec{r}_{s} + s \cdot x_{s} \cdot \underbrace{\vec{i}_{s}}_{s} + s \cdot x_{h} \cdot \underbrace{\vec{i}_{r}}_{s} = \underbrace{\vec{u}_{s}}_{s} \\ \vec{s} - j \cdot \omega_{m} \cdot x_{h} \cdot \underbrace{\vec{i}_{s}}_{s} + (r'_{r} + (s - j \cdot \omega_{m}) \cdot x'_{r}) \cdot \underbrace{\vec{i}_{r}}_{r} = 0 \\ \\ \underbrace{\vec{i}_{s}}_{s} = \frac{u}{s - j} \cdot \frac{r'_{r} + (s - j \omega_{m}) \cdot x'_{r}}{(r_{s} + s \cdot x_{s}) \cdot (r'_{r} + (s - j \omega_{m}) \cdot x'_{r}) - s \cdot x_{h}^{2} \cdot (s - j \omega_{m})} = \\ = \frac{u}{s - j} \cdot \frac{r'_{r} + (s - j \omega_{m}) \cdot x'_{r}}{\sigma \cdot x_{s} \cdot x'_{r} \cdot \left(s^{2} + s \cdot \left(\frac{r_{s} x'_{r} + x_{s} r'_{r}}{\sigma \cdot x_{s} \cdot x'_{r}} - j \omega_{m}\right) + \frac{r_{s} \cdot (r'_{r} - j \omega_{m} \cdot x'_{r})}{\sigma \cdot x_{s} \cdot x'_{r}}\right)} = \\ = \frac{u}{s - j} \cdot \frac{r'_{r} + (s - j \omega_{m}) \cdot x'_{r}}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s - \underline{s}_{a}) \cdot (s - \underline{s}_{b})} \qquad \qquad \underbrace{\vec{i}_{s}}_{s} = \frac{u}{s - j} \cdot \frac{r'_{r} + (s - j \omega_{m}) \cdot x'_{r}}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s - \underline{s}_{a}) \cdot (s - \underline{s}_{b})} \\ \\ \underbrace{\text{Solutions for stator } \&}_{rotor current vectors:} \qquad \underbrace{\vec{i}_{r}}_{r} = -\frac{u}{s - j} \cdot \frac{x_{h} \cdot (s - j \omega_{m})}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s - \underline{s}_{a}) \cdot (s - \underline{s}_{b})} \end{aligned}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 58 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Second order characteristic polynomial

$$P_{2}(s) = s^{2} + s \cdot \left(\frac{r_{s} \cdot x_{r}' + x_{s} \cdot r_{r}'}{\sigma \cdot x_{s} \cdot x_{r}'} - j\omega_{m}\right) + \frac{r_{s} \cdot (r_{r}' - j\omega_{m}x_{r}')}{\sigma x_{s}x_{r}'}$$
$$P_{2}(s) = s^{2} + s \cdot (\alpha_{s} + \alpha_{r} - j\omega_{m}) + \alpha_{s} \cdot (\sigma \cdot \alpha_{r} - j\omega_{m})$$

The polynomial describes the transient electrical behaviour of the induction machine ! $P_2(s) = (s - s_{\alpha}) \cdot (s - s_{b})$

We define:

- Stator and rotor <u>short-circuit time</u> constant: $\tau_{s\sigma} = \frac{1}{\alpha_s} = \frac{\sigma \cdot x_s}{r_s}$, $\tau_{r\sigma} = \frac{1}{\alpha_r} = \frac{\sigma \cdot x_r'}{r_r'}$

rs

- Stator and rotor <u>open-circuit time</u> constant: $\tau_s = \frac{x_s}{r_s}$, $\tau_r = \frac{x_r'}{r_r'}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 59 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Stator open-circuit & short-circuit time constant

- Stator open-circuit time constant
- Rotor circuit interrupted

 $\omega_{\rm m}$ = 1 (Slip: zero)

No rotor current = OPEN circuit

Change of total flux, including main flux

- Stator <u>short-circuit time</u> constant
- Rotor circuit has no resistance

- $\omega_{\rm m}$ = ±∞ (Slip: infinite)
- $\omega_{\rm m}$ = ±∞, current similar to: $\omega_{\rm m}$ = 0 (Slip: Unity)

$$r'_r / Slip = 0 \approx r'_r / 1 = r'_r = 0.01...0.05$$

"SHORT circuit" = STAND STILL

Change of stray flux

Typical values for open-circuit & short-circuit time constant

- $\sigma \approx 0.1$, $x_s \approx x'_r \approx 3$, $r_s \approx r'_r \approx 0.06$
- Stator and rotor short-circuit time constant = SHORT time constant

$$\tau_{s\sigma} = \frac{1}{\alpha_s} = \frac{\sigma \cdot x_s}{r_s} \approx \frac{0.1 \cdot 3}{0.06} = 5, \quad \tau_{r\sigma} = \frac{1}{\alpha_r} = \frac{\sigma \cdot x_r'}{r_r'} \approx \frac{0.1 \cdot 3}{0.06} = 5$$

$$\alpha_s \approx \frac{1}{5} = 0.2, \quad \alpha_r \approx \frac{1}{5} = 0.2 \qquad \Rightarrow \quad \alpha_s \approx \alpha_r = 0.2$$

- Stator and rotor <u>open-circuit time</u> constant = LONG time constant

$$\tau_{s} = \frac{1}{\sigma \cdot \alpha_{s}} = \frac{x_{s}}{r_{s}} \approx \frac{3}{0.06} = 50, \quad \tau_{r} = \frac{1}{\sigma \cdot \alpha_{r}} = \frac{x_{r}'}{r_{r}'} \approx \frac{3}{0.06} = 50$$

(Note: τ = 50 means 50/(2 π) \approx 8 periods at rated frequency!)

7. Dynamics of induction machines **Complex linear transfer function of electrical performance**

technische UNIVERSITÄT DARMSTADT

- Two poles (roots) <u>s_a</u>, <u>s_b</u> in Laplace <u>s</u>-plane, <u>depending on SPEED !</u>

 $s^{2} + s \cdot \left(\frac{r_{s}x_{r}' + x_{s}r_{r}'}{\sigma x_{s}x_{w}'} - j\omega_{m}\right) + \frac{r_{s}(r_{r}' - j\omega_{m}x_{r}')}{\sigma x_{s}x_{r}'} = s^{2} + s \cdot (\alpha_{s} + \alpha_{r} - j\omega_{m}) + \alpha_{s} \cdot (\sigma \cdot \alpha_{r} - j\omega_{m}) = 0$ $s^{2} + s \cdot \underline{p} + \underline{q} = 0 \quad \Rightarrow \quad \underline{s}_{a} = -\frac{\underline{p}}{2} - \sqrt{\left(-\frac{\underline{p}}{2}\right)^{2}} - \underline{q} , \quad \underline{s}_{b} = -\frac{\underline{p}}{2} + \sqrt{\left(-\frac{\underline{p}}{2}\right)^{2}} - \underline{q}$ $\underline{s}_{a,b} = \left(-\frac{p}{2}\right) \cdot \left(1 \pm \sqrt{1 - \frac{4q}{p^2}}\right)$

We discuss two special cases:

A) SPEED ZERO = SLIP 1: ω_m = 0:

No natural oscillation frequency (\underline{s}_{a} , \underline{s}_{b} = real numbers !)

B) SUFFICIENT HIGH SPEED: $\omega_m \neq 0$ (e.g.: synchronous rated speed: Slip = 0, $\omega_m = 1$)

Two short time constants and two natural oscillation frequencies ! <u>s_a</u>, <u>s_b</u>: complex numbers \rightarrow simplified: Only <u>s_a</u> complex number!

 $Slip = 1 - \omega_m$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 63 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

 $0 < \sigma < 1: > 0$

7. Dynamics of induction machines

Two <u>real</u> roots s_a , s_b of the characteristic polynomial at $\omega_m = 0$

Example:

Starting the induction ocked rotor (= switching three-phase grid voltage system to stator winding at $\omega_{\rm m} = 0$)

Zero speed operation (stand still):

$$s^{2} + s \cdot (\alpha_{s} + \alpha_{r} - j\omega_{m}) + \alpha_{s} \cdot (\sigma \cdot \alpha_{r} - j\omega_{m}) = s^{2} + s \cdot (\alpha_{s} + \alpha_{r}) + \sigma \cdot \alpha_{s} \alpha_{r} = 0$$

$$s_{a,b} = -\frac{\alpha_{s} + \alpha_{r}}{2} \mp \sqrt{\left(-\frac{\alpha_{s} + \alpha_{r}}{2}\right)^{2} - \sigma \alpha_{s} \alpha_{r}}$$
Worst case: No main flux linkage $\sigma = 1$

$$\sigma = 1: \left(\frac{\alpha_{s} + \alpha_{r}}{2}\right)^{2} - \alpha_{s} \alpha_{r} = \left(\frac{\alpha_{s} - \alpha_{r}}{2}\right)^{2} > 0$$

The two roots s_a , s_b are in any case at $\omega_m = 0$ real numbers!

 $\omega_m = 0$

Two <u>real</u> roots s_a , s_b of the characteristic polynomial at $\omega_m = 0$

$$s^{2} + s \cdot (\alpha_{s} + \alpha_{r}) + \sigma \cdot \alpha_{s} \alpha_{r} = 0 \qquad \left(\frac{4 \cdot \sigma \cdot \alpha_{s} \cdot \alpha_{r}}{(\alpha_{s} + \alpha_{r})^{2}} \approx \frac{4 \cdot \sigma \cdot \alpha^{2}}{4 \cdot \alpha^{2}} = \sigma \approx 0.1 << 1\right)$$

$$s_{a,b} = -\frac{\alpha_{s} + \alpha_{r}}{2} \cdot \left(1 \pm \sqrt{1 - \frac{4 \cdot \sigma \cdot \alpha_{s} \cdot \alpha_{r}}{(\alpha_{s} + \alpha_{r})^{2}}}\right) \approx -\frac{\alpha_{s} + \alpha_{r}}{2} \cdot \left(1 \pm \left(1 - \frac{2 \cdot \sigma \cdot \alpha_{s} \cdot \alpha_{r}}{(\alpha_{s} + \alpha_{r})^{2}}\right)\right)\right)$$
As $\sigma \approx 0.1$ is small: $\sqrt{1 - x} \approx 1 - x/2, x << 1$

$$s_{a} = -(\alpha_{s} + \alpha_{r}) + \frac{\sigma \cdot \alpha_{s} \cdot \alpha_{r}}{\alpha_{s} + \alpha_{r}} \approx -(\alpha_{s} + \alpha_{r})$$

$$s_{b} \approx -\frac{\sigma \cdot \alpha_{s} \cdot \alpha_{r}}{\alpha_{s} + \alpha_{r}} = -\frac{1}{\frac{1}{\sigma \cdot \alpha_{r}} + \frac{1}{\sigma \cdot \alpha_{s}}}$$

$$\tau_{1} = -\frac{1}{s_{a}} \approx \frac{1}{1/\tau_{s\sigma} + 1/\tau_{r\sigma}} = \frac{1}{\frac{r_{s}}{\sigma \cdot x_{s}} + \frac{r_{r}'}{\sigma \cdot x_{r}'}}$$

$$short time constant (change of stray flux)$$

TECHNISCHE UNIVERSITÄT

Two <u>complex</u> roots s_a , s_b of the characteristic polynomial at $\omega_m \neq 0$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 65 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

TECHNISCHE UNIVERSITÄT

Simplified electric time constants for $r_s = r'_r = r$, $x_s = x'_r = x$

A) At zero speed and low speed: No natural oscillation frequency (= "real numbers" !)

