Planning and application of electrical drives (PAED)Drives for electric vehicles

TU DARMSTADT – Basics of Drive Calculations

Technische Universität Darmstadt

Institut für Elektrische Energiewandlung

Prof. A. Binder

abinder@ew.tu-darmstadt.de

Based on literature by M. Ade, S. Dewenter, M. Brüggemann and P. Morrison

Contents

- Hybrid vehicles Overview
- Electric vehicles Overview
- Electric vehicles Drive components
- Electric vehicles Simulation vehicle track
- Electric vehicles Simulation of the drive components
- Electric vehicles Examples of simulation

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 2

TESLA Roadster

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Hybrid vehicles - Overview

Motivation for hybrid drives

- Market prognosis 2010
 - Global production approx. 65 Mio. cars
 - Market share HEV approx. 3 % (market segment Mini in FRG 2006 approx. 3 %)
 - Share of European brands small
 - \rightarrow Demand for catch up production / sale
 - → Further development e.g. by the use of simulation programs
- Advantages of simulation models
 - Build-up of know how / development tools
 - Design / tuning / dimensioning of drive train components before manufacturing of prototype
 - \rightarrow Contribution to reduction of development costs

Possible hybrid topologies

Overview hybrid vehicles

	Micro hybrid	Mild hybrid	Full hybrid
Power range in kW	2-3	10-15	> 15
Voltage in V	12	42	> 100
Motor start/stop	X	X	Х
Recuperation		X	X
Boost			X
Purely electric driving			Х

Overview hybrid vehicles

Combined hybrid

Power split hybrid

Parallel hybrid drive

Different variants of parallel hybrid

- Torque addition:
 - Fixed connection of both drive types (e.g. by chain or spur gear)
 - Distinction between one- and two shaft hybrid
- Tractive force addition ("Through-the-road hybrid"):
 - Special case of torque addition
 - Coupling of both drive types over track
- Rotational speed addition:
 - Connection by planetary gear
 - Fixed torque ratio between drives, therefore free choice of rotational speed

TECHNISCHE UNIVERSITÄT DARMSTADT

- Mercedes Benz (MB) E-Class 220 CDI
 - Vehicle: fictive
 - Electrically supplied ancillary units
 - Max. additional power consumption

Institut für Elektrische Energiewandlung	Prof. DrIng. habil. Dr. h	n.c. A. Binder Seite 11
	- J	

Example: Vehicle data P-HEV1					
ICE	2,2 I CDI				
Cylinders	4				
M _N /P _N	300 Nm / 105 kW				
Gear	Automatic				
Transmission ratios gear 1 5	3.95 / 2.42 / 1.49 / 1.00 / 0.83				
Axle gear	2,87				
Vehicle	MB E Class				
c _w -value	0,27				
Reference area	~ 2.25 m ²				
Wheels	<i>r</i> = 0,299 m				
Empty mass Battery E-Machine Inverter DC/DC-converter Board battery Alternator Total weight →Additional weight	1640 kg 40 kg 60 kg 10 kg -10 kg -5kg 1740 kg approx. 100				

Parallel hybrid "Through the road"

- Maraadaa Dara- (ND) D Class	Example: Vehicle	e data P-HEV2
Mercedes Benz (NB) B-Class Avabialay fictive	ICE	1,7 I CDI
Venicle. lictive Electrically supplied ancillary units	Zylinders	4
Max. additional power consumption	$M_{\rm N}/P_{\rm N}$	180 Nm / 67 kW
 Vehicle configuration 	Gear	Automatic
	Transmission ratios gear 1 5	2.72 / 1.69 / 1.12 / 0.79 / 0.65
	Axle gear	3,95
Axle gear	Vehicle	MB B Class
Gear box	c _w -value	0,3
	Reference area	~ 2.42 m ²
	Wheels	<i>r</i> = 0,3205 m
Clutch Gear EM Gear EM ICE: Internal combustion engine EM: Electric machine Power flow E-drive Charging of battery Recuperation Driving	Empty mass Battery E-Machine Inverter DC/DC-converter Board battery Alternator Total weight →Additional weight	1435 kg 40 kg 42 kg 8.5 kg 5 kg -10 kg -5kg 1515 kg ca. 80 kg
Institut für Elektrische Energiewandlung Prof. DrIng. habil. Dr. h.c. A. Binder Seite 1	2	

