TECHNISCHE UNIVERSITÄT DARMSTADT

- 1. Basic design rules for electrical machines
- 2. Design of Induction Machines
- 3. Heat transfer and cooling of electrical machines
- 4. Dynamics of electrical machines
- **5. Dynamics of DC machines**
- 6. Space vector theory
- 7. Dynamics of induction machines
- 8. Dynamics of synchronous machines

3. Heat transfer and cooling of electrical machines

Source: ABB, Switzerland

- 3. Heat transfer and cooling of electric machines
 - 3.1 Thermal classes, cooling systems, duty types
 - 3.2 Elements for calculation of temperature rise
 - 3.3 Heat-source plot
 - 3.4 Thermal utilization
 - 3.5 Simplified calculation of temperature rise

Temperature scales – Temperature rise

Arrhenius' law

Arrhenius law describes the "speed" (rate constant) k_{ch} of a chemical reaction in dependence of absolute temperature T

Insulation life time L

Experimental determination of insulation material life time *L***:**

Insulation material under electrical voltage stress *U* is tested e.g. with 30 specimen per temperature level T_i (i = 1, 2, 3, ...), until 10% of specimen (here: 3) fail due to voltage flash over \Rightarrow Elapsed time t_L for that case is 10%-life time $L_{10}(T_i)$.

Result:

Due to *Arrhenius* law the life time L_{10} decreases exponentially with increasing temperature *T*.

For a large number of tested specimen this is described by *Weibull*-distribution as probability function.

Montsinger's rule for transformer oil and solid insulation materials:

Insulation life time *L* decreases by 50% (taken as average of a large number of tested specimen) with increase of temperature \mathcal{G} (or *T*) by $\Delta \mathcal{G} = 10$ K.

$$L(\mathcal{G} + 10K) = 0.5 \cdot L(\mathcal{G})$$

Montsinger's rule (is based on *Arrhenius'* law)

$$L(\mathcal{G}) = L(\mathcal{G}_0 + \Delta \mathcal{G}) = L(\mathcal{G}_0) \cdot e^{-\frac{\Delta \mathcal{G}}{10} \cdot \ln 2}$$

$$L(\mathcal{G}+10K) = 0.5 \cdot L(\mathcal{G})$$

4 0

$$\Delta \mathcal{P} = 10 \text{ K}: \quad L(\mathcal{P}_0 + 10 \text{ K}) = L(\mathcal{P}_0) \cdot e^{-\frac{10}{10} \cdot \ln 2} = L(\mathcal{P}_0) \cdot e^{-\ln 2} = L(\mathcal{P}_0)/2$$

Example:

Insulation material for Thermal Class F: $L(\mathcal{G} = 155^{\circ}C) = 100000$ hours

 $L(\theta = 165^{\circ}C) = 50000$ hours

Thermal Classes (Insulation classes)

Electrical insulation systems for wires (used e.g. in electric machines, transformers, ...) are divided into different classes by temperature and temperature rise (IEC 60085).

Thermal Class	Typical materials
130 B	Inorganic materials: e.g. mica, glass fibers, asbestos, with high-temperature binders (e.g. epoxy-resin) for 130°C
155 F	Class 130 materials with binders, stable at the higher temperature 155°C
180 H	Silicone elastomers, and Class 130 inorganic materials with high- temperature binders for 180°C
200 N	As for Class B, and including Teflon, for 200°C
220 R	Polyimide enamel (Pyre-ML) or Polyimide films (e.g. Kapton), usable at 220°C

Thermal Classes in electrical machinery

Selected **Thermal Classes** of insulation systems according to IEC 60034-1:

Thermal Class	В	F	Н	250
Temperature limit \mathcal{G} (°C)	130	155	180	255
Maximum value of				
average temperature rise $\Delta \vartheta$ (K)	80	$105 (P_{\rm N} \le 5 {\rm MW})$) 125	200
(above ambient 40°C)		$100 (P_{\rm N} > 5 {\rm MW})$)	

An ambient air temperature of 40°C must be assumed, which is also to be assumed the coolant inlet temperature in air-cooled components.

At elevated level above sea-level (N.N.) above 1000 m the admissible temperature rise Δg must be reduced due the reduced mass density of air, which causes lower cooling capability.

Thermal classes

<u>Example:</u>

Thermal Class F: 40° C + 105 K + 10 K = 155° C (rated power ≤ 5 MW)

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 10 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Different principles of cooling

Open ventilation	Totally enclosed machines – surface cooling	Totally enclosed machines with heat exchanger	Hollow conductor cooling (H ₂ , de-ionized water)
Coolant air	Coolant air or water jacket	Coolant air, Heat exchanger: Air-air or air-water	Coolant hydrogen gas, oil or de-ionized water
End shields of machine are open for coolant flow	Increase of machine surface by fins or tubes for air; Water jacket cooling	Coolant flow is directed through machine and heat exchanger in closed loop	Pump presses coolant through hollow conductors
Usually up to 500 kW, at higher power acoustic noise is too big	Usually up to 2000 kW	Up to 400 MW ("Top air" turbo generators: hollow conductors)	Up to biggest machine power (2000 MW)
Often shaft mounted fan	Often shaft mounted fan	Shaft mounted fans, external fans	External pump

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 11 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

No fan	Shaft mounted fan	Externally driven fan
Cooling only due to natural convection and heat radiation	Speed dependent air flow for cooling	Air flow independent of motor speed
Used for small machines (< 1 kW), e.g. permanent magnet machines due to their	Used for constant speed drives	Used for variable speed drives Big machine power possible
lower losses	Big machine power possible	5 1 1