TECHNISCHE UNIVERSITÄT

Two IM electric time constants τ_1 , τ_2 depend on speed ω_m

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 67 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Imaginary parts ω_{d1} , ω_{d2} of roots of electric transfer function

TECHNISCHE UNIVERSITÄT DARMSTADT

Dynamic performance of induction machine at constant speed ω_m = const.

- **Induction machines** react with current to sudden change in voltage with TWO time constants τ_1, τ_2 , because we have TWO coupled electric circuits (stator and rotor circuit).
- The time constants τ_1, τ_2 depend on speed $\omega_m!$
- The phase windings U, V, W are coupled via the main flux and act as ONE winding system = ONE time constant per winding system!
- <u>At not too low speed</u> τ_1, τ_2 are nearly equal, being the <u>short</u> stator and rotor short-circuit time constants $\tau_{s\sigma}, \tau_{r\sigma}$
- \Rightarrow During rotation the induction machine's main flux $\Phi_{\rm h}$ remains also at sudden changes nearly constant; only the stray flux $\Phi_{\rm g}$ changes.
- <u>At low speed & stand still</u> τ_1 is short and τ_2 is <u>long</u> as the sum of **stator and rotor open-circuit time constant** $\tau_2 = \tau_s + \tau_r$

Compare: <u>DC machines:</u>

- Only <u>one</u> short electric time constant due to <u>one</u> armature circuit: $T_a = L_a / R_a$
- Time constant T_a independent of speed *n*!

7. Dynamics of induction machines Dynamic Time-constants for change of main and stray flux

- Long stator and rotor open-circuit time constant: Change of main flux

- <u>Short</u> stator and rotor short-circuit time constant:

Change of stator and rotor stray flux

TECHNISCHE UNIVERSITÄT DARMSTADT

<u>Example</u>: Switching stator winding to grid at ω_m = const.

Grid voltage:
$$u_U(\tau) = u \cdot \cos(\tau), u_V(\tau) = u \cdot \cos(\tau - 2\pi/3), u_W(\tau) = u \cdot \cos(\tau - 4\pi/3)$$

Space vector: $\underline{u}_s(\tau) = \frac{2}{3} \cdot \left(u_U(\tau) + \underline{a} \cdot u_V(\tau) + \underline{a}^2 \cdot u_W(\tau) \right) = u \cdot e^{j\tau} \rightarrow \underline{u}_s = \frac{u}{s - j}$
Solution for stator
current vector: $\underbrace{\check{u}_s(\tau) = \frac{2}{3} \cdot \left(u_U(\tau) + \underline{a} \cdot u_V(\tau) + \underline{a}^2 \cdot u_W(\tau) \right) = u \cdot e^{j\tau} \rightarrow \underline{u}_s = \frac{u}{s - j}$

Laplace transform current space vector : $\underline{i}_s = \frac{\underline{A}}{s-j} + \frac{\underline{B}}{s-\underline{s}_a} + \frac{\underline{C}}{s-\underline{s}_b}$

Inverse transform current space vector : $\underline{i}_{s}(\tau) = \underline{A} \cdot e^{j \cdot \tau} + \underline{B} \cdot e^{\underline{S}_{a} \cdot \tau} + \underline{C} \cdot e^{\underline{S}_{b} \cdot \tau}$

Laplace transform:
$$\underline{\breve{u}}_s = \frac{u}{s-j}$$

Two <u>complex</u> roots s_a , s_b of characteristic polynomial at $|\omega_m| > 0.2$

$$\underline{B} \cdot e^{\underline{s}_{a} \cdot \tau} = \underline{B} \cdot e^{\operatorname{Re}\{\underline{s}_{a}\}\tau} \cdot e^{j \cdot \operatorname{Im}\{\underline{s}_{a}\}\tau} = \underline{B} \cdot e^{-\frac{\tau}{\tau_{a}}} \cdot e^{j \cdot \omega_{d,a} \cdot \tau} = \underline{B} \cdot e^{-\frac{\tau}{\tau_{1}}} \cdot e^{j \cdot \omega_{d,1} \cdot \tau}$$
$$\underline{C} \cdot e^{\underline{s}_{b} \cdot \tau} = \underline{C} \cdot e^{\operatorname{Re}\{\underline{s}_{b}\}\tau} \cdot e^{j \cdot \operatorname{Im}\{\underline{s}_{b}\}\tau} = \underline{C} \cdot e^{-\frac{\tau}{\tau_{b}}} \cdot e^{j \cdot \omega_{d,b} \cdot \tau} = \underline{C} \cdot e^{-\frac{\tau}{\tau_{2}}} \cdot e^{j \cdot \omega_{d,2} \cdot \tau}$$

$$\underline{B} \cdot e^{\underline{S}_{a} \cdot \tau} \approx \underline{B} \cdot e^{-\frac{\tau}{\tau_{r\sigma}}} \cdot e^{j \cdot \omega_{m} \cdot \tau} \qquad \underline{C} \cdot e^{\underline{S}_{b} \cdot \tau} \approx \underline{C} \cdot e^{-\frac{\tau}{\tau_{s\sigma}}}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 72 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

TECHNISCHE UNIVERSITÄT DARMSTADT
7. Dynamics of induction machines **Inverse** *Laplace* transformation

Inverse transform current space vector : $\underline{i}_{s}(\tau) = \underline{A} \cdot e^{j \cdot \tau} + \underline{B} \cdot e^{\underline{S}_{a} \cdot \tau} + \underline{C} \cdot e^{\underline{S}_{b} \cdot \tau}$

a) Homogeneous part of solution: $\underline{i}_{s,h}(\tau) = \underline{B} \cdot e^{\underline{s}_a \cdot \tau} + \underline{C} \cdot e^{\underline{s}_b \cdot \tau}$

b) Particular solution: $\underline{i}_{s,p}(\tau) = \underline{A} \cdot e^{j \cdot \tau}$

Stator and rotor current change with two time constants

$$\tau_a = -\frac{1}{\operatorname{Re}(\underline{s}_a)} = \tau_1, \ \tau_b = -\frac{1}{\operatorname{Re}(\underline{s}_b)} = \tau_2$$

having two natural oscillation frequencies

$$\omega_{d,a} = \operatorname{Im}(\underline{s}_a) = \omega_{d,1}, \, \omega_{d,b} = \operatorname{Im}(\underline{s}_b) = \omega_{d,2}$$

$$\underline{\underline{B}} \cdot e^{-\tau/\tau_1} \cdot e^{j\omega_{d,1}\tau} + \underline{\underline{C}} \cdot e^{-\tau/\tau_2} \cdot e^{j\omega_{d,2}\tau}$$

 $\tau_1, \tau_2, \omega_{d,1}, \omega_{d,2}$ depend on resistances r_s, r_r' , inductances x_s, x_r', x_h AND on rotor speed ω_m

7. Dynamics of induction machines Homogeneous solution = transient part

$$\underline{i}_{s,h}(\tau) = \underline{B} \cdot e^{-\tau/\tau_1} \cdot e^{j\omega_{d,1}\tau} + \underline{C} \cdot e^{-\tau/\tau_2} \cdot e^{j\omega_{d,2}\tau}$$

Caused by rotor DC flux stator DC flux

$$\left. \begin{array}{c} \tau_{1} \approx \tau_{r\sigma}, \tau_{2} \approx \tau_{s\sigma} \\ \omega_{d,1} \approx \omega_{m}, \omega_{d,2} \approx 0 \end{array} \right\} \qquad \qquad \underbrace{i_{s,h}(\tau) \cong \underbrace{B}_{\mathcal{A}} \cdot e^{-\tau/\tau_{r\sigma}} \cdot e^{j\omega_{m}\tau} + \underbrace{C}_{\mathcal{A}} \cdot e^{-\tau/\tau_{s\sigma}} \\ \swarrow \end{array} \right\}$$

Transient AC part transient DC part

Particular solution = steady-state part

$$\underline{i}_{s,p}(\tau) = \underline{A} \cdot e^{j \cdot \tau}$$

Rotating stator current space vector with constant amplitude according to impressed voltage space vector $\underline{u}_{s}(\tau) = u \cdot e^{j\tau}$

Determination of constants <u>A</u>, <u>B</u>, <u>C</u> by *Heaviside*'s rule

•
$$\underline{i}_{s} = \frac{u}{s-j} \cdot \frac{r_{r}' + (s-j\omega_{m}) \cdot x_{r}'}{\sigma \cdot x_{s} \cdot x_{r}' \cdot (s-\underline{s}_{a}) \cdot (s-\underline{s}_{b})}$$

• <u>If condition</u>: Order of numerator polynomial Z(s) less than of denominator polynomial $N(s) \Rightarrow$

 $\Rightarrow \textit{Heaviside's rule:} \ L^{-1}\left\{\frac{Z(s)}{N(s)}\right\} = L^{-1}\left\{\frac{Z(s)}{(s-\underline{s}_1)\cdot(s-\underline{s}_2)\cdot\ldots\cdot(s-\underline{s}_n)}\right\} = \sum_{i=1}^n \frac{Z(\underline{s}_i)}{\prod_{k=1\dots n \land k \neq i} (\underline{s}_i - \underline{s}_k)} \cdot e^{\underline{s}_i \cdot t}$

•
$$\underline{i}_{s} = \frac{\underline{A}}{s-j} + \frac{\underline{B}}{s-\underline{s}_{a}} + \frac{\underline{C}}{s-\underline{s}_{b}}$$

• So we get: $i = 1: \underline{s}_{1} = j: \underline{A} = \frac{u \cdot (r'_{r} + (j - j\omega_{m}) \cdot x'_{r})}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (j - \underline{s}_{a}) \cdot (j - \underline{s}_{b})}$
 $i = 2: \underline{s}_{2} = \underline{s}_{a}: \underline{B} = \frac{u \cdot (r'_{r} + (\underline{s}_{a} - j\omega_{m}) \cdot x'_{r})}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (\underline{s}_{a} - j) \cdot (\underline{s}_{a} - \underline{s}_{b})}$
 $i = 3: \underline{s}_{3} = \underline{s}_{b}: \underline{C} = \frac{u \cdot (r'_{r} + (\underline{s}_{b} - j\omega_{m}) \cdot x'_{r})}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (\underline{s}_{b} - j) \cdot (\underline{s}_{b} - \underline{s}_{a})}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 75 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Determination of non-damped solution: $r_s = r'_r = 0$

Non-damped transient solution is independent of speed ω_m

• Simplification: Damping is neglected: $r_s = 0$, $r'_r = 0$: Determination of roots \underline{s}_a , \underline{s}_b :

 $s^{2} + s \cdot (-j\omega_{m}) = 0 \quad \Rightarrow \quad \underline{s}_{a} = j\omega_{m}, s_{b} = 0 \qquad \underline{A} = -\underline{C} = -ju/(\sigma x_{s}), \underline{B} = 0$ $\underbrace{i}_{s} = \frac{u}{s-j} \cdot \frac{(s-j\omega_{m}) \cdot x'_{r}}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s-j\omega_{m}) \cdot (s-0)} = \frac{u}{\sigma \cdot x_{s} \cdot s(s-j)} = -\frac{\underline{A}}{s-j} + \frac{\underline{C}}{s} = -\frac{j \cdot u}{\sigma \cdot x_{s}} \cdot \left(\frac{1}{s-j} - \frac{1}{s}\right)$

Non-damped stator current: Initial condition: $u_s(0) = u$

0

τ

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 78 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

π

Π

2π

π

TECHNISCHE UNIVERSITÄT

DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

Two special initial conditions in phase U for voltage space vector

Non-damped stator current: Initial condition: $u_s(0) = 0$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 80 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Dynamic turn-on current - depends on switching-on instant