- ICE and E-Machine can both drive
- Advantage:
 - Only two machines
 - Part of traction directly by ICE (no "unnecessary" energy conversion)
 - Further saving potentials by "downsizing"
- Draw backs:
 - ICE operating points depend on cruise environment
 - More complex energy management

1. ICE; 2. Gear; 3. Tank; 4. Differential gear; 5. E-Machine; 6. Clutch; 7. Converter; 8. Battery

(Source: Hybrid-Autos.info)

Series hybrid

Series hybrid drive

Example: Diesel-electric city busses: Diesel engine runs in optimal operating point = max. efficiency (e. g. 43%)

E-machines + converter \rightarrow speed variable!

Series hybrid

Source:

Parker Hannifin

- - - - No mechanical connection - - - -

Series hybrid busses

Electric components:

- Control panels
- Traction inverters
- Advanced battery system
- Traction motors
- Generators (PM AC)
- Charging inverters

Source:

Parker Hannifin

Series hybrid

- ICE only for electricity generation
- No mechanic connection of IEC and track
- Advantages:
 - Degrees of freedom in vehicle design
 - IEC operates in point of best efficiency
 - No gear needed
- Draw backs:
 - Additional, double energy conversion
 - Three full-valued machines (→ Full hybrid!)

IEC; 2. Tank; 3. Differential gear; 4. E-Generator;
 5. E-Machine; 6. Converter; 7. Battery

(Source: Hybrid-Autos.info)

Mixed hybrid

Power-split

hybrids

Mixed hybrids

Combined

hybrids

Two-mode

Hybrid drives

Series hybrids

Traction force

addition

Two-shaft

hybrid

Plug-in

hybrids

One-mode

Parallel hybrids

Torque addition

Speed

addition

One-shaft

hybrid

- Different variants of mixed hybrid
- Combined Hybrid:
 - Elective drive either as series or parallel hybrid
- Power-split Hybrid
 - One-Mode: one fixed range of operating
 - Dual-Mode: two ranges of operating and four fixed gears

Combined hybrid

Combined hybrid drive

Power-split hybrid

Power-split hybrid drive

Example: Toyota Prius: power splitting gear, Ni-MH-battery

Hybridization classes

Class	Micro hybrid Mild hybrid		Full hybrid	
Power range	2 – 3 kW	10 – 15 kW	>15 kW	
Operating voltage	12 V	42 – 144 V (with DC – DC - converter)	>> 100 V (with DC – DC - converter)	
Characteristics	 hardly any difference to a conventional vehicle starter-generator instead of an alternator 	 traction- instead of board battery use of crankshaft-stator- generators "downsizing" – option 	 sufficiently big dimensioned traction batteries and electric machines for purely electric drive 	
Components of one operating strategy	 no "real" recuperation, but optimized charging of board battery start – stop - function 	 "real" recuperation start - stop – function "boost" - option load-point shift 	 real recuperation start – stop - function "boost" – option load-point shift purely electric driving possible 	
Saving potentials *	2 – 10 %	10 – 20 %	20 – 50 %	

(* C. C. Chan: "Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling")

Micro hybrid

(Source: Hybrid-Autos.info)

- Start stop
- conventional driving

Mild hybrid

(Source: Hybrid-Autos.info)

Additionally to micro hybrid:

- Recuperation
- Boost
- Load point shift

Full hybrid

(Source: Hybrid-Autos.info)

Additionally to mild hybrid:

• Pure electric driving

Current and future hybrid vehicles (selection)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