IC 41: Shaft mounted fan, fan hood for guiding air flow with air inlet opening,

totally enclosed slip-ring induction machine, cooling fins on cooling surface

International Cooling IC

- Type of cooling of machines is abbreviated by code IC (International Cooling) according to IEC 60034-6.
- First number: Kind of coolant flow, Second number: How coolant is propelled.
- Example:
- IC 41: "4": surface cooling,
- IC 05: "0": Open ventilation,
- IC 06: "0": Open ventilation,
- IC 86: "8": Heat exchanger on motor,

- "1": Shaft mounted fan
- "5": Externally driven fan, built within the machine
- "6": Externally driven fan, mounted on the machine
- "6": As above
- Strong connection between type of cooling (IC) and mechanical degree of protection (IP) due to design of construction: Typical combinations are: IC06 – IP23, IC41 – IP44

3. Heat transfer and cooling IC 01: Cage induction machine

Source: H.-O. Seinsch, Teubner-Verlag

- Shaft mounted fan, open ventilation,
- End shields with openings for coolant flow,
- Fan hood for guiding coolant flow with openings for air outlet,
- Additional small fan blades on cage rings for rotor cooling air flow

Totally enclosed doubly-fed induction wind generator

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 15 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

TECHNISCHE UNIVERSITÄT

DARMSTADT

3. Heat transfer and cooling **Doubly-fed induction wind generator**

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 16 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Doubly-fed induction generator for wind power generation

Source: Winergy, Germany

TECHNISCHE UNIVERSITÄT DARMSTADT

Water jacket cooling

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 19 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Doubly-fed induction generator for wind power generation

Main generator data:

2750 kW at 1100/min

Stator winding: Water jacket cooling

Rotor winding: Internal air circuit: Air-water heat exchanger beneath necessary!

- For induction machines a stator surface cooling is only sufficient up to ca. 100 kW.
- At bigger machines the increased rotor losses are not any longer cooled sufficiently.
- For bigger machines an inner circulating air flow from rotor to stator is needed.

Duty types S1, S2, S3, ..., S10 (IEC 60034-1)

Summary: Thermal classes, cooling systems, duty types

- Standardized Thermal Classes limit the maximum insulation temperature
- MONTSINGER's rule: Critical life-time reduction at too high temperatures
- Mostly air-cooling with standardized Cooling Classes
- Only large machines with direct air, hydrogen or water cooling
- Ten standardized Duty Classes, determined by the heating of the winding

- 3. Heat transfer and cooling of electric machines
 - 3.1 Thermal classes, cooling systems, duty types
 - 3.2 Elements for calculation of temperature rise
 - 3.3 Heat-source plot
 - 3.4 Thermal utilization
 - 3.5 Simplified calculation of temperature rise

Conduction of heat

Heat resistance:
$$u = R \cdot i \implies \Delta \mathcal{G} = R_{th} \cdot P_{th}$$

Electric current density J corresponds with heat flow density $q = P_{th}/A$ [W/m²]

Conduction of heat: Fourier's law

$$\frac{P_{th}}{A} = \lambda_{th} \cdot (\vartheta_2 - \vartheta_1) / l$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 24 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Heat conduction via slot insulation

Example:

550 kW-cage induction machine, 6.6 kV, 60 open stator slots, slot height $h_0 = 69$ mm, slot width $b_0 = 12.5$ mm, insulation thickness d = 2.7 mm, stack length: $l_{\rm Fe} = 380$ mm Slot surface:

$$A = (2 \cdot h_Q + b_Q) \cdot l_{Fe} = (2 \cdot 69 + 12.5) \cdot 380 = 57190 \,\mathrm{mm^2}$$

Thermal conductivity resistance from copper to iron:

$$R_{th} = \frac{d}{\lambda_{th}A} = \frac{0.0027}{0.2 \cdot 0.05719} = \underline{0.236} \text{ K/W}$$

With 50 W losses in the slot conductor we get a temperature rise at the insulation of $\Delta \theta$ = 0.236.50 = 11.8 K

Convection of heat

Heat transfer coefficient α describes the cooling effect of flowing ("convection") coolant, passing by a cooling surface A with the velocity v

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 26 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Heat transfer coefficient α

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 27 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Example: Heat convection at winding overhangs

550 kW-cage induction machine, 6.6 kV, B<u>_</u>σ′ open ventilated machine, double-layer winding, velocity of air flow in winding overhang v = 12 m/s = 43 km/h. Coil height = half slot height $h_0/2 = 69/2 = 34.5$ mm, coil breadth = slot width $b_0 = 12.5$ mm, length of winding overhang $l_{\rm b} = 614.8 \text{ mm}$ Surface of insulated stator coil in winding overhang: $A = 2 \cdot (h_Q / 2 + b_Q) \cdot l_b = (69 + 2 \cdot 12.5) \cdot 614.8 = 57791 \text{ mm}^2$ Moved air, insulated winding: $\alpha = 8v^{3/4} = 8 \cdot 12^{3/4} = 51.6 \text{ W/(m^2K)}^{W}$ $R_{th} = \frac{1}{\alpha A} = \frac{1}{51.6 \cdot 0.057791} = \underline{0.335}$ K/W

With 85 W losses in one layer of winding overhang we get a temperature rise of $\Delta \theta$ = 0.335 85 = 28.5 K

Radiation of heat

Heat radiation does not need any medium to transport heat:

- Transferred heat P_{th} from hot (T_2) to cold $(T_1 < T_2)$ surface A
- T_1 , T_2 are absolute temperatures, measured in K
- Heat radiation law of *Stefan* and *Boltzmann*:

$$\frac{P_{th}}{A} = c_s \cdot (T_2^4 - T_1^4)$$

Example:

- Radiated losses: "black body": $c_s = 5.7 \cdot 10^{-8} \text{ W/(m^2K^4)}$, "grey body": $c_s = 5 \cdot 10^{-8} \text{ W/(m^2K^4)}$
- Temperature difference: $\Delta g = 80$ K,
- Ambient temperature 20 °C, $T_1 = 20 + 273.15 = 293.15$ K $T_2 = T_1 + 40 = 202.15 + 20 = 272$

$$T_2 = T_1 + \Delta \mathcal{G} = 293.15 + 80 = 373.15$$
 k

- Heat flow density:

$$q = \frac{P_{th}}{A} = c_s \cdot (T_2^4 - T_1^4) = 5 \cdot 10^{-8} \cdot (373.15^4 - 293.15^4) = \underline{600.1} \,\text{W/m}^2$$

- How big is an equivalent heat transfer coefficient α_e for convective heat transfer ?