TECHNISCHE UNIVERSITÄT

DARMSTADT

Peak current 200%	Peak current 100%
Peak occurs at half period after switching on	Peak occurs at quarter period after switching on
$i_{s, peak} = 2u_s / (\sigma \cdot x_s) = 2 \cdot 1 / (0.0667 \cdot 3) = 10$	$i_{s,peak} = u_s / (\sigma \cdot x_s) = 1 / (0.0667 \cdot 3) = 5$
worst case	best case

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 81 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Complete stationary solution (1)

<u>Steady state solution (= particular solution of differential equation):</u>

$$\underline{i}_{s,p}(\tau) = \underline{A} \cdot e^{j \cdot \tau} \qquad \underline{A} = \frac{u \cdot (r'_r + (j - j\omega_m) \cdot x'_r)}{\sigma \cdot x_s \cdot x'_r \cdot (j - \underline{s}_a) \cdot (j - \underline{s}_b)}$$

$$1 - \omega_m = Slip$$

$$\begin{aligned} \sigma \cdot x_s x'_r \cdot (j - \underline{s}_a) \cdot (j - \underline{s}_b) &= \sigma \cdot x_s x'_r \cdot (j^2 + j \cdot (\alpha_s + \alpha_r - j\omega_m) + \alpha_s \cdot (\sigma \cdot \alpha_r - j\omega_m)) = \\ &= (r_s + j \cdot x_s) \cdot (r'_r + (j - j\omega_m) \cdot x'_r) - j \cdot x_h^2 \cdot (j - j\omega_m) = \\ &= (r_s + j \cdot x_s) \cdot (r'_r + j \cdot Slip \cdot x'_r) + x_h^2 \cdot Slip = \\ &= r_s r'_r - x_s \cdot Slip \cdot x'_r + x_h^2 \cdot Slip + j \cdot (Slip \cdot r_s x'_r + x_s r'_r) = \\ &= r_s r'_r - Slip \cdot \sigma \cdot x_s x'_r + j \cdot (Slip \cdot r_s x'_r + x_s r'_r) \\ & \underline{i}_{s,p}(\tau) = \frac{u \cdot (r'_r + j \cdot Slip \cdot x'_r)}{r_s r'_r - Slip \cdot \sigma \cdot x_s x'_r + j \cdot (Slip \cdot r_s x'_r + x_s r'_r)} \cdot e^{j \cdot \tau} \end{aligned}$$

Solution of the two linear equations of jX_s jX , R_r'/s *Slip* Rs $\mathbf{I}_{\mathbf{S}}$ T-equivalent circuit: Two unknowns $\underline{I}_s, \underline{I'}_r$ • jXh <u>I</u>r Us $\underline{U}_{s} = R_{s}\underline{I}_{s} + jX_{s}\underline{I}_{s} + jX_{h}\underline{I'}_{r}$ lm $0 = \frac{R_r}{I_r} I_r' + j X_r' I_r' + j X_h I_s$ Re / • Rotor and stator current: $\underline{I'}_r = -\underline{I}_s \cdot \frac{jX_h}{\underline{R'}_r + jX'_r}$ 1000^{1.570} P_1 s=1 $\underline{I}_{s} = \underline{U}_{s} \cdot \frac{R'_{r} + j \cdot sX'_{r}}{R_{s}R'_{r} - s \cdot \sigma \cdot X_{s}X'_{r} + j(s \cdot R_{s}X'_{r} + X_{s}R'_{r})}$ torque line $s = \infty$ `м D s=0Im • Compare: generator sto $\underline{i}_{s,p}(\tau) = u \cdot \frac{r'_r + j \cdot Slip \cdot x'_r}{r_s r'_r - Slip \cdot \sigma \cdot x_s x'_r + j \cdot (Slip \cdot r_s x'_r + x_s r'_r)} \cdot e^{j \cdot \tau}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 83 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Stationary solution equivalent circuit

7. Dynamics of induction machines Complete stationary solution (2)

•
$$\underline{i}_{s}(\tau) = \underline{i}_{s,p}(\tau) = \frac{u \cdot (r'_r + j \cdot Slip \cdot x'_r)}{r_s r'_r - Slip \cdot \sigma \cdot x_s x'_r + j \cdot (Slip \cdot r_s x'_r + x_s r'_r)} \cdot e^{j \cdot \tau}, \quad \underline{u}_s(\tau) = u \cdot e^{j \cdot \tau}$$

 Stationary solution gives for stator current space vector the well-known OSSANNA "circle diagram" as locus of all solutions <u>i_{s,p}</u> for varying speed (= varying <u>Slip</u> s)

Example: Complete transient solution with damping

$$s^{2} + s \cdot (\alpha_{s} + \alpha_{r} - j\omega_{m}) + \alpha_{s} \cdot (\sigma \cdot \alpha_{r} - j\omega_{m}) = 0$$

$$\tau_{s\sigma} = 1/\alpha_{s} = \sigma \cdot x_{s} / r_{s} = 0.0667 \cdot 3 / 0.03 = 6.67,$$

$$\tau_{r\sigma} = 1/\alpha_{r} = \sigma \cdot x_{r}' / r_{r}' = 0.0667 \cdot 3 / 0.04 = 5.0$$

 $\omega_m = 1$: Roots for transient solution

$$\underline{s}_{a} = -\frac{1}{\tau_{1}} + j \cdot \omega_{d,1} = -\frac{1}{\underbrace{4.96}}_{-0.202} + j \cdot 0.971, \quad \underline{s}_{b} = -\frac{1}{\tau_{2}} + j \cdot \omega_{d,2} = -\frac{1}{\underbrace{6.73}}_{-0.149} + j \cdot 0.0288$$

Solution for "inrush" current of induction machine, being switched to grid, when already running (i) at synchronous speed: $i_s = 0.33$ (ii) at rated speed: $i_s = 1.0$

(i)	(ii)	
$\omega_m = 1, Slip = 0$	$\omega_m = 0.96, Slip = 0.04$	
$\underline{s}_a = -0.202 + j0.971, \underline{s}_b = -0.149 + j0.029$	$\underline{s}_a = -0.202 + j0.93, \underline{s}_b = -0.149 + j0.03$	
Steady state current = no-load current = 0.33	steady state current = rated current = 1	

Stator current space vector solution with damping, *Slip* = 0

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 86 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Stator "inrush" current $i_{\rm U}(\tau)$ at $\omega_{\rm m} = 1$, (*Slip* = 0)

Induction machine switched to sinusoidal grid, when running **at synchronous** speed $\omega_{\rm m} = 1$ $\sigma = 0.0667, x_s = 3, x'_r = 3, r_s = 0.03, r'_r = 0.04$ $|\underline{u}_s(\tau)| = 1$

Stator current space vector solution with damping, at rated *Slip* = 0.04

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 88 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Stator "inrush" current $i_U(\tau)$ at $\omega_m = 0.96$, rated <u>Slip = 0.04</u>

Induction machine switched to sinusoidal grid, when running **at rated** speed $\omega_{\rm m} = 0.96$ $\sigma = 0.0667, x_s = 3, x'_r = 3, r_s = 0.03, r'_r = 0.04$ $|\underline{u}_s(\tau)| = 1$

Transient response of induction machine at elevated speed at $|\omega_m| > 0.2$


```
    Voltage switching such as
```

```
a) switching on motor ( = in-rush current),
```

```
b) sudden short-circuit,
```

. . .

```
leads to a DC current component, which is <u>largest</u>, when switching occurs at <u>zero</u> voltage in the considered phase.
```

- DC current component limited by rotor and stator stray inductances and resistances
- **DC current component vanishes** with two <u>short</u> time constants $\tau_1 \approx \tau_{r\sigma}$, $\tau_2 \approx \tau_{s\sigma}$, determined by the rotor and stator stray inductances and resistances

Sudden short-circuit of a 4-pole no-load induction motor

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 91 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Superconducting rotor in induction machines: $r_r = 0$

$$\underbrace{\vec{i}_{s}}_{i} = \frac{u}{s-j} \cdot \frac{r'_{r} + (s-j\omega_{m}) \cdot x'_{r}}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s-\underline{s}_{a}) \cdot (s-\underline{s}_{b})} = \frac{u}{s-j} \cdot \frac{(s-j\omega_{m}) \cdot x'_{r}}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s-\underline{s}_{a}) \cdot (s-\underline{s}_{b})}$$

$$\underbrace{\vec{i}_{r}}_{i} = -\frac{u}{s-j} \cdot \frac{x_{h} \cdot (s-j\omega_{m})}{\sigma \cdot x_{s} \cdot x'_{r} \cdot (s-\underline{s}_{a}) \cdot (s-\underline{s}_{b})} = -\frac{x_{h}}{x'_{r}} \cdot \underbrace{\vec{i}_{s}}_{i} \Rightarrow \underbrace{\vec{\psi}'}_{r} = x_{h} \cdot \underbrace{\vec{i}_{s}}_{i} + x'_{r} \cdot \underbrace{\vec{i}'_{r}}_{r} = 0$$

The rotor current is in phase opposition to the stator current:

$$\underline{\breve{i}'}_r = -(x_h / x'_r) \cdot \underline{\breve{i}}_s \cong -\underline{\breve{i}}_s$$

• No flux can penetrate the superconducting rotor: $\underline{\psi'}_r = 0 \Rightarrow \underline{\psi'}_r(\tau) = 0$

- Stator flux linkage is nearly total leakage flux: $\underline{\breve{\psi}}_{s} = x_{s} \cdot \underline{\breve{i}}_{s} + x_{h} \cdot \underline{\breve{i}}_{r} = \sigma \cdot x_{s} \cdot \underline{\breve{i}}_{s} \approx x_{s\sigma} \cdot \underline{\breve{i}}_{s} x_{r\sigma}' \cdot \underline{\breve{i}}_{r}'$
- A superconducting induction machine cannot produce any torque: $m_e = -\text{Im}\{\underline{i'}_r \cdot \underline{\psi'}_r^*\} = -\text{Im}\{\underline{i'}_r \cdot 0\} = 0$
- A resistive rotor $r_r > 0$ is essentially necessary in induction machines for torque production!
- At $r_r > 0$ the rotor current space vector is NOT shifted by 180° to the stator space current vector. This leads to a torque-producing "normal" current space vector component !
- Result: A superconducting induction machine is useless!

Energy Converters – CAD and System Dynamics

Summary: Solutions of dynamic equations for constant speed

- Linear voltage & flux linkage equations at constant speed
- LAPLACE domain solution with transfer function $\underline{i}_s = F(\underline{u}_s)$
- Time-constants τ_1 , τ_2 and natural frequencies $\omega_{d,1}$, $\omega_{d,2}$ depend on speed ω_m
- Homogeneous solution = transient part = DC current component

in inductive circuit

- Particular solution for steady-state solution $\underline{i}_{s,p}$ = rotary current space vector
- Examples:

Switching of voltage on stator winding of running machine Sudden short circuit at stator terminals

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

7. Dynamics of induction machines Solutions of dynamic equations for varying speed

TECHNISCHE UNIVERSITÄT DARMSTADT

- Solution of all 9 equations simultaneously (e.g. in α - β -frame)
- Equations are non-linear, so numerical solution is necessary:

VOLTAGE: 4 equations

FLUX LINKAGE: 4 equations

TORQUE: 1 equation

9 equations in TOTAL !

• <u>Example:</u>

- a) No-load start-up of induction motors and afterwards
- b) loading with rated torque is investigated.