	Series hybrid	Parallel hybrid: Torque-addition	Parallel hybrid: Tractive force-addition	Mixed hybrid: Combined	Mixed hybrid: Power-split (One-Mode)	Mixed hybrid: Power-split (Two-Mode)
Mild hybrid	(does not make sense)	Honda ("IMA"): • Jazz • <u>Insight</u> • <u>CR-Z</u> BMW: • ActiveHybrid 7 Mercedes-Benz: • S400 BlueHYBRID	(unknown)	(does not make sense)	(does not make sense)	(does not make sense)
Full hybrid	Audi: • A1 e-tron (2013) BMW: • Megacity Vehicle (2013)	Audi: • Q5 Hybrid (2011) • A8 Hybrid (2011) VW: • Touareg Hybrid (2011) Porsche: • Cayenne S Hybrid	Peugeot ("Hybrid4"): • <u>3008</u> (2011)	Opel: • <u>Ampera</u> (2011) Chevrolet: • <u>Volt</u> (2011)	<i>Toyota</i> (<i>"HSD"</i>): • <u>Prius 3</u> • <i>Auris HSD</i> <i>Lexus</i> (<i>"HSD"</i>): • CT 200h • <u>HS 240h</u> • <u>GS 450h</u> • <u>LS 600h</u> • RX 450h	<i>BMW</i> : • <u>X6</u> <u>ActiveHybrid</u> <i>Mercedes</i> : • <u>ML 450 Hybrid</u>
Vehicle classes: compact class middle class upper middle class upper class off-road vehicle						

Simulation models for hybrid drives

Hybrid operation: Energy management

Aim of an energy management strategy:

- \rightarrow Reaching the destination with...
 - Minimal consumption (Criterion for performed Matlab-Simulation)
 - Minimal emission
 - Etc.

Challenge: (partly) missing previous knowledge of...

- Traffic density
- Driving behavior of driver
- Weather (→ Use of headlight, air conditioning, etc.)
 Charging possibilities at grid (→ Plug-In hybrid)
- Topography of route

Conclusion:

 \rightarrow THE optimal operating strategy does not exist, but

• ...

 \rightarrow Many different, more or less good approximations

Hybrid operation: Energy management

- Task:
 - Generating set values for drives with consideration of a desired aim
 - General validity
- Aim: Minimizing of fuel consumption
- Method: Use of hybrid functions
 - ICE start/stop
 - ICE load-point shift
 - Electric driving
 - Electric boost
- Boundary conditions:
 - Limit of starting processes ICE
 - Follow up time / minimum duty cycle
 - SOC within band $SOC_{min} \dots SOC_{max}$
 - Max. torque of rotating drive parts (ICE, electric machine, gear)
 - Max. power of static drive components (battery, inverter)
 - Max. temperature of active parts inverter and electric machine

Hybrid operation: Energy management

Towards a good energy management strategy:

 \rightarrow Tactical separation of total power and distribution on the single machines

 \rightarrow Considering characteristics of electric machine and ICE and variable parameters (e. g. in battery)

Two basic optimizing approaches:

Foreseeing energy management

 $\rightarrow\,$ Approximation of demanded power based on past power demand

Operating state management of ICE

- Consideration of boundary conditions e. g. ICE temperature
- \rightarrow Load-point shift

Example: ICE-load point shift

ICE – Load-point shift – Battery charge

- Battery effective power equals the charging resp. discharging power reduced by the battery losses

- Charging of the battery is done (except for regenerative braking) by load-point shift of ICE under expense of fuel.

- While discharging of battery this fuel consumption is converted into drive power. This amount of charge is to be replaced at a later time by the ICE.

- The loading of the drive train (resulting drive train losses) due to the battery charging is considered.

- Charging: P_{B,eff} added to the losses, discharging: losses subtracted from P_{B,eff}.
- Influence of this load-point shift weighted with factor k_{Batt} =1, 2, or 3:

- k_{Batt} · $P_{\text{B,eff}}$ added to resp. subtracted from losses: allows analysis of sensitivity during simulation for minimal total losses.

Example: Calculation of fuel consumption HEV

Results P-HEV1

Cyclo	k _{Batt}	P _{E-Drive,max}	∆SOC	Min. consumption I/(100 km)		Fuel
Cycle		kW	%	P-HEV1	ICE- vehicle	savings
NEDC	1	10	5	8,1	10,2	20 %
UDDS	2	10	10	8,4	10,6	21 %
Japan-10-15	2	10	10	9,6	12,9	25 %
Highway-FET	1	15	5	6,2	6,5	5 %

Results P-HEV2

Cyclo	k	P _{E-Drive,max} kW	∆SOC	Min. con I/(10	sumption 0 km)	Fuel	
Cycle	^ Batt		%	P-HEV2	ICE- vehicle	savings	
NEFZ	1	15	5	8,1	9,3	13 %	
UDDS	1	10	5	8,5	9,8	13 %	
Japan-10-15	1	10	5	9,5	11,7	19 %	
Highway-FET	1	10	5	6,1	6,1	0 % 🖋	