 $\alpha_e = \frac{P_{th}}{A \cdot \Delta \mathcal{G}} = \frac{q}{\Delta \mathcal{G}} = \frac{600.1}{80} = \frac{7.5}{10} \text{ W/(m^2 \text{K})} \Rightarrow \text{ low value, similar to natural convection!}$

TECHNISCHE UNIVERSITÄT DARMSTADT

 As the surface temperature in electric machines must be low (< 60°C to avoid skin damage at touching), the contribution of radiation to total cooling is small

Significance or radiation for cooling electric machines

- Only in machines with bad cooling (= natural convection as cooling), radiation may help significantly, especially with black painted surfaces:

$$\alpha_{Natural\ convection} + \alpha_{Radiation} = 8 + 7.5 = 15.5 \frac{W}{m^2 K}$$

<u>Application</u>: Inverter-fed PM synchronous machines as servo motors

for tooling machines or robot drives. No fan = no fault can occur to the cooling system = robust cooling system, BUT: low heat transfer coefficient, so motor must be over-sized.

Example:

Two small PM servo drives, painted in black (also "infrared black" for good radiation effect)

Source: LTi-Drives, Lahnau, Germany

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 30 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Storage of heat energy = "heating up"

Storage of heat energy:
$$mc \cdot \frac{d\Delta \vartheta}{dt} = P_{th} \iff C \cdot \frac{du}{dt} = i$$

Equivalent electric circuit: Capacitor!

Material	Specific heat capacity c Ws/(kg [·] K)	Mass density γ kg/m³
Air (at constant pressure)	1009	1.226 (at 25 °C)
Copper	388.5	8900
Iron	502	7850
Epoxy resin	1320 1450	1500

Example:

Stored heat in volume $V = 1 \text{ dm}^3$ of a) air, b) copper, c) iron, heated up from 20°C to 100°C: $W_{th} = \gamma \cdot V \cdot c \cdot \Delta \mathcal{G}$ a) Air: $W_{th} = 1.226 \cdot 10^{-3} \cdot 1009 \cdot 80 = \underline{99} \text{ J}$ b) Copper: $W_{th} = 8900 \cdot 10^{-3} \cdot 388.5 \cdot 80 = \underline{276.6} \text{ kJ}$ (2766-times of air!) c) Iron: $W_{th} = 7850 \cdot 10^{-3} \cdot 502 \cdot 80 = \underline{315.3} \text{ kJ}$ (3153-times of air!)

Summary: Elements for calculation of temperature rise

- Three ways to dissipate heat: conduction, convection, radiation
- Cooling systems operate mostly with convection
- Internal heat flow governed by heat conduction
- Radiation of heat small; only for self-cooled machines of importance
- Heat storage for thermal transients decisive due to rather long thermal time constants T_9

- 3. Heat transfer and cooling of electric machines
 - 3.1 Thermal classes, cooling systems, duty types
 - 3.2 Elements for calculation of temperature rise

3.3 Heat-source plot

- 3.4 Thermal utilization
- 3.5 Simplified calculation of temperature rise

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 34 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

3. Heat transfer and cooling Methods for calculating of temperature rise

- a) Numerical simulation: e. g. Finite Elements: Solution of the partial differential equations of heat generation and conduction
- b) Heat source plot: Lumped elements of heat flow simplified modeling of geometry

Analogy: Electrical network:

current i	\Rightarrow	heat power <i>P_{th}</i>
potential difference u	\Rightarrow	temperature difference $\varDelta \vartheta$
resistance R	\Rightarrow	thermal resistance R _{th}
capacitance C	\Rightarrow	thermal capacitance <i>m</i> ·c
$u = R \cdot i$	\Rightarrow	$\Delta \mathcal{9} = R_{th} \cdot P_{th}$
$i = C \cdot (du / dt)$	\Rightarrow	$P_{th} = m \cdot c \cdot (d\Delta \mathcal{G}/dt)$

"Strategy" of heat source plot

- 1. Determination of losses (heat sources)
- 2. Feeding of sources into the heat source plot (heat storage, thermal resistances)
- 3. Determination of temperature differences (temperature rise) at the "nodes"

Transient heating:

Solution of coupled differential equations due to heat storage effect (heating up, cooling down)

Stationary temperature rise:

Solution of algebraic equation system, no storage effects (steady state operation)

Heat-source distribution in an AC machine

rotor

Cross-section of induction machine with

- copper losses in slot conductors of stator and rotor $P_{Q,s}$, $P_{Q,r}$,
- copper losses in winding overhangs $P_{\rm b,s}$, $P_{\rm b,r}$
- iron losses in stator and rotor iron stack $P_{\rm Fe,s}$, $P_{\rm Fe,r}$

Heat source plot of the cross-section of induction machine

Heat source plot for 11 kW, 4-pole cage induction motor (1)

Example: Totally enclosed cage induction machine with shaft mounted fan, 11 kW, 4-pole, 50 Hz, 1450/min rated speed, Thermal Class B

TECHNISCHE UNIVERSITÄT DARMSTADT

Heat source plot for 11 kW, 4-pole cage induction motor (2)

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 39 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Heat resistance $R_{\rm th}$ and heat conductance $G_{\rm th} = 1/R_{\rm th}$

TECHNISCHE UNIVERSITÄT DARMSTADT

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 42 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