7. Dynamics of induction machines Data of two example machines

TECHNISCHE UNIVERSITÄT DARMSTADT

	Induction machine 1 (big)		Induction machine 2 (small)	
Rated power	110.8 kW		1.18 kW	
Rated voltage	380 V		380 V	
Rated current	212 A		2.6 A	
Efficiency	93.4 %		85.5 %	
Power factor	0.85		0.81	
Rated slip	2 %		8 %	
Rated speed	1470/min		1380/min	
Rated torque	720 Nm		8.2 Nm	
R_s	25 mΩ	0.024 p.u.	9.5 Ω	0.113 p.u.
R'_r	20 mΩ	0.019 p.u.	6.2 Ω	0.073 p.u.
L_s	9.71 mH	2.95 p.u.	668 mH	2.49 p.u.
L'r	9.55 mH	2.90 p.u.	662 mH	2.46 p.u.
L_h	9.17 mH	2.78 p.u.	633 mH	2.36 p.u.
σ	0.094		0.094	
J	2.8 kgm ²	<i>τ</i> _J = 155.5	0.00349 kgm ²	<i>τ</i> _J = 15.8
$\overline{T_{\rm J}}$ with $M_{\rm N}$	611 ms		67 ms	

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 96 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Scaling: "Big" vs. "small" induction motor

• "Big" Machine 1 vs. "Small" Machine 2: Power, current & torque rating ratio:

$$P_1 / P_2 \approx 100$$
 $I_1 / I_2 \approx 100$ $M_1 / M_2 \approx 100$

- Same voltage rating: $U_1/U_2 = 1$
- Big machines have small resistances and inductances, compared to small machines of the same voltage rating:

 $R_1 / R_2 \approx 1/400$ $L_1 / L_2 \approx 1/70$

- a) Big machines = big currents = big conductor cross sections = small resistances
- b) Big machines = big flux area per pole = small number of turns = small inductances at the same voltage rating
- Big machines have "very" big inertia, compared to small machines:

$$J_1 / J_2 \approx 800 \qquad T_{J1} / T_{J2} \approx 10$$

7. Dynamics of induction machines Scaling of motor data "small / big" machines

- Rotor inertia: $J \sim d_{si}^4 \cdot l \sim l^5$
- Motor power: $P \sim d_{si}^3 \cdot l \sim l^4$,
- Scaling ratio: $J_1 / J_2 = (P_1 / P_2)^{5/4}$

• Example:

Big versus small machine: Scaled ratio: $J_1 / J_2 = (110 / 1.1)^{5/4} = 316$. **Real ratio:** $J_1 / J_2 = 2.8 / 0.00349 = 802$.

 The 100 times stronger (bigger) Machine 1 needs due to its about a factor 1000 bigger inertia about 10 times longer to start up.

7. Dynamics of induction machines Calculated electromagnetic torque of "big" induction machine

TECHNISCHE UNIVERSITÄT DARMSTADT

No-load starting at 50 Hz grid voltage; motor loaded at 1.8 s with rated torque

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 99 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Calculated rotational speed of induction machine

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 100 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Calculated electromagnetic torque of induction machine

TECHNISCHE UNIVERSITÄT

DARMSTADT

Influence of mechanical speed *n* on time constant for decay of oscillating starting torque

• <u>Case b</u>): Big inertia $10J_N$ (= slow acceleration) \Rightarrow Decay of transient DC current component occurs at still low speed $n \approx 0$, so "zero speed" formula for time constant $T_2(n = 0)$ applies.

$$T_2 = L_s / R_s + L_r' / R_r' = 0.388 \text{ s} + 0.478 \text{ s} = 0.866 \text{ s}$$

• After $3T_2(n=0)$ both DC current & torque oscillation have vanished! $3T_2 = 3 \cdot 0.866 \text{ s} = 2.5 \text{ s}$

$$\left(\tau_2\Big|_{\omega_m \approx 0} \approx \frac{x_s}{r_s} + \frac{x_r}{r_r} \approx 2 \cdot \frac{x}{r}\right)$$

$$\left(\tau_2\big|_{|\omega_m|>0.2}\approx\sigma\cdot\frac{x_s}{r_s}\approx\frac{\sigma}{2}\cdot\tau_2\big|_{\omega_m\approx0}\right)$$

- <u>Case a)</u>: Small inertia J_N (= fast acceleration) \Rightarrow Decay of transient DC current component occurs at already elevated speed $|\omega_m| > 0.2$, so time constant $T_2(n > 0) < T_2(n = 0)$ is shorter!
- $T_2(n \ge 0)$ tends TOWARDS "Short circuit time constant !": $T_2(n \ge 0) \rightarrow T_{s\sigma} \approx \sigma \cdot T_2(n = 0)/2$

$$\sigma \cong \mathbf{0.1} \Rightarrow \mathbf{3}T_2(n > 0) \to 0.05 \cdot \mathbf{3}T_2(n = 0) \approx 0.05 \cdot \mathbf{2.5} = 0.13 \text{ s} \Rightarrow \underbrace{0.13 \text{ s}}_{J \to 0} < \underbrace{0.5 \text{ s}}_{J_N} < \underbrace{2.3 \text{ s}}_{10 \cdot J_N}$$

• Result:

Constant starting torque $m_{e,1}$, but torque $m_{e,2}$ pulsates with line frequency $\omega_s = 1$

TECHNISCHE UNIVERSITÄT

DARMSTADT

7. Dynamics of induction machines

7. Dynamics of induction machines Phenomena of "dynamic" starting performance (1)

a) Oscillating starting torque:

Switching on of stator voltage:

DC current component i_{DC} occurs in stator and rotor winding.

```
(i)
```

The 50 Hz AC stator current $\underline{i}_{s,AC}$ reacts with the DC flux of rotor DC current $\underline{i}_{r,DC}$,

yielding a first pulsating 50 Hz-torque component

(ii)

The 50 Hz AC rotor current $\underline{i'}_{r,AC}$ reacts with the DC flux of stator DC current $\underline{i}_{s,DC}$, yielding a second pulsating 50 Hz-torque component

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 105 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Phenomena of "dynamic" starting performance (2)

Example:

Reduction by 25% with respect to static break-down torque!

 c) Eigen-frequency of induction machine at synchronous and rated speed ("synchronous machine effect in asynchronous machines"): Low oscillation frequency f_{d.m} at each load step.

Explanation:

Rotor (main) flux changes with big rotor time constant $\tau_r = x_r/r_r$, may be regarded as "frozen" for a "short" time $\tau \ll \tau_r \Rightarrow$ It acts like the constant rotor flux in synchronous machines \Rightarrow rotor oscillation possible

7. Dynamics of induction machines Calculated rotational speed of induction machine

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 107 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Natural oscillation of induction machine

• Speed oscillation $\Delta \Omega_{\rm m}(t)$ is superimposed e.g. at synchronous speed:

 $\Omega_m(t) = \Omega_{syn} + \Delta \Omega_m(t)$

• Magnetic braking force of "frozen" rotor flux on stator current: $M_e(\Delta \mathcal{G}) = -|c_{\mathcal{G}}| \cdot \Delta \mathcal{G}$. ($\Delta \mathcal{G}$: angle difference between rotor flux axis and stator space current vector)

$$\frac{d\Delta \mathcal{G}}{dt} = p \cdot \Delta \Omega_m$$

- Mechanical equation:
- $J \cdot \frac{d\Omega_m}{dt} = M_e(\vartheta) = -|c_{\vartheta}| \cdot \Delta \vartheta \implies \frac{d\Omega_m}{dt} = \frac{d\Delta\Omega_m}{dt}$ $J \cdot \frac{d^2 \Delta \vartheta}{dt^2} + p \cdot |c_{\vartheta}| \cdot \Delta \vartheta = 0 \implies \Delta \vartheta(t) \sim \sin(\omega_{d,m} \cdot t), \cos(\omega_{d,m} \cdot t)$ $\bullet \text{ Natural frequency of oscillation: } f_{d,m} = \frac{\omega_{d,m}}{2\pi} = \frac{1}{2\pi} \cdot \sqrt{\frac{p \cdot |c_{\vartheta}|}{J}}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 108 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder
7. Dynamics of induction machines Calculated rotational speed of induction machine

7. Dynamics of induction machines Dynamic starting of slip ring induction machine

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 110 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines **TECHNISCHE** UNIVERSITÄT Calculated electromagnetic torque of "small" induction machine DARMSTADT me $\overline{\text{Nm}}$ No-load starting at 50 Hz grid voltage; motor loaded at 0.35 s with rated torque 25 Very quick start-up, so <u>no clear</u> distinction 20 between line frequency oscillation and natural oscillation 15 $T_1 = 67 \text{ ms}$ 10 7,26Nm 5 Ш MN 0 0.35 s: Loading with M_N -5**No-load start-up** -100,1 0,2 0,3 0,4 0,5 0.6 0

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 111 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Starting performance of "small" induction motor

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 112 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Ratio of dynamic vs. static breakdown torque in dependence of parameter *P* (*Pfaff & Jordan*)

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 113 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Dynamic break down torque: Pfaff-Jordan parameter P

$$P = \left(\frac{\omega_s}{u_s} \cdot \frac{x_s}{x_h}\right)^2 \cdot \tau_J \cdot r_r' \cdot s_b = \left(\frac{2\pi f_s}{U_s} \cdot \frac{L_s}{L_h}\right)^2 \cdot J \cdot \frac{R_r' \cdot s_b \cdot 2\pi f_N}{3p^2}$$

Example:

Data of induction machine 1: Break down slip s_b = 8%. Line start at 50 Hz, rated voltage: U_s = 231 V

$$P = \left(\frac{2\pi f_s}{U_s} \cdot \frac{L_s}{L_h}\right)^2 \cdot J \cdot \frac{R'_r \cdot s_b \cdot 2\pi f_N}{3p^2} = \left(\frac{2\pi 50}{380/\sqrt{3}} \cdot \frac{0.00971}{0.00917}\right)^2 \cdot 2.8 \cdot \frac{0.02 \cdot 0.08 \cdot 2\pi 50}{3 \cdot 2^2} = 0.2696$$

Curve with *P*: $M_{b,dyn} / M_{b,stat} = 0.71$ *Compare:* Numerical solution yields 0.74 ! = sufficient coincidence !