Example: Calculation of fuel consumption HEV

- Results depend on driving cycle and configuration of HEV
- k_{Batt}: battery charging not / only slightly artificially forced
- P_{E-Drive, max}: electric starting is limited to small power
- \triangle SOC: Battery usage limited on a small window \triangle SOC
 - \rightarrow cumulated battery capacity high

Energy management

Specific aspects of energy management for different topologies

- Series hybrid:
 - 2-dimensional (torgue- and speed-) load-point shift
 - Only one driving motor \rightarrow simple energy management
 - "One-point-operation" vs. "trajectory operation"
- Parallel hybrid:
 - Torque addition: torque-load-point shift
 - Speed addition: speed-load-point shift
- Power-split hybrid:
 - E-machine 1 at driving shaft:
- torque-load-point shift

- ICE and E-machine 2:
- 2-dim. Load-point shift (as long as gear equations are fulfilled)

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Electric vehicles - Overview

Zero emission vehicle – Definition

• Definition zero emission vehicle:

Zero emission of any kind of pollutant in operation and standstill, no evaporation emission, no indirect emission

- Based on the environment legislation of California Air Resources Board (CARB)
- Exhaust gas legislation der CARB valid in *California* and also 12 other states of the USA
- By law subsidized ZEV-share is rising
 - From 10% in 2003 to
 - 16% in 2018

California – Classification of vehicles

• TLEV: Transitional low emission vehicle

This is the weakest emission standard in *California*. TLEVs expire in 2004 and are being removed from the market.

• LEV: Low emission vehicle

All vehicles which were sold after 2004 in *California* match at least this standard.

• ULEV: Ultra low emission vehicle

ULEVs are 50% cleaner than the average vehicle of the current build year.

• SULEV: Super ultra low emission vehicle

SULEVs are 90% cleaner than the average vehicle of the current build year.

California – Classification of vehicles

• ZEV – Zero emission vehicles

ZEVs have no exhaust gas emission. This includes battery powered fuel cell based electric vehicles. The category ZEV includes two additional classes [18]:

- PZEV: Partial zero emission vehicle

PZEVs fulfill the SULEV exhaust gas emission standards, have no evaporation emission and a 15 years / 150.000 miles warranty. No evaporation emission means, that vehicles have less emission, while driving than typical vehicles with ICE in turn-off state.

- AT PZEV: Advanced technology PZEVs

AT PZEVs fulfill the PZEV requirements and have additionally ZEV- similar properties. A CNG-vehicle (compressed natural gas) or a hybrid vehicle with engine emission, which fulfill the PZEV standards, would be classified as AT PZEV.

Zero emission vehicle – Legislation

- ZEV with conventional drive / exhaust gas treatment unfeasible
- Possibility of allowance of partial-zero-emission-vehicle-credits
 - Share can also be fulfilled by SULEV II+ certified

Zero emission vehicle – Motivation

Battery powered vehicles

System:

- a) Battery
- b) Inverter
- c) E-motor
- d) Gear
- e) Wheel
- f) Track

Drive variants for ZEV target and aim quantities

- *Example*-requirements for a zero emission vehicle:
- By law requested range in FTP-72 driving cycle 100 miles
 → 110 miles (177 km) range as desired value during FTP-72 driving cycle
- Target in example:
 - Sprint from zero to 100 km/h in 7 seconds
 - Feature for sportive driving
 - → compare VW Golf GTI, Tesla Roadster
 - Temporary max. speed 150 km/h
 - No long range limousine for highway journeys,
 - Rather commuter vehicle for city traffic
- Assumption empty weight of vehicle 900kg
 - Comparable to Smart Fortwo
 - Air resistance $c_w A = 0.5$ (comparable to *Smart Roadster*)

TESLA Roadster (USA)

- Lithium-ion-battery: 6381 cells = 11 series modules 1 module = 9 series component 1 component = 69 parallel cells
- Max. torque 271 Nm
- Max. power 185 kW
- Sports vehicle
- 1.2 tons empty weight
- 0 ... 100 km/h in 4 seconds
- max. 200 km/h (125 mph)
- max. motor speed: 13000/min
- Squirrel cage induction machine
- Price: 110.000 USD