"Two-body" problem: Copper winding and iron core

• The two unknown temperature differences of copper $\varDelta \mathcal{P}_{Cu}$ and iron $\varDelta \mathcal{P}_{Fe}$

$$\begin{split} m_{Cu} \cdot c_{Cu} \cdot \frac{d\Delta \vartheta_{Cu}}{dt} + \frac{\Delta \vartheta_{Cu}}{R_{th3}} + \frac{\Delta \vartheta_{Cu} - \Delta \vartheta_{Fe}}{R_{th2}} &= P_{Cu,s} \\ m_{Fe} \cdot c_{Fe} \cdot \frac{d\Delta \vartheta_{Fe}}{dt} + \frac{\Delta \vartheta_{Fe}}{R_{th1}} - \frac{\Delta \vartheta_{Cu} - \Delta \vartheta_{Fe}}{R_{th2}} &= P_{Fe,s} \end{split}$$

- <u>Two bodies</u>: Copper and iron = Two 1st order linear differential equations = One 2nd order linear differential equation = **Two thermal time constants** T_{91} , T_{92} ! Usually: Copper mass much smaller than iron mass: $m_{Fe} >> m_{Cu}$
- Therefore:

LONG time constant $T_{g_1} > T_{g_2}$ related mainly to iron mass SHORT time constant T_{g_2} related mainly to copper mass

• <u>Example</u>: 550 kW 4-pole cage induction machine: Stator: m_{Fe} = 631 kg > m_{Cu} = 142 kg Inactive iron mass $m_{Fe,Housing}$ has to be considered in addition!

Steady state thermal condition

• Steady state temperature rise corresponds to <u>d/dt = 0</u>:

(1)
$$\frac{\Delta \mathcal{G}_{Cu}}{R_{th3}} + \frac{\Delta \mathcal{G}_{Cu} - \Delta \mathcal{G}_{Fe}}{R_{th2}} = P_{Cu,s}$$

(2)
$$\frac{\Delta \mathcal{G}_{Fe}}{R_{th1}} - \frac{\Delta \mathcal{G}_{Cu} - \Delta \mathcal{G}_{Fe}}{R_{th2}} = P_{Fe,s}$$

• Simplified:
$$R_{th3} \gg R_{th1}$$
, R_{th2} : (1) $\frac{\Delta \mathcal{G}_{Cu}}{R_{th3}} \approx 0 \Rightarrow \frac{\Delta \mathcal{G}_{Cu} - \Delta \mathcal{G}_{Fe}}{R_{th2}} = P_{Cu,s}$
(1) $\Delta \mathcal{G}_{Cu} = P_{Cu,s} \cdot R_{th2} + \Delta \mathcal{G}_{Fe}$
 $\frac{\Delta \mathcal{G}_{Fe}}{R_{th1}} + \frac{\Delta \mathcal{G}_{Fe}}{R_{th2}} = P_{Fe,s} + \frac{\Delta \mathcal{G}_{Cu}}{R_{th2}} = P_{Fe,s} + P_{Cu,s} + \frac{\Delta \mathcal{G}_{Fe}}{R_{th2}}$
(2) $\Delta \mathcal{G}_{Fe} = (P_{Fe,s} + P_{Cu,s}) \cdot R_{th1}$
 $P_{1} = \frac{\Delta \mathcal{G}_{Fe}}{R_{th1}}$
 $P_{1} = \frac{\Delta \mathcal{G}_{Fe}}{R_{th1}}$
 $P_{2} = \frac{\Delta \mathcal{G}_{Cu} - \Delta \mathcal{G}_{Fe}}{R_{th2}} = P_{Fe,s} + P_{Cu,s}$

Example: Stator heat flow from conductors to surface

<u>Result:</u> The winding temperature rise does not exceed the Thermal Class F limit.

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 45 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Simplified transient ",two-body" problem: $R_{th3} \rightarrow \infty$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 46 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

and cooling

Solution for simplified transient "two-body" problem

Initial conditions:

$$\begin{split} & \Delta \mathcal{G}_{Cu}(0) = 0, \ \Delta \mathcal{G}_{Fe}(0) = 0 \rightarrow \Delta \dot{\mathcal{G}}_{Cu}(0) = P_{Cu,s} / (m_{Cu}c_{Cu}), \ \Delta \dot{\mathcal{G}}_{Fe}(0) = P_{Fe,s} / (m_{Fe}c_{Fe}) \\ & \mathbf{Solution:} \ t \geq 0: \\ & \Delta \mathcal{G}_{Cu}(t) = \frac{1}{\sqrt{\left(\frac{1}{\tau} + \frac{1}{\tau_{Cu}}\right)^2 - \frac{4}{\tau_{Cu}\tau_{Fe}}}} \cdot \left[\left(\frac{P_{Cu,s}}{m_{Cu}c_{Cu}} - \frac{\Delta \mathcal{G}_{Cu\infty}}{T_{g_2}}\right) \cdot e^{-\frac{t}{T_{g_1}}} - \left(\frac{P_{Cu,s}}{m_{Cu}c_{Cu}} - \frac{\Delta \mathcal{G}_{Cu\infty}}{T_{g_1}}\right) \cdot e^{-\frac{t}{T_{g_2}}} \right] + \Delta \mathcal{G}_{Cu\infty}} \\ & \Delta \mathcal{G}_{Fe}(t) = \frac{1}{\sqrt{\left(\frac{1}{\tau} + \frac{1}{\tau_{Cu}}\right)^2 - \frac{4}{\tau_{Cu}\tau_{Fe}}}} \cdot \left[\left(\frac{P_{Fe,s}}{m_{Fe}c_{Fe}} - \frac{\Delta \mathcal{G}_{Fe\infty}}{T_{g_2}}\right) \cdot e^{-\frac{t}{T_{g_1}}} - \left(\frac{P_{Fe,s}}{m_{Fe}c_{Fe}} - \frac{\Delta \mathcal{G}_{Fe\infty}}{T_{g_1}}\right) \cdot e^{-\frac{t}{T_{g_2}}} \right] + \Delta \mathcal{G}_{Fe\infty}} \end{split}$$