7. Dynamics of induction machines Explanation of *Pfaff-Jordan* parameter *P*

Bigger parameter *P* = less dynamic starting

 $P \sim \tau_J$ Bigger inertia = slower motor acceleration = less dynamic starting

$$P \sim \left(\frac{x_s}{x_h}\right)^2 = \left(1 + \frac{x_{s\sigma}}{x_h}\right)^2$$
 Bigger stator leakage flux = lower motor torque = less dynamic starting $\left(\frac{x_s}{x_h}\right)^2 = 1$

 $P \sim \left(\frac{\omega_s}{u_s}\right)^- = \frac{1}{\psi_s^2}$ Bigger stator flux linkage ψ_s = bigger motor torque = faster motor acceleration = more dynamic starting

Energy Converters – CAD and System Dynamics

Summary:

Solutions of dynamic equations for induction machines with varying speed

- Non-linear mechanical equation: Numerical solution necessary
- Three dynamic phenomena:
 - Reduced breakdown torque $M_{b,dyn} < M_{b,stat}$,
 - Line-frequent starting torque oscillation
 - Low-frequent natural oscillation like in synchronous machines
- Numerical example for big and small motor
- Influence of inertia J
- *PFAFF-JORDAN* parameter *P* for estimation of dynamic breakdown torque from static torque curve

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

Decomposition of transfer function of <u>electrical</u> system into α - β -components (*n* = const.)

$$\begin{split} & \underbrace{\breve{i}_{s}}/\breve{\underline{u}}_{s} = \frac{r_{r}' + (s - j\omega_{m}) \cdot x_{r}'}{\sigma \cdot x_{s} \cdot x_{r}' \cdot (s - \underline{s}_{a}) \cdot (s - \underline{s}_{b})} = \underline{G}(s) = \operatorname{Re}\{\underline{G}(s)\} + j \cdot \operatorname{Im}\{\underline{G}(s)\} \\ & \underline{z} = \frac{a + jb}{c + jd} = \frac{a + jb}{c + jd} \cdot \frac{(c + jd)^{*}}{(c + jd)^{*}} = \frac{a + jb}{c + jd} \cdot \frac{c - jd}{c - jd} = \frac{ac + bd + j(bc - ad)}{c^{2} + d^{2}} \\ & \underline{G}(s) = \frac{r_{r}' + (s - j\omega_{m}) \cdot x_{r}'}{\sigma \cdot x_{s} \cdot x_{r}' \cdot (s - \underline{s}_{a}) \cdot (s - \underline{s}_{b})} \cdot \frac{(s - \underline{s}_{a})^{*} \cdot (s - \underline{s}_{b})^{*}}{(s - \underline{s}_{a})^{*} \cdot (s - \underline{s}_{b})^{*}} = G_{\alpha} + jG_{\beta} \\ & G_{\alpha}(s), G_{\beta}(s) \sim \frac{1}{(s - \underline{s}_{a}) \cdot (s - \underline{s}_{b}) \cdot (s - \underline{s}_{a})^{*} \cdot (s - \underline{s}_{b})^{*}} \\ & s - \underline{s}_{a} = s - \operatorname{Re}(\underline{s}_{a}) - j\operatorname{Im}(\underline{s}_{a}) \\ & (s - \underline{s}_{a})^{*} = s - \underline{s}_{a}^{*} = s - \operatorname{Re}(\underline{s}_{a}) + j\operatorname{Im}(\underline{s}_{a}) \end{split}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 118 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Transfer function of <u>electrical</u> system at *n* = const.

<u>Complex</u> space vector <u>Complex</u> transfer function of space vectors <u>*G*(*s*)</u> <u>Two-axis</u> components <u>Real</u> transfer function of components $G_{\alpha}(s)$, $G_{\beta}(s)$,

<u>Two roots</u> of complex transfer function $\underline{s}_a, \underline{s}_b = \underline{two pairs}$ of conjugate complex roots of real transfer function $\underline{s}_1, \underline{s}_4 \& \underline{s}_2, \underline{s}_5$

- NOTE: With variable speed dynamic equations are non-linear, so <u>no</u> linear transfer function exists.

- BUT: Small signal linearized equations allow transfer function formulation.

Roots of linearized electromechanical transfer function in s-plane

TECHNISCHE UNIVERSITÄT DARMSTADT

Transfer function of <u>linearized</u> performance (small signal theory) of induction machine for <u>electromechanical performance</u> (variable speed):

The <u>five</u> roots of induction machine electro-mechanical transfer function comprise two pairs of conjugate complex poles and one real pole (= mechanical influence!)

Compare: DC machines: Two poles for <u>electromechanical</u> performance.

7. Dynamics of induction machines Use of different co-ordinate systems

Stator reference frame	Rotor reference frame	Synchronous reference frame
Does not rotate	Rotates with $\omega_m = d\gamma / d\tau$	Rotates with $\omega_{syn} = d\delta / d\tau$
Use in induction machines	Use in synchronous machines	Use in induction machines for small signal theory
$\underline{u}_{(s)}(\tau) = u_{\alpha}(\tau) + ju_{\beta}(\tau)$	$\underline{u}_{(r)}(\tau) = u_d(\tau) + ju_q(\tau)$	$\underline{u}_{(syn)}(\tau) = u_a(\tau) + ju_b(\tau)$
$\underline{u}_{(s)} = \frac{2}{3}(u_U + \underline{a} \cdot u_V + \underline{a}^2 u_W)$	$\underline{u}_{(r)}(\tau) = \underline{u}_{(s)}(\tau) \cdot e^{-j \cdot \gamma(\tau)}$	$\underline{u}_{(syn)}(\tau) = \underline{u}_{(s)}(\tau) \cdot e^{-j \cdot \delta(\tau)}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 121 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Voltage equations in synchronous reference frame

$$\underline{u}_{s(syn)} = r_{s} \cdot \underline{i}_{s(syn)} + \frac{d\Psi}{d\tau} \underbrace{s(syn)}_{d\tau} + j \cdot \frac{d\delta}{d\tau} \cdot \Psi_{-s(syn)} \\
\underline{u}_{r(syn)} = 0 = r'_{r} \cdot \underline{i}'_{-r(syn)} + \frac{d\Psi'_{-r(syn)}}{d\tau} + j \cdot \frac{d(\delta - \gamma)}{d\tau} \cdot \underline{\Psi}'_{-r(syn)} \\
= \varphi_{s}(\tau) \quad \frac{d(\delta - \gamma)}{d\tau} = \varphi_{s}(\tau) - \varphi_{m}(\tau) \quad \varphi_{s} = \frac{\Omega_{s}}{2} \quad \varphi_{s} = \frac{\Omega_{syn}}{2} = \frac{\Omega_{syn}}{2} = \frac{\Omega_{s}}{2} + \frac{\Omega_{syn}}{2} = \frac{\Omega_{s}}{2} + \frac{\Omega_{syn}}{2} = \frac{\Omega_{syn}}{2}$$

$$\frac{d\sigma}{d\tau} = \omega_s(\tau) \quad \frac{d(\sigma - \gamma)}{d\tau} = \omega_s(\tau) - \omega_m(\tau) \qquad \omega_s = \frac{\Omega_s}{\omega_N}, \quad \omega_{syn} = \frac{\Omega_{syn}}{\omega_N / p} = \frac{\Omega_s / p}{\omega_N / p} = \omega_s$$

Eliminating \underline{i}_{s} , $\underline{i'}_{r}$ via the flux linkages:

15

$$\underline{\psi}_{s} = \sigma \cdot x_{s} \cdot \underline{i}_{s} + \frac{x_{h}}{x_{r}'} \cdot \underline{\psi}_{r}' \qquad \underline{\psi}_{r}' = \sigma \cdot x_{r}' \cdot \underline{i}_{r}' + \frac{x_{h}}{x_{s}} \cdot \underline{\psi}_{s}$$

$$\underline{u}_{s} = \left(\frac{r_{s}}{\sigma \cdot x_{s}} + j\omega_{s}\right) \cdot \underline{\psi}_{s} + \frac{d\underline{\psi}_{s}}{d\tau} - \frac{r_{s}}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi}_{r}'$$

$$0 = -\frac{r_{r}'}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi}_{s} + \left(\frac{r_{r}'}{\sigma \cdot x_{r}'} + j(\omega_{s} - \omega_{m})\right) \cdot \underline{\psi}_{r}' + \frac{d\underline{\psi}_{r}'}{d\tau}$$
Subscript (syn) skipped!

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 122 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Torque equation with flux linkages

• Eliminating \underline{i}_{s} , \underline{i}'_{r} via the flux linkages:

$$\underline{\psi}_{s} = \sigma \cdot x_{s} \cdot \underline{i}_{s} + \frac{x_{h}}{x_{r}'} \cdot \underline{\psi}_{r}' \qquad \underline{\psi}_{r}' = \sigma \cdot x_{r}' \cdot \underline{i}_{r}' + \frac{x_{h}}{x_{s}} \cdot \underline{\psi}_{s}$$

$$m_e = -\operatorname{Im}\left\{ \underline{\psi}_r \cdot \underline{\psi}_r^* \right\} = \frac{x_h^2 / (x_s x_r')}{\sigma \cdot x_h} \cdot \operatorname{Im}\left\{ \underline{\psi}_s \cdot \underline{\psi}_r^* \right\} = \frac{1 - \sigma}{\sigma \cdot x_h} \cdot \operatorname{Im}\left\{ \underline{\psi}_s \cdot \underline{\psi}_r^* \right\}$$

$$m_e = \frac{1 - \sigma}{\sigma \cdot x_h} \cdot \operatorname{Im} \left\{ \psi_s \cdot \psi_r^{*} \right\}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 124 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Small signal theory in equilibrium points

- In synchronous reference frame: Current & voltage space vectors in equilibrium points are constant (= steady state operation due to equivalent circuit)
- Electromechanical system of equations in synchronous reference frame (a, b):

$$\underline{u}_{s} = \left(\frac{r_{s}}{\sigma \cdot x_{s}} + j\omega_{s}\right) \cdot \underline{\psi}_{s} + \frac{d\underline{\psi}_{s}}{d\tau} - \frac{r_{s}}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi}_{r}'$$

$$0 = -\frac{r_{r}'}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi}_{s} + \left(\frac{r_{r}'}{\sigma \cdot x_{r}'} + j(\omega_{s} - \omega_{m})\right) \cdot \underline{\psi}_{r}' + \frac{d\underline{\psi}_{r}'}{d\tau}$$

$$T_{J} \cdot \frac{d\omega_{m}}{d\tau} = \frac{1 - \sigma}{\sigma \cdot x_{h}} \cdot \operatorname{Im}\left\{\underline{\psi}_{s} \cdot \underline{\psi}_{r}'^{*}\right\} - m_{s}(\tau)$$

$$Unknowns:$$

$$\underline{\psi}_{s}, \underline{\psi}_{r}', \omega_{m}$$

$$\underline{u}_{s}, \omega_{s}, m_{s}$$

Linearization a) of 3 unknowns: s & r flux linkage, speed (machine performance)
 b) of 3 inputs: stator voltage, stator frequency, load torque

7. Dynamics of induction machines Linearization of system equations

Linearization of unknowns:

Linearization of known input:

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 125 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Linearization of rotor voltage equation

• Rotor space vector voltage equation in equilibrium point: $\omega_{r0} = \omega_{s0} - \omega_{m0}$

$$0 = -\frac{r_r'}{x_h} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi}_{s0} + \left(\frac{r_r'}{\sigma \cdot x_r'} + j\omega_{r0}\right) \cdot \underline{\psi}_{r0}' \qquad \begin{cases} \frac{d\psi'_{r0}}{d\tau} + d\tau = 0\\ \Delta \underline{\psi}_{r0}'(0) = 0 \end{cases}$$

• Linearized rotor space vector voltage equation of small deviations from equilibrium:

$$0 \cong -\frac{r_r'}{x_h} \frac{1-\sigma}{\sigma} \Delta \underline{\psi}_s + \frac{r_r'}{\sigma \cdot x_r'} \Delta \underline{\psi}_r' + j\omega_{r0} \cdot \Delta \underline{\psi}_r' + j(\Delta \omega_s - \Delta \omega_m) \cdot \underline{\psi}_{r0}' + \frac{d\Delta \underline{\psi}_r'}{d\tau}$$

• Linearized rotor space vector voltage equation in LAPLACE domain:

$$0 \cong -\frac{r_r'}{x_h} \frac{1-\sigma}{\sigma} \Delta \underline{\psi}_s + \left(\frac{r_r'}{\sigma \cdot x_r'} + j\omega_{r0} + s\right) \Delta \underline{\psi}_r' + j \underline{\psi}_{r0}' \Delta \overline{\omega}_s - j \underline{\psi}_{r0}' \Delta \overline{\omega}_m$$