- Range: 392 km in combined EPA-test cycle with 45 kWh battery energy
- 3.5 h charging time
- Lifespan 500 cycles: 500 x 392 = 200000 km

Tesla Roadster (Source: http://www.teslamotors.com/)

Lightning GT (ик)

- Lithium-ion-batteries: (*AltairNano*: "NanoSafe") Nano-titanat-technology instead of graphite
- Max. power 552 kW
- Sports vehicle
- Carbon fiber-Kevlarcomposite chassis
- 0 ... 100 km/h in 4 seconds
- Max. 210 km/h
- 4 PM-synchronous motors as brushless-DC hub motors (P_N = 120 kW each Motor), *PML Flightlink Ltd.*

- Range: 415 km with fully charged battery
- 10 min. quick-charge: 155 km range
- Lifespan: after 15000 cycles: 85% of new-capacity

Source: Lightning Car Company, UK

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Electric vehicles –

Drive components

Drive variants for ZEV Simulation – Simulation model

• Simulation model implementation in *Matlab Simulink*

Driving cycles for ZEV Simulation – Simulation model

Driving cycles

Driving cycle NEDC

Driving cycle: NEDC: New European driving cycle

Driving cycle FTP-72, FTP-75

Driving resistances Simulation – Wheel / track

Slip between wheel and track Simulation – Wheel / track

- Without slip, there is no tractive force transmission to the track, but only "pure" rolling!

Single-stage gear between wheel and E-motor

Power electronic chopper (Inverter)

- Variable frequency = variable motor speed

Example: Inverter Brusa

- *Brusa DMC524* 3-phase-inverter for automobile applications
 - 480 V DC-link voltage
 - 600 V IGBTs
 - 80kW continuous power
- Model for calculation of switching- and conduction losses for diodes and transistors
- For Simulation: e. g. board grid power = 150 W constant power

Example: Inverter Brusa

Electric properties		
Minimal supply voltage for full output current in V	200	
Maximum operating supply voltage in V	480	
Over voltage cutoff in V	500	
Maximum permitted over voltage in V	520	
Continuous current, RMS in A	225	
Repetitive maximum current, RMS, 30s 100%, 90s 50% in A	300	
Continuous power in kW	80	
Maximum power in kW	106	
PWM frequency symmetric modulation in kHz	24	
Mechanic properties		
Height in mm	88	
Width mm	240	
Length in mm	360	
Volume in cm ²	7600	
Weight (without cooling water) in kg	9.5	
Ambient operating temperature in °C	-40+85	

Example: Inverter – Conti Temic

Technical data IGBT-Inverter

Maximum current I _{max}	250 A
DC-link voltage U _{DC}	110 - 370 V
Switching frequency f _{switching}	8 kHz
Weight <i>m</i> _{inverter}	10 kg
Coolant flow \dot{V}	8 l/min
Coolant-supply temperature \mathcal{G}_{CS}	85 °C
DC-link capacitance C _{DC-link}	2 mF
DC-link resistance R _{DC-link}	1 mΩ

Loss groups

Losses	IGBT	Diode
Static losses		
Conduction losses $P_{\rm C}$	X	Х
Blocking losses P _{block}	(X)	(X)
Switching losses		
Switch-on losses P _{ON}	X	(X)
Switch-off losses POFF	X	Х
Trigger losses P _{trigger}	X	X

Inverter – Heating

Modeling

- RC-network (R: heat resistance, C: heat capacity)
 - \rightarrow Dynamic calculation temperatures
- 6-body-model
- Analytic calculation *R*, *C* on the basis of structure geometry
- No thermal coupling to neighboring power electronic semi conductors

Example: PM-synchronous machine Brusa

- Brusa Hybrid Synchronous Machine 6.17.12
 - 40 kW rated power, 85 Nm rated torque
 - Available on the market
 - Used in E-cars by hobbyists

<u>Example:</u> PM-synchronous machine Brusa - Data

Mechanic properties		
Number of slots Q	36	
Pole count	6	
Number of turns per pole and phase <i>q</i>	2	

Electric properties		
Rated power in kW	40	
Rated speed in1/min	4500	
Rated torque in Nm	85	
Rated current in A, phase	96	
Rated voltage in V, phase	164	
cosφ	0,885	
Efficiency in %	95,7	
Losses in W	1800	