Steady-state temperature rise: $\Delta \mathcal{G}_{Cu\infty} = P_{Cu,s} \cdot R_{th2} + \Delta \mathcal{G}_{Fe\infty} \qquad \Delta \mathcal{G}_{Fe\infty} = (P_{Fe,s} + P_{Cu,s}) \cdot R_{th1}$ **Two time constants:** $T_{\mathcal{G}_1} >> T_{\mathcal{G}_2}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 47 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

TECHNISCHE UNIVERSITÄT DARMSTADT

Consideration only of iron or copper: "Single-body" problem

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Example: Transient "Two-body" problem

11 kW cage induction motor, Th. Cl. F, frame size 160 mm, totally enclosed, 50 Hz, four poles, shaft mounted fan, total motor mass 76 kg, stator: copper mass: 5 kg, active iron mass: 22 kg $P_{Cu,s} = 554$ W, $P_{Fe,s} = 260$ W, $R_{th2} = 0.047$ K/W, $R_{th1} = 0.072$ K/W, $R_{th3} \rightarrow \infty$, $m_{Fe}c_{Fe} = 11044$ J/K, $m_{Cu}c_{Cu} = 1943$ J/K

 $\tau = 314 \,\mathrm{s}, \, \tau_{Fe} = 795 \,\mathrm{s}, \, \tau_{Cu} = 91 \,\mathrm{s}$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 49 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Long iron and short copper time constant

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 50 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Heat source plot of a PM synchronous machine

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 51 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Example: Calculated temperature rise at three "nodes"

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 52 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Example: 3D heat flow at axially short motors

Numerical 3D Finite-Element thermal steady-state calculation of an <u>axially short</u> PM synchronous machine

"Thermally equivalent" slot insulation = mix of slot insulation paper, epoxy resin and air voids at a slot fill factor $55\% \Rightarrow$ reduction of number of finite elements in the slot region

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 53 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

TECHNISCHE UNIVERSITÄT DARMSTADT

Simplified calculation for winding temperature rise:

"Single-body" problem: Total losses in machine

- Machine is **"Single-body = homogenous body replica":**
- Total losses P_d within machine = heat source
- Convective heat transfer from machine surface A_G to coolant

flow:
$$R_{th} = \frac{1}{\alpha A_G}$$

Total motor mass is taken for heat storage.

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 54 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Temperature rise of a homogeneous body

$$m \cdot c \cdot \frac{d \varDelta \mathcal{P}_{Cu}}{dt} + \alpha \cdot A_G \cdot \varDelta \mathcal{P}_{Cu} = P_d$$

Solution of 1st order differential linear equation: Superposition of homogenous and particular solution:

$$\Delta \mathcal{P}_{Cu}(t) = \Delta \mathcal{P}_{Cu,h}(t) + \Delta \mathcal{P}_{Cu,p}(t)$$

• Homogenous differential equation: Solution is exponential function

$$m \cdot c \cdot \frac{d\Delta \mathcal{G}_{Cu,h}}{dt} + \alpha \cdot A_G \cdot \Delta \mathcal{G}_{Cu,h} = 0 \qquad \frac{d\Delta \mathcal{G}_{Cu,h}}{dt} + \frac{\alpha \cdot A_G}{m \cdot c} \cdot \Delta \mathcal{G}_{Cu,h} = 0 \qquad \frac{d\Delta \mathcal{G}_{Cu,h}}{dt} + \frac{\Delta \mathcal{G}_{Cu,h}}{T_{\mathcal{G}}} = 0$$

$$T_{\mathcal{G}} = \frac{m \cdot c}{\alpha \cdot A_G} \qquad \Delta \mathcal{G}_{Cu,h}(t) = C \cdot e^{-t/T_{\mathcal{G}}}$$

- Particular solution: As right hand side is constant, it must also be constant: $\Delta \mathcal{G}_{Cu,p}(t) = K$ $m \cdot c \cdot \frac{dK}{dt} + \alpha \cdot A_G \cdot K = P_d \Rightarrow K = P_d / (\alpha \cdot A_G) = \Delta \mathcal{G}(t \to \infty) = \Delta \mathcal{G}_{\infty}$
- Resulting solution must satisfy initial condition via $C: \varDelta \mathcal{P}_{Cu}(t=0) = \varDelta \mathcal{P}_0$

$$\Delta \mathcal{G}_{Cu}(t) = \Delta \mathcal{G}_{Cu,h}(t) + \Delta \mathcal{G}_{Cu,p}(t) = C \cdot e^{-t/T_{\mathcal{G}}} + \Delta \mathcal{G}_{\infty} \qquad \qquad \Delta \mathcal{G}_{0} = C \cdot e^{0/T_{\mathcal{G}}} + \Delta \mathcal{G}_{\infty} \Rightarrow C = \Delta \mathcal{G}_{0} - \Delta \mathcal{G}_{\infty}$$

$$\Delta \mathcal{G}_{Cu}(t) = \left(\Delta \mathcal{G}_{0} - \Delta \mathcal{G}_{\infty}\right) \cdot e^{-t/T_{\mathcal{G}}} + \Delta \mathcal{G}_{\infty}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Transient solution of "homogenous-body" replica at S1 duty

Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Thermal time constant at operation and stand still

Machines with shaft mounted fan have

- a) a **shorter** thermal time constant T_{9} , when rotating, as the fan blows, and
- b) a **longer** thermal time constant $T_{9,St}$ at stand still, as the air is not moved.