7. Dynamics of induction machines Linearization of torque equation

Decomposition of complex space vectors in *a-b*-components:

$$\begin{aligned} \Delta \underline{\psi}_{s}(\tau) &= \Delta \psi_{sa}(\tau) + j \Delta \psi_{sb}(\tau) & \underline{\psi}_{s0} &= \psi_{s0a} + j \cdot \psi_{s0b} \\ \Delta \underline{\psi}'_{r}(\tau) &= \Delta \psi'_{ra}(\tau) + j \Delta \psi'_{rb}(\tau) & \underline{\psi}'_{r0} &= \psi'_{r0a} + j \cdot \psi'_{r0b} \\ \Delta \underline{u}_{s}(\tau) &= \Delta u_{sa}(\tau) + j \Delta u_{sb}(\tau) \end{aligned}$$

$$\tau_J \frac{d\omega_m}{d\tau} = \frac{1-\sigma}{\sigma \cdot x_h} \cdot \left(\psi_{sb} \cdot \psi'_{ra} - \psi_{sa} \cdot \psi'_{rb}\right) - m_s \qquad 0 = \frac{1-\sigma}{\sigma \cdot x_h} \cdot \left(\psi_{s0b} \cdot \psi'_{r0a} - \psi_{s0a} \cdot \psi'_{r0b}\right) - m_{s0}$$

 \Rightarrow Cancelling of equilibrium condition and linearization, e.g.: $\Delta \psi'_{rb} \cdot \Delta \psi_{sa} \approx 0$

$$\tau_J \frac{d\Delta\omega_m}{d\tau} \cong \frac{1-\sigma}{\sigma \cdot x_h} (\psi_{s0b} \cdot \Delta\psi'_{ra} + \Delta\psi_{sb} \cdot \psi'_{r0a} - \psi_{s0a} \cdot \Delta\psi'_{rb} - \Delta\psi_{sa} \cdot \psi'_{r0b}) - \Delta m_s$$

 \Rightarrow Laplace-transformation ($\Delta \omega_m(0) = 0$):

$$s \cdot \tau_J \cdot \varDelta \breve{\omega}_m \cong \frac{1 - \sigma}{\sigma \cdot x_h} \cdot \left(\psi_{s0b} \cdot \varDelta \breve{\psi}'_{ra} + \psi'_{r0a} \cdot \varDelta \breve{\psi}_{sb} - \psi_{s0a} \cdot \varDelta \breve{\psi}'_{rb} - \psi'_{r0b} \cdot \varDelta \breve{\psi}_{sa} \right) - \varDelta \breve{m}_s$$

7. Dynamics of induction machines Linearized voltage equations in a-b-components

$$\begin{split} \Delta \underline{\breve{u}}_{s} &\cong \left(\frac{r_{s}}{\sigma \cdot x_{s}} + j\omega_{s0} + s\right) \cdot \Delta \underline{\breve{\psi}}_{s} + j\underline{\psi}_{s0} \cdot \Delta \overline{\omega}_{s} - \frac{r_{s}}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \Delta \underline{\breve{\psi}}_{r}' \\ 0 &\cong -\frac{r_{r}'}{x_{h}} \frac{1 - \sigma}{\sigma} \Delta \underline{\breve{\psi}}_{s} + \left(\frac{r_{r}'}{\sigma \cdot x_{r}'} + j\omega_{r0} + s\right) \cdot \Delta \underline{\breve{\psi}}_{r}' + j\underline{\psi}_{r0}' \Delta \overline{\omega}_{s} - j\underline{\psi}_{r0}' \Delta \overline{\omega}_{m} \end{split}$$

$$\begin{split} \Delta \underline{\breve{u}}_{sa} &\cong \left(\frac{r_{s}}{\sigma \cdot x_{s}} + s\right) \cdot \Delta \underline{\breve{\psi}}_{sa} - \omega_{s0} \cdot \Delta \underline{\breve{\psi}}_{sb} - \psi_{s0b} \cdot \Delta \overline{\omega}_{s} - \frac{r_{s}}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \Delta \underline{\breve{\psi}}_{ra}' \\ \Delta \underline{\breve{u}}_{sb} &\cong \left(\frac{r_{s}}{\sigma \cdot x_{s}} + s\right) \cdot \Delta \underline{\breve{\psi}}_{sb} + \omega_{s0} \cdot \Delta \underline{\breve{\psi}}_{sa} + \psi_{s0a} \cdot \Delta \overline{\omega}_{s} - \frac{r_{s}}{x_{h}} \cdot \frac{1 - \sigma}{\sigma} \cdot \Delta \underline{\breve{\psi}}_{rb}' \\ 0 &\cong -\frac{r_{r}'}{x_{h}} \frac{1 - \sigma}{\sigma} \Delta \underline{\breve{\psi}}_{sa} + \left(\frac{r_{r}'}{\sigma \cdot x_{r}'} + s\right) \cdot \Delta \underline{\breve{\psi}}_{ra}' - \omega_{r0} \cdot \Delta \underline{\breve{\psi}}_{rb}' - \psi_{r0b}' \cdot \Delta \overline{\omega}_{s} + \psi_{r0b}' \cdot \Delta \overline{\omega}_{m} \\ 0 &\cong -\frac{r_{r}'}{x_{h}} \frac{1 - \sigma}{\sigma} \Delta \underline{\breve{\psi}}_{sb} + \left(\frac{r_{r}'}{\sigma \cdot x_{r}'} + s\right) \cdot \Delta \underline{\breve{\psi}}_{rb}' + \omega_{r0} \cdot \Delta \underline{\breve{\psi}}_{ra}' + \psi_{r0a}' \cdot \Delta \overline{\omega}_{s} - \psi_{r0a}' \cdot \Delta \overline{\omega}_{m} \end{split}$$

Laplace matrix equation system of induction machine: Linearized, in synchronous reference frame

$$\begin{pmatrix} s + \frac{r_s}{\sigma \cdot x_s} & -\omega_{s0} & -\frac{r_s(1-\sigma)}{\sigma \cdot x_h} & 0 & 0\\ \omega_{s0} & s + \frac{r_s}{\sigma \cdot x_s} & 0 & -\frac{r_s(1-\sigma)}{\sigma \cdot x_h} & 0\\ -\frac{r_r'(1-\sigma)}{\sigma \cdot x_h} & 0 & s + \frac{r_r'}{\sigma \cdot x_r'} & -\omega_{r0} & \psi_{r0b}'\\ 0 & -\frac{r_r'(1-\sigma)}{\sigma \cdot x_h} & \omega_{r0} & s + \frac{r_r'}{\sigma \cdot x_r'} & -\psi_{r0a}'\\ \frac{1-\sigma}{\sigma \cdot x_h} \frac{\psi_{r0b}'}{\tau_J} & -\frac{1-\sigma}{\sigma \cdot x_h} \frac{\psi_{s0b}}{\tau_J} & \frac{1-\sigma}{\sigma \cdot x_h} \frac{\psi_{s0a}}{\tau_J} & s \end{pmatrix} \begin{pmatrix} \Delta \breve{\psi}_{sa} \\ \Delta \breve{\psi}_{sb} \\ \Delta \breve{\psi}_{rb}' \\ \Delta \breve{\omega}_m \end{pmatrix} = \begin{pmatrix} \Delta \breve{u}_{sa} + \psi_{s0b} \cdot \Delta \breve{\omega}_s \\ \Delta \breve{u}_{sb} - \psi_{s0a} \cdot \Delta \breve{\omega}_s \\ -\psi_{r0a}' \cdot \Delta \breve{\omega}_s \\ -\psi_{r0a}' \cdot \Delta \breve{\omega}_s \\ -\frac{\Delta \breve{m}_s}{\tau_J} \end{pmatrix}$$

$$(N) \quad (N) \cdot (\Psi) = (U)$$

Linearized model: *CRAMER*'s rule for calculation of $\Delta \omega_m(s)$

$$(Z) = \begin{pmatrix} s + \frac{r_s}{\sigma \cdot x_s} & -\omega_{s0} & -\frac{r_s(1 - \sigma)}{\sigma \cdot x_h} & 0 & \Delta \breve{u}_{sa} + \psi_{s0b} \cdot \Delta \breve{\omega}_s \\ \omega_{s0} & s + \frac{r_s}{\sigma \cdot x_s} & 0 & -\frac{r_s(1 - \sigma)}{\sigma \cdot x_h} & \Delta \breve{u}_{sb} - \psi_{s0a} \cdot \Delta \breve{\omega}_s \\ -\frac{r_r'(1 - \sigma)}{\sigma \cdot x_h} & 0 & s + \frac{r_r'}{\sigma \cdot x_r'} & -\omega_{r0} & \psi_{r0b}' \cdot \Delta \breve{\omega}_s \\ 0 & -\frac{r_r'(1 - \sigma)}{\sigma \cdot x_h} & \omega_{r0} & s + \frac{r_r'}{\sigma \cdot x_r'} & -\psi_{r0a}' \cdot \Delta \breve{\omega}_s \\ \frac{1 - \sigma}{\sigma \cdot x_h} \frac{\psi_{r0b}'}{\tau_J} & -\frac{1 - \sigma}{\sigma \cdot x_h} \frac{\psi_{s0b}}{\tau_J} & \frac{1 - \sigma}{\sigma \cdot x_h} \frac{\psi_{s0a}}{\tau_J} & -\frac{\Delta \breve{m}_s}{\tau_J} \end{pmatrix}$$

Induction machine "system response" for speed:

$$(N) \cdot (\Psi) = (U)$$

$$\Delta \breve{\omega}_{m} = \frac{Det(Z)}{Det(N)} = \frac{f(\Delta \breve{u}_{sa}, \Delta \breve{u}_{sb}, \Delta \breve{\omega}_{s}, \Delta \breve{m}_{s})}{P_{5}(s)}$$

TECHNISCHE UNIVERSITÄT

DARMSTADT

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 131 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines

Transfer function at no-load for small resistances & not too small frequencies > $0.5 f_N$

- Small resistances: $r_s \ll 1$, $r'_r \ll 1$
- Not too small stator frequencies: $\omega_{s0} > 0.5...0.6$
- Chosen equilibrium point is no-load operation: Stator voltage space vector chosen as real: $u_{s0} = u_{s0a} = u_{s0a}$

$$\omega_{r0} = 0, \underline{i'}_{r0} = 0: \underline{\psi}_{s0} = x_s \underline{i}_{s0}, \underline{\psi'}_{r0} = x_h \underline{i}_{s0} = (x_h / x_s) \cdot \underline{\psi}_{s0}$$

$$\underline{u}_{s0} = \left(\frac{r_s}{\sigma \cdot x_s} + j\omega_{s0}\right) \cdot \underline{\psi}_{s0} - \frac{r_s}{x_h} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi'}_{r0} \qquad 0 = -\frac{r'_r}{x_h} \cdot \frac{1 - \sigma}{\sigma} \cdot \underline{\psi}_{s0} + \left(\frac{r'_r}{\sigma \cdot x'_r} + j\omega_{r0}\right) \cdot \underline{\psi'}_{r0}$$

$$r_s = 0: u_{s0} = j\omega_{s0} \underline{\psi}_{s0} \implies \underline{\psi}_{s0} = -j \frac{u_{s0}}{\omega_{s0}} = \psi_{s0a} + j \psi_{s0b} \qquad \underline{\psi'}_{r0} = \frac{x_h}{x_s} \cdot \underline{\psi}_{s0}$$

$$\psi_{s0a} = 0, \psi_{s0b} = -\frac{u_{s0}}{\omega_{s0}} \qquad \qquad \psi'_{r0a} = 0, \psi'_{r0b} = -\frac{x_h}{\omega_{s0} x_s} u_{s0}$$