<u>Example:</u> PM-synchronous machine Brusa - Torque-power curves

Example: PM-synchronous machine Brusa – Main dimensions (recalculated)

	С	hannel
Geometric properties		
Outer length in mm	240	
Diameter in mm	260	
Rotor diameter in mm	114	
Iron length in mm	120	
Air gap length in mm	1	
Bandage height mm	2	
Magnet height in mm	5	
Pole coverage ratio in %	0,85	

<u>Example:</u> Efficiency of drive train – E-Motor + Inverter + Gear, *Brusa*

<u>Example:</u> Efficiency of drive train – E-Motor + Inverter + Gear, *Brusa*

- Screened efficiency map
- Steps of in 10 Nm and 10 1/s distances

Example: PM-synchronous- and squirrel cage induction machines (*Daimler*)

Technical data electric machines

	PSM	ASM	
Rated power P _N	20,5 kW	15 kW	
Maximum power P _{max}	42 kW	35 kW	
Rated speed n _N	1500 min ⁻¹	2765 min ⁻¹	
Maximum speed <i>n</i> _{max}	6000 min ⁻¹	12500 min ⁻¹	
Rated torque <i>M</i> _N	130 Nm	52 Nm	
Maximum torque <i>M</i> _{max}	270 Nm	120 Nm	
Outer diameter <i>d</i> _{sa}	286 mm	150 mm	
Iron length I _{Fe}	95 mm	180 mm	
Coolant flow	8 l/min	8 l/min	
Coolant supply temperature	85 °C	85 °C	
Thermal class	Н	Н	

PM-synchronous machine

Squirrel cage induction machine

Loss groups for PM-synchronous - and squirrel cage induction machines

PM-synchronous machine	Squirrel cage induction machine
Stator ohmic losses	Stator ohmic losses
Iron losses	Iron losses
Losses in magnets and rotor	Rotor ohmic losses
	Additional losses for sinusoidal current operation
Ventilation- and bearing- friction losses	Ventilation- and bearing- friction losses
Additional losses in inverter	Additional losses in inverter

Heating of PM-synchronousand squirrel cage induction machines

Comparison calculation – Measuring (test rig) for driving example: constant speed, variable load

PM-synchronous motor

Squirrel cage induction machine

Battery variants: Ragone-diagram

Lead batteries: VRLA (Valve-regulated lead acid)

- not really "sealed", but vented for overpressure
- 2 types: Absorbed Glass Mat (AGM) or Gel battery
- use less electrolyte, less space than flooded designs
- high-rate power capacity (short duration)
- cost-effective, deep discharge, used in UPS systems
- 3-5 year life in heavy-duty vehicle service

Typical VRLA batteries

VRLA Vehicle battery pack string

Can be combined with UltraCaps for greater power cycling capacity

Traditional choice for hybrid Electric transit vehicle designs

TECHNISCHE UNIVERSITÄT

DARMSTADT

Low cost, rugged and field-proven

Lithium-ion (Li-ion)-batteries

- compact, light weight, highest power density
- safety issues with older tech: cell phone/laptop types
- new nano-titanate cells handle 20,000 recharging cycles
- fast charge up to 80% in one minute
- long life claims 10+ years;
- new technology cost is 4-to-5 x VRLA cost, for same power
- price will decrease as technology matures

Data of Li-ion-batteries

Properties	Lithium-ion	Lithium- polymer	Kokam
Conductance (20 °C) in mS/cm	2 – 5	0.05 – 0.5	0.05 – 0.5
No-load voltage in V	4.2	4.2	4.2
Rated voltage in V	3.7	3.7	3.7
Discharge lower limit voltage in V	2.5	2.7	2.7
Energy density (weight) in Wh/kg	90 – 160	130 – 144	136
Energy density (volume) in Wh/l	200 – 300	230 – 410	276
Power density in W/kg		300 – 1500	2700
Self discharge at 20 °C in %/month	5 – 10	2 – 8	2 – 8
Possible cycles	500 – 1200	500 – 1000	500 – 1000
Storage capability in a	5 – 10	5 – 10	5 – 10