In case b) the heat transfer coefficient α is smaller!

$$T_{\mathcal{G}} = \frac{m \cdot c}{\alpha \cdot A_G}$$

$$T_{\mathcal{G},St} = (1.5 \dots 2.0) \cdot T_{\mathcal{G}}$$

Summary: Homogenous-body replica for temperature rise

- Simplified calculation for winding temperature rise: "Homogenous-body replica":
- a) Heat source: Total losses P_d within machine (or "equivalent losses" P_{de})
- b) Convective heat transfer from machine surface A_G to coolant flow: $R_{th} = \frac{1}{\alpha \cdot A_G}$
- c) Total motor mass with equivalent specific thermal capacity c_e is taken for heat storage.

$$m \cdot c_e \cdot \frac{d\Delta \mathcal{P}_{Cu}}{dt} + \alpha \cdot A_G \cdot \Delta \mathcal{P}_{Cu} = P_{de} \qquad \qquad \Delta \mathcal{P}_{\infty} = \frac{P_{de}}{\alpha \cdot A_G}$$

- Initial condition is winding temperature rise at t = 0: $\Delta \mathcal{P}_{Cu}(0) = \Delta \mathcal{P}_{0}$.
- Homogenous-body thermal time constant: $T_{\mathcal{G}} = \frac{m \cdot c_e}{\alpha \cdot A_G} \quad m \sim l^3, A_G \sim l^2$
- Thermal time constants scales with: $T_{\mathcal{G}} \sim l$ = Thermal time constant rises with motor size.
- Small machines: $T_{\mathcal{G}} \approx 10 \text{ min.}$ (several 100 W), big machines: $T_{\mathcal{G}} \approx 3 h$ (several MW).

Summary: Heat-source plot

- Heat sources as power input
- Thermal resistances for steady state temperature calculation
- Heat capacities for transient temperature calculation
- Each heat capacity element gives an additional order of differential equation
- Stator copper and iron losses give a thermal "two-body" problem
- Equivalent total losses P_{de} give the "single-body" problem: e.g. for stator winding temperature: $P_{de} = P_{Cu,s} + 0.5 \cdot P_{Fe} + 0.3 \cdot P_{Cu,r}$
- "Single-body" problem gives one thermal time constant via equivalent specific heat capacity $c_{\rm e}$

e.g. for stator winding temperature: $c_e = (c_{Cu} \cdot m_{Cu} + c_{Fe} \cdot m_{Fe})/(m_{Fe} + m_{Cu})$

Energy Converters – CAD and System Dynamics

- 3. Heat transfer and cooling of electric machines
 - 3.1 Thermal classes, cooling systems, duty types
 - 3.2 Elements for calculation of temperature rise
 - 3.3 Heat-source plot
 - 3.4 Thermal utilization
 - 3.5 Simplified calculation of temperature rise

Thermal utilization (see Chapter 1)

Steady-state copper temperature rise: $\Delta \mathcal{G}_{Cu} = P_{Cu} / (\alpha \cdot A_G)$

$$A_{\rm G}$$
: cooling active surface

Copper losses:
$$P_{Cu} = m \cdot \frac{1}{\kappa} \cdot \frac{N \cdot 2 \cdot (l_{Fe} + l_b)}{a_a \cdot A_{Cu}} \cdot I^2$$

With current loading
$$A = \frac{2mNI}{2p\tau_p}$$
 and current density $J = \frac{I}{a_a A_{Cu}}$ we get:

$$\Delta \mathcal{P}_{Cu} = A \cdot J \cdot \frac{1}{\alpha \cdot \kappa} \cdot \frac{2p\tau_p \cdot (l_{Fe} + l_b)}{A_G} \qquad \Rightarrow \qquad \Delta \mathcal{P}_{Cu} \sim A \cdot J$$

• Thermal Class F: (IEC60034-1): $\Delta \mathcal{G}_{Cu} = 105$ K at $\mathcal{G}_{amb} = 40^{\circ}C \rightarrow \mathcal{G}_{Cu} = 145^{\circ}C$

Standard induction machine (totally enclosed, shaft-mounted fan cooled: TEFC): $\alpha \approx 50$ W/(m²K), $\kappa_{Cu}(145^{\circ}C) = 38$ MS/m

$$\frac{2p\tau_p \cdot (l_{Fe} + l_b)}{A_G} \approx 1$$

• Typical values: A = 250 A/cm, $J = 7 \text{ A/mm}^2$: $A \cdot J = 1750 \text{ A/cm} \cdot \text{A/mm}^2$

$$\Delta \mathcal{P}_{Cu} = A \cdot J \cdot \frac{1}{\alpha \cdot \kappa} \cdot \frac{2p\tau_p \cdot (l_{Fe} + l_b)}{A_G} = \frac{25000 \cdot 7 \cdot 10^6}{50 \cdot 38 \cdot 10^6} \cdot 1 = 92 \text{K} < 105 \text{K}$$

• *Result:*

With $A J \leq 1800 \text{ A/cm} \text{ A/mm}^2 \text{ TEFC}$ motors are roughly within Th. Cl. F temperature rise (Note: Other loss components neglected!).