Characteristic polynomial of linearized transfer function

(1) $r_s = r_r'$

- (4) usually small resistance $r_s \ll x_s, r'_r \ll x'_r$
- Characteristic polynomial:

$$Det(N) = P_5(s) = (s + \frac{1}{\tau_{\sigma}}) \cdot \left[\left(s + \frac{1}{\tau_{\sigma}} \right)^2 + \omega_{s0}^2 \right] \cdot \left[\left(s + \frac{1}{2\tau_{\sigma}} \right)^2 + \omega_{d,m}^2 \right]$$

$$P_{5}(s) = (s - \underline{s}_{1}) \cdot (s - \underline{s}_{2}) \cdot (s - \underline{s}_{3}) \cdot (s - \underline{s}_{4}) \cdot (s - \underline{s}_{5})$$

• NOTE: $\left(s + \frac{1}{\tau_{\sigma}}\right)^{2} + \omega_{s0}^{2} = \left(s + \frac{1}{\tau_{\sigma}} + j \cdot \omega_{s0}\right) \cdot \left(s + \frac{1}{\tau_{\sigma}} - j \cdot \omega_{s0}\right) \cdot \left(s - \underline{s}_{5}\right) \cdot \left(s -$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 132 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

(1) $r_s = r_r$ (2) $x_s = x'_r$: short-circuit time constants: $\frac{1}{\tau_{s\sigma}} = \frac{r_s}{\sigma \cdot x_s} = \frac{1}{\tau_{r\sigma}} = \frac{r'_r}{\sigma \cdot x'_r} = \frac{1}{\tau_{\sigma}}$ (3) not too small stator frequencies $r_s << \omega_{s0} x_s$ (e.g.: $\frac{1}{\tau_{\sigma}} = \frac{0.03}{0.1 \cdot 3} = 0.1$)

TECHNISCHE UNIVERSITÄT DARMSTADT

Roots of linearized electromechanical transfer function in s-plane

• Five roots of $P_5(s)$ = five poles in s-plane: $\underline{s}_1 = -\delta_1 + j\omega_{d,1}$ $\underline{s}_4 = -\delta_1 - j\omega_{d,1}$

 $\underline{s}_{3} = -\delta_{3}$ $\underline{s}_{2} = -\delta_{2} + j\omega_{d,2} \qquad \underline{s}_{5} = -\delta_{2} - j\omega_{d,2}$ • Mechanical system natural frequency: $\omega_{d,2} = \sqrt{\frac{1}{\tau_{x}} \cdot \frac{1 - \sigma}{\sigma \cdot x} \cdot \left(\frac{u_{s0}}{\omega_{s0}}\right)^{2} - \frac{1}{(2\tau_{s0})^{2}}}$

$$\omega_{d,1} = \omega_{s0}$$
 $\omega_{d,2} = \omega_{d,m}$

• Poles \underline{s}_1 , \underline{s}_3 , \underline{s}_4 : DC components in current and flux \Rightarrow torque and speed oscillation with stator frequency.

• Poles <u>s</u>₂, <u>s</u>₅: "frozen" rotor flux = "synchronous" machine phenomenon!

7. Dynamics of induction machines Mechanical system natural frequency

• "Frozen" rotor flux = "synchronous" machine phenomenon!

• Per unit values:
(No-load,
$$r_s \approx r_r' \ll x_s \approx x_r'$$
)
• Physical units:
 $\Omega_{d,m} = \sqrt{\frac{3p^2}{J} \cdot \frac{1-\sigma}{\sigma \cdot L_s} \cdot \left(\frac{U_{s0}}{\Omega_{s0}}\right)^2 - \frac{1}{(2\tau_{\sigma})^2}}$
• Breakdown torque at $R_s = 0$: $M_b = \pm \frac{m_s}{2} \cdot \frac{p}{\Omega_s^2} \cdot U_s^2 \cdot \frac{1-\sigma}{\sigma L_s}$ $m_s = 3$
 $\Omega_{d,m} = \sqrt{\frac{2pM_b}{J} - \frac{1}{(2T_{\sigma})^2}}$ Valid for small signal at no-load operation!

7. Dynamics of induction machines Mechanical system natural frequency for small signals

• "Frozen" rotor flux = "synchronous" machine phenomenon!

• Induction machine:
(No-load,
$$r_s \approx r'_r << x_s \approx x'_r$$
)
 $\Omega_{d,m} = \sqrt{\frac{2pM_b}{J} - \frac{1}{(2T_\sigma)^2}}$
 $\frac{dM_e}{ds}\Big|_{s=0} = \frac{2M_b}{s_b}$
• COMPARE: Synchronous machine (without damping): $\Omega_{d,m} = \sqrt{\frac{p \cdot |c_g|}{J}}$
At no-load equilibrium: $c_g = -\partial M_e / \partial \mathcal{G}\Big|_{\mathcal{G}=0} = -M_{p0}$
• Synchronous machine (with damping): $\Omega_{d,m} = \sqrt{\frac{p \cdot M_{p0}}{J} - \alpha^2}$ $\alpha = 1/T$
(No-load)
 $r_s <<1$ $\Omega_{d,m} = \sqrt{\frac{p \cdot M_{p0}}{J} - \frac{1}{\pi^2}}$

J

 T^2

Calculation of natural frequency of induction machine

7. Dynamics of induction machines Equilibrium point: $d/d\tau = 0$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 137 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Calculation of natural frequency of induction machine

Example:

30 kW 4-pole cage induction machine:

$$r_{s} = r_{r}' = 0.03, x_{s} = x_{r}' = 3.0, \sigma = 0.0667, \tau_{J} = 75$$

$$\tau_{s\sigma} = \tau_{r\sigma} = \frac{\sigma \cdot x_{s}}{r_{s}} = \frac{0.0667 \cdot 3}{0.03} = 6.67 \quad T_{s\sigma} = \tau_{r\sigma} = \tau_{s\sigma} / \omega_{N} = 6.67 / (2\pi 50) = \underline{21.2} \text{ ms}$$

Operation point (= equilibrium point):
$$u_{s0} = 1$$
, $\omega_{s0} = 1$:

$$\omega_{d,2} = \sqrt{\frac{1}{75} \cdot \frac{1 - 0.0667}{0.0667 \cdot 3} \cdot \left(\frac{1}{1}\right)^2} - \frac{1}{(2 \cdot 6.67)^2} = 0.238$$

$$f_{d,m} = f_N \cdot \omega_{d,2} = 50 \cdot 0.238 = \underline{11.9}\text{Hz}, \quad T_d = 1/11.9 = 84\text{ms}$$

$$\delta_2 = \frac{1}{2 \cdot 6.67} = 0.075$$

Small-signal <u>transfer function</u> for varying stator frequency

- Variation of damping δ₂ and natural angular frequency ω_{d,2} with varying feeding stator frequency ω_{s0} and constant rated rotor flux linkage <u>ψ'_r0 = ψ'</u>_rN } <u>ψ_s0 ≈ j ⋅ ω_s0 ⋅ ψ_s0</u>
 No-load machine operation m_{s0} = 0, ω_{m0} = ω_{s0}, Slip = 0.
- No-load machine operation $m_{s0} = 0$, $\omega_{m0} = \omega_{s0}$, Slip = 0. \Rightarrow WEAK DAMPING AT LOW FREQUENCY, if machine is not controlled !

TECHNISCHE UNIVERSITÄT

DARMSTADT

Small-signal transfer function for increasing stator resistance r_s

- Variation of damping δ_2 and natural angular frequency $\omega_{d,2}$ with varying stator resistance r_s at rated stator frequency $\omega_{s0} = 1$ and constant rated rotor flux linkage $\underline{\psi'}_{r0} = \underline{\psi'}_{rN}$
- No-load machine operation $m_{s0} = 0$, $\omega_{m0} = \omega_{s0} = 1$, Slip = 0.

\Rightarrow UNSTABLE OPERATION AT BIG STATOR RESISTANCE !

TECHNISCHE UNIVERSITÄT

DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

Starting machine at no load, constant stator voltage & frequency

Measurement of instability at big stator resistance r_s

First reported measurement in history of induction machine instability (BBC, Mannheim, Germany, 1969):

- Direct no-load start up of the induction motor at the 20 kV-grid with a 20kV/6 kV-transformer at closed switch *S*. Transformer impedance $X_{\rm T} \approx X_{\rm s\sigma}$ helps to stabilize!
- Opening of the switch S after completed start-up at no-load speed
- Measurement of the 50 Hz-no-load current $i_{s0}(t)$

TECHNISCHE

Measured unstable no-load stator current with a big stator resistance r_s

7. Dynamics of induction machines A serial inductance x_c (= a "real" cable") helps to stabilize

TECHNISCHE UNIVERSITÄT DARMSTADT

Energy Converters – CAD and System Dynamics

Summary:

Linearized transfer function of induction machines in synchronous reference frame

- Small signal theory for transfer function $\Delta \omega_m = F(\Delta u_s, \Delta \omega_s, \Delta m_s)$ in *LAPLACE* domain
- Short-circuit rotor cage and related flux time constant explain "synchronous machine" effect
- Weakly damped oscillation at *U*/*f*-control $u_s \sim f_s$ and low speed $f_s << f_{sN}$
- Unstable operation at strongly increased stator resistance $r_{\rm s}$
- Speed control stabilizes the unstable or weakly damped oscillations of the induction machine

Energy Converters – CAD and System Dynamics

- 7. Dynamics of induction machines
 - 7.1 Per unit calculation
 - 7.2 Dynamic voltage equations and reference frames of induction machine
 - 7.3 Dynamic flux linkage equations
 - 7.4 Torque equation
 - 7.5 Dynamic equations of induction machines in stator reference frame
 - 7.6 Solutions of dynamic equations for constant speed
 - 7.7 Solutions of dynamic equations for induction machines with varying speed
 - 7.8 Linearized transfer function of induction machines in synchronous reference frame
 - 7.9 Inverter-fed induction machines with field-oriented control

Inverter-fed cage induction machine with air-air cooler

TECHNISCHE UNIVERSITÄT DARMSTADT

Inverter

Source: Siemens AG

Induction

motor

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 148 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Variable speed operation of induction machine

grid (b) current source inverter $_{\rm grid}$ (a) voltage source inverter motor motor R۰ IJ Ro οIJ \approx \approx S ° V 0 S ° V 0 Ŕ æ ТΥ οW W \mathbf{O} dc-link dc-link rectifier inverter controlled rectifier inverter **DC link capacitor C** DC link inductor (choke) L $U_{\rm d}$: DC link voltage *I*_d: DC link current controlled AC voltage, variable frequency controlled AC current, variable frequency motor winding part of motor-side inverter motor-side inverter operates independently parallel operation of motors possible each motor needs a separate inverter motor break down slip, at $r_s = 0$: motor break down slip, independent of r_s : $s_{b,I} = \frac{r_r}{m} = 0.005 \dots 0.02$ $s_{b,U} = \frac{r_r}{\sigma \cdot x_r} = 0.1 \dots 0.2 .$ Motor can operate without control within Motor operating in unstable slip range > s_b . Control is needed for stable performance. slip range 0 ... s_b

Voltage-fed induction machine at $R_s = 0$ (*HEYLAND* circle)

7. Dynamics of induction machines Torque-speed-curve of current-fed induction machine

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 151 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Current-fed induction machine ($R_s = 0$)

is in the unstable area of falling torque with slip

7. Dynamics of induction machines Voltage vs. current feeding of induction machine

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 153 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Voltage vs. Current source inverter