<u>Example:</u> Lithium-polymer-cells Kokam SLPB 98188216

	1 cell	116-pack
Rated voltage in V	3.7	429.2
Rated discharge capacity in Ah	30	30
Rated charge current in A	30	30
Maximum discharge current in A	600	600
Cut-off voltage in V	2.7	313
Weight in kg	~ 0.82	~ 95

- 116-pack: 116 cells in series for height DC-link voltage
- Limitation of recuperation power to maximum 14,6 kW
- Weight is being increased by packaging, cooling, sensors and control devices

Li-ion-batteries: Discharge characteristics

Discharging rate of 1.0C equals to 30 A

Li-ion-batteries *Kokam SLPB* 98188216: Discharge characteristics

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Electric vehicles – Simulation Vehicle - Track

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 76

Modeling of the vehicle

Wheel-track-contact

 $F_{G,R}$: Normal force per wheel

b: Big radius of deformation ellipse

 $z_{\rm R}$: Number of wheels

g: Gravitational acceleration

 $n_{\rm R}$: Wheel speed

$$F_{\rm G,R} = m \cdot g \,/\, z_{\rm R}$$

Wheel slip s

Transmittable Force *F*_D from wheel to track

Slope $\tan \alpha$: $F_{\mathrm{N,R}} = F_{\mathrm{G,R}} \cdot \cos \alpha$

Maximum transmittable driving force per wheel:

$$F_{\mathrm{D,R,max}} = \mu(s) \cdot F_{\mathrm{N,R}}$$

 μ : Traction force coefficient So that the wheels do not spin ("wheelspin"): $F_{\text{D.R}} \leq F_{\text{A.R.max}}$

 $z_{\text{R},\text{D}}$: Number of driven wheels

Maximum transmittable driving force to the track:Condition against wheel spin: $F_{\rm D} \leq F_{\rm D,max}$

$$F_{\rm D,max} = z_{\rm R,D} \cdot F_{\rm D,R,max}$$

Slip between wheel and track Simulation – Wheel / Track

-Without slip \rightarrow no transmission of force to track, only "pure" rolling!

- With dry asphalt and good traction (summer wheels) at a slip of approx. 0.1 the maximum of traction force coefficient μ of approx. 1.2 is reached.

- Micro slip up to approx. 3%: driving with constant speed

- Macro slip: > 10%: acceleration

Traction coefficient μ and wheel slip s

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 82

Traction coefficient vs. slip

Kloss formula

$$\frac{\mu}{\mu_{\text{max}}} = \frac{2}{\frac{s}{s_{\text{b}}} + \frac{s_{\text{b}}}{s}}$$
 Dry asphalt track:
$$s_{\text{b}} = 0.11, \ \mu_{\text{max}} = 1.2$$

Empiric, more exact formula:

$$\mu = \mu_{\max} \cdot \left(1 - e^{-S_t \cdot s}\right) - \frac{A_b \cdot e^{W \cdot s}}{100A_b + e^{W \cdot s} - 1} + 0.01 \qquad 0 \le s \le 1$$

 S_t : slope of $\mu(s)$ -curve for s = 0(Value range: 10 ... 50) A_b : depression of $\mu(s)$ -curve for s = 1(Value range : 0 ... μ_{max})W: inflection point(Value range : 10 ... 100)

Dry asphalt track: $S_t = 30$, $A_b = 0.3$, W = 10

Rolling resistance *F*_{Roll} of all wheels

Torque balance: $d'_{\rm R} < d_{\rm R}$ $F_{\rm Roll} \cdot d'_{\rm R} / 2 = z_{\rm R} F_{\rm G,R} \cdot b_{\rm R}$ $F_{\rm G}$: Normal force on all wheels

- b: Big radius of deformed ellipsis
- g: Gravitational acceleration
- $n_{\rm R}$: Wheel speed
- CP: Contact point
- α : Slope angle of track

$$F_{\rm G} = m \cdot g \qquad F_{\rm N} = F_{\rm G} \cdot \cos \alpha$$
$$d'_{\rm R} \approx d_{\rm R} :$$
$$F_{\rm Roll} = (2b / d_{\rm R}) \cdot F_{\rm N} = f_{\rm R} \cdot F_{\rm N}$$

Rolling resistance coefficient $f_{R} = f_{R}(v)$ due to deformation work of wheels :