Summary: Thermal utilization

- Thermal utilization is related to steady-state "single-body" problem
- Heat source is only given by copper losses
- Thermal utilization coefficient $A \cdot J$ only valid, if copper losses dominate
- Thermal utilization often used as a "first guess" for temperature
- For detailed machine design the heat-source plot is needed

Energy Converters – CAD and System Dynamics

- 3. Heat transfer and cooling of electric machines
 - 3.1 Thermal classes, cooling systems, duty types
 - 3.2 Elements for calculation of temperature rise
 - 3.3 Heat-source plot
 - 3.4 Thermal utilization
 - 3.5 Simplified calculation of temperature rise

Transient temperature rise at S1 duty

p Power at S1-duty $\Delta \mathcal{G}_{C_{\mathcal{U}}} = \Delta \mathcal{G}_{\infty} \cdot (1 - e^{-t/T_{\mathcal{G}}}) + \Delta \mathcal{G}_{0} \cdot e^{-t/T_{\mathcal{G}}}$ 0 P_d Time function of losses at S1-duty **Example:** $\Delta \vartheta_0 = 0$ $\Delta \vartheta_{Cu}(t) = \Delta \vartheta_{\infty} \cdot (1 - e^{-t/T_{\vartheta}})$ 0 Winding Steady state temperature $\Delta \vartheta_{\infty} = P_{C_{\mu}}/(\alpha A_G)$ is reached temperature rise after about three time constants: T_{η} $\Delta \mathcal{G}_{C_{\mu}}(3T_{\mathcal{G}}) = \Delta \mathcal{G}_{\infty} \cdot (1 - e^{-3}) = 0.95 \cdot \Delta \mathcal{G}_{\infty}.$ $\Delta \vartheta_{\infty,\mathrm{S1}}$ 0

Increased power *P*_{S2} at short time duty S2

• Due to short-time operation $t_{\rm B}$ output power may be increased up to $P_{\rm S2}$:

$$\Delta \mathcal{G}(t_B) = \Delta \mathcal{G}_{\infty,S2} \cdot \left(1 - e^{-t_B / T_{\mathcal{G}}} \right) \leq \Delta \mathcal{G}_{\infty,S1} \qquad \Delta \mathcal{G}_{\infty} \sim P_d$$

Power is estimated as: $P_{S2} = 3 \cdot U_s I_s \cdot \cos \varphi_s \cdot \eta \sim I_s = I_{s,S2}$ Losses are estimated as: $P_d \approx P_{Cu,s+r} = 3 \cdot (R_s I_s^2 + R'_r {I'_r}^2) \sim I_s^2 \Rightarrow P_{d,S2} \sim I_{s,S2}^2$ $I_s \approx -I'_r$

• Increased power *P*_{S2} estimated:

$$\frac{P_{S2}}{P_{S1}} = \frac{I_{s,S2}}{I_{s,S1}} = \sqrt{\frac{P_{d,S2}}{P_{d,S1}}} = \sqrt{\frac{\Delta \mathcal{G}_{\infty,S2}}{\Delta \mathcal{G}_{\infty,S1}}} = \frac{1}{\sqrt{1 - e^{-t_B/T_{\mathcal{G}}}}}$$

• Example:

500 kW cage induction motor, thermal time constant T_9 = 40 min. Motor shall be operated in S2 duty with operation time t_B = 30 min.

$$\frac{P_{S2}}{P_{S1}} = \frac{1}{\sqrt{1 - e^{-t_B/T_g}}} = \frac{1}{\sqrt{1 - e^{-30/40}}} = \sqrt{1.9} = \underline{1.38}$$

Motor power may be increased for S2-operation by 38% up to 690 kW.

Short time duty: S2 duty

Linear approximation of exponential temperature function

If a considered time span t_B is much shorter than the thermal time constant T_9 , we may approximate the exponential function via the tangent!

$$t_B << T_{\mathcal{G}}:$$

$$0 \le t \le t_B: 1 - e^{-t/T_{\mathcal{G}}} \approx t/T_{\mathcal{G}}$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \approx 1 + x, \quad x \ll 1$$

$$1 - e^{-t/T_{\mathcal{G}}} \approx 1 - (1 - t/T_{\mathcal{G}}) = t/T_{\mathcal{G}}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Temperature rise at intermittent periodic duty S3

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 69 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Increased power P_{S3} possible at intermittent periodic duty S3

• By taking linear instead of exponential temperature rise and fall we obtain:

$$\frac{P_{S3}}{P_{S1}} = \frac{I_{s,S3}}{I_{s,S1}} = \sqrt{\frac{P_{d,S3}}{P_{d,S1}}} = \sqrt{\frac{\Delta \mathcal{G}_{\infty,S3}}{\Delta \mathcal{G}_{\infty,S1}}} = \sqrt{1 + \frac{T_{\mathcal{G}} \cdot t_{St}}{T_{\mathcal{G},St} \cdot t_B}} - \frac{t_{St}}{T_{\mathcal{G},St}}$$

TU Darmstadt, Institut für Elektrische Energiewandlung | Energy Converters – CAD & System Dynamics, 3. / 70 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder

Increased power P_{S3} possible at intermittent periodic duty S3

Example:

500 kW cage induction motor, shaft mounted fan:

Thermal time constants $T_9 = 40$ min, $T_{9,St} = 80$ min.

Motor shall be operated in S3 duty with

- operation time t_B = 2 min, stand still time t_{St} = 3 min, both << T_{9} , $T_{9,St}$.

$$- t_B / t_S = 2/(2+3) = 2/5 = \underline{40\%}$$

$$- \frac{P_{S3}}{P_{S1}} = \sqrt{1 + \frac{T_g \cdot t_{St}}{T_{g,St} \cdot t_B}} - \frac{t_{St}}{T_{g,St}} = \sqrt{1 + \frac{40 \cdot 3}{80 \cdot 2}} - \frac{3}{80} = \sqrt{1.71} = \underline{1.31}$$

Motor power may be increased for S3-operation by 31% up to 655 kW.

Equivalent thermal torque M_{eff} (1)

• Arbitrary dynamic duty cycle:

K different n_i - M_i -load points with short load durations $\Delta t_i \ll T_9$ each, i = 1, ..., K:

- Δt_i "short" compared to the thermal time constant T_9 : $\Delta t_i / T_9 << 1$
- Estimate of winding temperature via the method of "equivalent thermal torque" M_{eff}

Accelerating/braking torque calculation M_b

- *M*_e: Electromagnetic torque
- $M_{\rm s}$ > 0 at n > 0 and $M_{\rm s}$ < 0 at n < 0: Shaft torque of load
- *M*_b: Accelerating torque
- $M_d > 0$ at n > 0 and $M_d < 0$ at n < 0: Braking torque due to machine losses (friction, ...)