Voltage source inverter	Current source inverter
Stator voltage is pulse width modulated voltage pattern	Stator voltage: Sinusoidal due to induction by machine flux, which is excited by impressed currents
Stator current nearly sinusoidal with ripple due to voltage switching	Stator current consists of 120° blocks (six step current mode).
Grid side: Diode rectifier - no power flow to grid ! For electric braking chopped DC link brake resistor is needed (Costly alternative: Grid side PWM converter)	$\begin{array}{l} \mbox{Grid side: Controlled thyristor bridge for} \\ \mbox{variable rectified voltage } U_{\rm d} \mbox{ for adjusting} \\ \mbox{positive } I_{\rm d} > 0. \mbox{ At } U_{\rm d} < 0, \ \alpha > 90^{\circ} \\ \mbox{regenerative brake power flow } U_{d}I_{d} < 0 \\ \mbox{ to grid is possible.} \end{array}$
IGBT-power switches: Power range 0.1 kW 10 MW, voltage < 6000 V. Bigger power rating with IGCT- or GTO-power switches up to 30 50 MW with medium voltage e.g. 6300 V.	Thyristor power switches: Big inductionand synchronous motors (1 100 MW),World-wide biggest motor:100 MW in NASA centre /Langley/USA,super wind channel

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 154 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Variable speed operation of synchronous motor (1)

Current source inverter operation

NASA Langley Research Center, Hampton, Virginia, USA

Synchronous 12-pole motor as wind tunnel drive

100 MW, two thyristor current source inverters in parallel: 2 x 12.5 kV

36 ... 60 Hz 360 ... 600/min

Source: ABB, Switzerland

Variable speed operation of synchronous motor (2)

Current source inverter operation

NASA Langley Research Center - National Transonic Facility - Drive System

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 156 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Decomposition of stator space current vector <u>*i*</u>_s in torque- and flux-generating component (*F. BLASCHKE, Erlangen & K. HASSE, Darmstadt*, 1969)

Main flux excitation ψ_h by stator and rotor current space vector (= magnetizing current i_m) **Torque generation** in induction machine by main flux and perpendicular current component $i_{s\perp}$

7. Dynamics of induction machines Principle of field-oriented control (1)

7. Dynamics of induction machines Principle of field-oriented control (2)

Main flux excitation ψ_h by magnetizing **Torque generation** *m*_e by perpendicular current component i_{s+} via total leakage current via main inductance inductance $l_{\rm S}$ $\frac{1}{1}$ <u>*Ψ*</u>_h $\frac{1}{|s||}$ $\sigma \cdot x_{s}$ $x_{\rm h}$ x _{ro} $x_{s\sigma}$ $x_{s\sigma}$ ¹S⊥ \mathbf{S} ir' $x_{\rm h}$ $\mathbf{1}_{\mathrm{S}\perp}$ $\approx \sigma \cdot x_{c}$ [⊥]s∥ $\Psi_{\mathbf{h}}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 158 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

7. Dynamics of induction machines Principle of field-oriented control (3)

• Torque generation *m*_e :

$$m_e = \operatorname{Im}\left\{ \underline{i}_s \cdot \underline{\psi}_h^* \right\} = \operatorname{Im}\left\{ \left(\underline{i}_{s=} + \underline{i}_{s\perp} \right) \cdot \underline{\psi}_h^* \right\} = \operatorname{Im}\left\{ \underline{i}_{s\perp} \cdot \underline{\psi}_h^* \right\} = i_{s\perp} \cdot \psi_h^*$$

- Long time constant for changing ψ_h : $\tau = x_s / r_s = (x_{s\sigma} + x_h) / r_s$
- Short time constant for changing $i_{s\perp}$: $\tau_{s\sigma} = \sigma \cdot x_s / r_s$
- By decomposition of the stator current in a flux exciting and a torque generating component, the control via an appropriate stator voltage space vector \underline{u}_s
- a) can keep the flux exciting component $\underline{i}_{s=}$ constant (= constant main flux ψ_h)
- b) can vary the torque generating component $\underline{i}_{s\perp}$ = variable torque.
- As b) changes very fast with short circuit time constant $\tau_{s\sigma}$, we get a dynamic torque variation = Field-oriented control principle of *Blaschke* and *Hasse* (*Germany*, 1969)

Comparison of speed control of <u>DC</u> and <u>AC</u> induction machine

Type of machine	DC machine	Cage induction machine
Control	Armature voltage control	Field oriented control
Guiding variable	Armature voltage	Stator voltage
Fixed main flux	Separately excited main flux Φ	Main flux linkage ψ_{h}
Magnetization	Field current <i>i</i> _f	Magnetizing current <i>i</i> _m
Long flux time constant	Field time constant $L_{\rm f}/R_{\rm f}$	Open-circuit time constant x_s / r_s
Torque changed by	Armature current <i>i</i> _a	Flux-perpendicular current space vector component $\underline{i}_{s\perp}$
Short time constant for torque change	Armature time constant L_a/R_a	Short-circuit time constant $\sigma \cdot x_s / r_s$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 160 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

1

Rotor flux linkage space-vector from stator quantities

$$\underbrace{u_{UW}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{W}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{W}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{S}}_{\mathbf{v} = \frac{2}{3}} \cdot \left(u_{U} + \underline{a} \cdot u_{V} + \underline{a}^{2} \cdot u_{W}\right) = \underbrace{\frac{2}{3}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{S}}_{\mathbf{v} = \frac{2}{3}} \cdot \left(u_{U} - u_{W} + \underline{a} \cdot (u_{V} - u_{W})\right) = \underbrace{\frac{2}{3}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{UW}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{S}}_{\mathbf{v} = \frac{2}{3}} \cdot \left(u_{U} - u_{W} + \underline{a} \cdot (u_{V} - u_{W})\right) = \underbrace{\frac{2}{3}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u_{UW}}_{\mathbf{v} \leftarrow \mathbf{v}_{W}} \underbrace{u$$

From stator voltage and flux linkage equations in stator reference frame we get:

$$\frac{\underline{u}_{s} = r_{s}\underline{i}_{s} + d\underline{\psi}_{s} / d\tau}{\underline{\psi}_{s} = x_{s}\underline{i}_{s} + x_{h}\underline{i}_{r}'}{\underline{\psi}_{r}' = x_{h}\underline{i}_{s} + x_{r}'\underline{i}_{r}'} \right\} \Rightarrow \underline{\psi}_{s} = \frac{x_{h}}{x_{r}'} \cdot \underline{\psi}_{r}' + \sigma \cdot x_{s} \cdot \underline{i}_{s} \quad \Rightarrow \frac{d\underline{\psi}_{r}'}{d\tau} = \left(\underline{u}_{s} - r_{s} \cdot \underline{i}_{s} - \sigma \cdot x_{s} \cdot \frac{d\underline{i}_{s}}{d\tau}\right) \cdot \frac{x_{r}'}{x_{h}}}{\underline{\psi}_{r}'}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 7. / 161 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Rotor flux linkage space-vector from stator & rotor quantities

Measured stator current space vector is transformed into **rotor reference frame**: Rotor speed sensor is

 $\underline{i}_{s(r)} = \underline{i}_{s(s)} \cdot e^{-j \cdot \omega_m \tau}$

$$\begin{array}{c} 0 = r'_{r} \cdot \underline{i'}_{r(r)} + d \underline{\psi'}_{r(r)} / d\tau \\ \underline{\psi'}_{r(r)} = x_{h} \cdot \underline{i}_{s(r)} + x'_{r} \cdot \underline{i'}_{r(r)} \end{array} \right\} \quad \Rightarrow \quad \frac{d \underline{\psi'}_{r(r)}}{d\tau} + \frac{1}{\tau_{r}} \cdot \underline{\psi'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} \\ \underline{\psi'}_{r(r)} = x_{h} \cdot \underline{i}_{s(r)} + x'_{r} \cdot \underline{i'}_{r(r)} \end{array} \right\} \quad \Rightarrow \quad \frac{d \underline{\psi'}_{r(r)}}{d\tau} + \frac{1}{\tau_{r}} \cdot \underline{\psi'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} \\ \underline{\psi'}_{r(r)} = x_{h} \cdot \underline{i}_{s(r)} + x'_{r} \cdot \underline{i'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} + \frac{x'_{r}}{\tau_{r}} \cdot \underline{i'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} \\ \underline{\psi'}_{r(r)} = x_{h} \cdot \underline{i}_{s(r)} + \frac{x'_{r}}{\tau_{r}} \cdot \underline{i'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} + \frac{x'_{r}}{\tau_{r}} \cdot \underline{i'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} \\ \underline{\psi'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} + \frac{x'_{h}}{\tau_{r}} \cdot \underline{i'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot \underline{i}_{s(r)} + \frac{x'_{h}}{\tau_{r}} \cdot \underline{i'}_{s(r)} + \frac{x'_{h}}{\tau_{$$

- Rotor flux linkage is derived by integrating stator current space vector via rotor open circuit time constant $\tau_r = x_r / r_r$
- Due to PT_1 -performance no integration error will occur, so rotor flux linkage may be determined at any arbitrary speed, e.g. also n = 0.

7. Dynamics of induction machines Rotor flux linkage space-vector depends on *r*_r !

We assume stator current space vector to be stationary rotating with stator frequency ω_s

$$\begin{split} & \underline{i}_{s(s)} = i_{s} \cdot e^{j \cdot \omega_{s} \tau} \Longrightarrow \underline{i}_{s(r)} = i_{s} \cdot e^{j \cdot (\omega_{s} - \omega_{m}) \cdot \tau} = i_{s} \cdot e^{j \cdot \omega_{r} \tau} \\ & \text{Differential equation:} \quad \frac{d \underline{\psi'}_{r(r)}}{d \tau} + \frac{1}{\tau_{r}} \cdot \underline{\psi'}_{r(r)} = \frac{x_{h}}{\tau_{r}} \cdot i_{s} \cdot e^{j \omega_{r} \tau} \\ & \text{Solution in rotor} \\ & \text{reference frame:} \quad \underline{\psi'}_{r(r)}(\tau) = \left(\underline{\psi'}_{r(r)}(0) - \frac{x_{h} i_{s}}{1 + j \omega_{r} \tau_{r}} \right) \cdot e^{-\tau/\tau_{r}} + \frac{x_{h} i_{s}}{1 + j \omega_{r} \tau_{r}} \cdot e^{j \omega_{r} \tau} \\ & \text{Stationary solution } \tau \to \infty: \quad \underline{\psi'}_{r(r)}(\tau) = \frac{x_{h} \cdot i_{s}}{1 + j \cdot (\omega_{s} - \omega_{m}) \cdot x_{r}/r_{r}} \cdot e^{j \cdot (\omega_{s} - \omega_{m}) \cdot \tau} \end{split}$$

- Stationary solution possible without any integration error also at low speed $\omega_m << 1$
- Flux linkage amplitude and phase angle depend on r_r .
- Only at no-load $\omega_m = \omega_s$ no influence of r_r .

7. Dynamics of induction machines Determination of rotor flux linkage for field oriented control

a) from stator current and voltage:

- At high speed voltage is big and can be measured with high accuracy.
- At very low speed voltage is very low. Measurement errors such e.g. offset will be integrated to big values, so at low speed this method is NOT useful.

b) from stator current and rotor speed:

- Flux linkage may be determined at any speed, e.g. also *n* = 0.
- In cage induction machines it is difficult to determine on-line rotor resistance, which may change between 20°C and e.g. 150°C by 50%: Thermal model of the machine is needed.

Energy Converters – CAD and System Dynamics

Summary: Inverter-fed induction machines with field-oriented control

- Voltage source inverter much wider used than current source inverter
- Field-oriented control utilizes separation of current space vector into flux-parallel and flux-orthogonal component
- Flux-parallel component magnetizes main flux = long time constant
- Flux-orthogonal component magnetizes stray flux = short time constant
- Fast change of torque via fast change of flux-orthogonal current
- Dynamic change of torque via field-oriented current space vector separation