 $M_b = M_e - M_d - M_s$

- $M_b > 0$: Acceleration: dn/dt > 0
- $M_{h} = 0$: Constant speed: *dn/dt* = 0
- $M_b < 0$: Deceleration (braking): dn/dt < 0
- $M_s = 0$: No-load operation

 $t_{i} \le t \le t_{i} + \Delta t_{i} : M_{b,i} = \text{const.} : n_{i}(t) = n(t_{i}) + (M_{b,i} / (J \cdot 2\pi)) \cdot t$ $M_{b,i} = M_{e,i} - M_{d,i} - M_{s,i}$

Equivalent thermal torque M_{eff} (2)

- r.m.s. current during duty cycle: $I_{rms} = \sqrt{\frac{1}{T} \cdot \left(I_1^2 \cdot \varDelta t_1 + I_2^2 \cdot \varDelta t_2 + ... + I_K^2 \cdot \varDelta t_K\right)}$
- Losses during duty cycle: $P_d = 3 \cdot R \cdot I_{rms}^2 \sim \Delta \theta_{Cu}$
- Equivalent thermal torque: $M_{eff} \sim I_{rms} \cdot \Phi$ (flux Φ assumed to be constant, e.g. PM flux)

$$M_{eff} = \sqrt{\frac{1}{T} \cdot \left(M_{e1}^2 \cdot \varDelta t_1 + M_{e2}^2 \cdot \varDelta t_2 + \dots + M_{eK}^2 \cdot \varDelta t_K\right)}$$

• <u>Result:</u>

If M_{eff} and n_{av} are <u>below</u> the rated values $M_{\text{N}} \& n_{\text{N}}$, then we can expect, that $\mathcal{G}_{\text{Cu}} < \mathcal{G}_{\text{Cu,lim}}$!

$$M_{\rm eff} < M_{\rm N}$$
 , $n_{\rm av} < n_{\rm N} \implies \mathcal{G}_{\rm Cu} < \mathcal{G}_{\rm Cu,lim}$

• For more detailed calculation the transient heat source plot is needed!

Example: Equivalent torque of PM synchronous motor (1)

<u>Data:</u>

Rated shaft torque $M_{\rm N} = 17.5$ Nm, maximum shaft torque $M_{\rm e,max} = 42$ Nm Loss torque (e.g. friction losses), assumed as independent from speed: $M_{\rm d} = 2.73$ Nm Rated speed $n_{\rm N} = 1500/{\rm min}$, maximum speed $n_{\rm max} = 3000/{\rm min}$

Electromagnetic torque M_e:

Rated load torque: $M_{\rm s} = 17.5$ Nm At braking operation:

Loss torque reduces necessary braking torque: $M_{\rm b,e}$ = $M_{\rm e}$ - $M_{\rm d}$ < 0 No-load motor operation: $M_{\rm e}$ = $M_{\rm d}$

Electromagnetic torque $M_e \sim \text{current} \cdot \text{magnetic flux} = I \cdot \Phi$

The electromagnetic torque $M_{\rm e}$ has to be used for the determination of $M_{\rm eff}$!

TECHNISCHE UNIVERSITÄT

DARMSTADT

Example: Equivalent torque of PM synchronous motor (2)

i		$\Delta t_i / s$	n/\min^{-1}	$\left \overline{n}_{i}\right \min^{-1}$	$M_{\rm s,\it i}/{ m Nm}$	$M_{\mathrm{e},i}/\mathrm{Nm}$
1	Speed up with $M_{e,max}$ from $n = 0$ to n_{max}	0.12	0 3000	1500	0	42 + 2.73 = 44.73
2	Rotate with M_d at n_{max} for 0.6 s	0.6	3000	3000	0	2.73
3	Braking with $-M_{e,max}$ to working speed <i>n</i>	0.08*)	3000 1000	2000	0	-42 + 2.73 = -39.27
4	Load torque $M_{\rm N}$ at working speed for 3 s	3	1000	1000	17.5	17.5 + 2.73 = 20.23
5	Braking with $-M_{e,max}$ to stand still $n = 0$	0.04**)	1000 0	500	0	-39.27
6	Motor stop for 0.5 s	0.5	0	0	0	0
7	Speed up with $-M_{e,max}$ from $n = 0$ to $-n_{max}$	0.12	03000	1500	0	-42 - 2.73 = -44.73
8	Rotate with $-M_d$ at $-n_{max}$ for 1.5 s	1.5	-3000	3000	0	-2.73
9	Braking with $M_{e,max}$ to stand still $n = 0$	0.12	-3000 0	1500	0	42 - 2.73 = 39.27
10	Motor stop for 3 s	3	0	0	0	0
	Duration of duty cycle $T = 9.08$ s	9.08		1100		$M_{\rm eff} = 15.2 \ { m Nm}$

*) $(2/3) \cdot 0.12 = 0.08 \text{ s}$ **) $(1/3) \cdot 0.12 = 0.04 \text{ s}$

 $M_{\rm eff} = 15.2 \text{ Nm} < M_{\rm N} = 17.5 \text{ Nm}$

 $n_{\rm av} = 1100/{\rm min} < n_{\rm N} = 1500/{\rm min}$

The motor winding temperature should be well below the admissible limit!

Energy Converters – CAD and System Dynamics

Summary: Simplified calculation of temperature rise

- Duty types are ruled by the thermal time constant T_9 of "single-body" problem
- Only duty types S1, S2, S3 treated here
- Temperature rise for steady-state, short-time & intermittent operation derived
- The method of equivalent thermal torque M_{eff} may be used for dynamic load cycles, if $\Delta t_i << T_g$