Depends on vehicle speed and wheel property

Rolling resistance coefficient of tyres

Air resistance F_{air}

Vehicle speed *v* equals the negative air speed for non-moving air

Ram pressure: $p_{\text{Ram}} = \rho_{\text{Air}} v^2 / 2$

Air resistance force:

 $F_{\rm Air} = (c_{\rm w}A)\rho_{\rm Air}v^2/2$

Example: VW-Golf: $c_w A = 0.56 \text{ m}^2$, $c_w = 0.4$

A: Reference area ρ_{Air} : Density of air v: Vehicle speed c_w : Drag coefficient c_w -values person cars: 0.2 ... 0.5 $a_w = 1.202 \log m^3$

Slope resistance *F*_S

Example: Slope *Turracher Höhe* (*Carinthia, Austria*): $tan \alpha = 0.22 = 22\%$

Vehicle acceleration force dv/dt

Vehicle:

Drive:

Vehicle acceleration: dv/dt

Acceleration of linearly moved masses: $F_a = m \cdot dv / dt$

Acceleration of rotating masses (wheels, gear, E-motor): $M_a = J \cdot d\Omega / dt$ (torque *M* necessary)

Maximum permitted acceleration ("comfort"): $(dv/dt)_{max} = 2m/s^2 \approx 0.2 g$

Rotating mass adding factor Δ

Total kinetic energy:

$$W_{\rm kin} = \frac{mv^2}{2} + \frac{(z_{\rm R}J_{\rm R} + J_{\rm G1})\Omega_{\rm R}^2}{2} + \frac{(J_{\rm M} + J_{\rm G2})\Omega_{\rm M}^2}{2} = \frac{m' \cdot v^2}{2}$$

$$\xrightarrow{\longrightarrow}_{n_{\rm M}} \xrightarrow{\longrightarrow}_{M_{\rm L}} \xrightarrow{\longrightarrow}_{M_{\rm M}} \xrightarrow{\longrightarrow}_{M_{\rm M}} \xrightarrow{\longrightarrow}_{M_{\rm M}} \xrightarrow{\longrightarrow}_{M_{\rm L}} \xrightarrow{\longrightarrow}_{n_{\rm L}} \xrightarrow{\longrightarrow}_{n_{\rm L}} n_{\rm L} = n_{\rm R}, \text{ "load"} = \text{driven wheels of driven axle}$$

Equivalent linear accelerated mass m':

$$m' = m \cdot (1 + \Delta)$$

Typical value for the share of the rotating masses to be accelerated by kinetic energy: $\Delta = 0.2$

Acceleration force F_a :

$$F_{\rm a} = m' \cdot ({\rm d}\nu / {\rm d}t)$$

Bearing friction F_{Bg}

Per wheel:
$$F_{Bg,R} = F_{G,R} \cdot k_{Bg}$$

Per vehicle: $F_{Bg} = z_R F_{G,R} \cdot k_{Bg} = m \cdot g \cdot k_{Bg}$

Example:

m = 1500 kg *F*_{Bg} = 73. 5 N

Wheel speed $n_{\rm R}$

Example: Ball bearing

Friction coefficient k_{Bg} = 0.005 as an estimation !

Depending on type of bearing, state of lubrication, age, bearing load, and wheel speed this value is varying and can be calculated according to exact formulas!

Demanded driving force $F_{\rm D}$ and power $P_{\rm D}$

1) Steady state operation: dv/dt = 0: $F_{D,steady} = F_{Roll} + F_{Air} + F_{S} + F_{Bg}$

2) Non-steady-state: $dv/dt \neq 0$: $F_{D,non-steady} = m' \cdot (dv/dt) + F_{Roll} + F_{Air} + F_{S} + F_{Bg}$ Accelerating: dv/dt > 0Braking: dv/dt < 0

3) Driving power $P_{\rm D} = F_{\rm D}v$: steady state: $P_{\rm D,steady} = F_{\rm D,stat}v = (F_{\rm Roll} + F_{\rm Air} + F_{\rm S} + F_{\rm Bg}) \cdot v$

$$P_{\text{D,stat}} = \left[(f_{\text{R}} + \tan \alpha) \cdot F_{\text{N}} + F_{\text{Bg}} \right] \cdot v + c_{\text{w}} A \frac{\rho_{\text{L}}}{2} v^{3}$$

Dominating at:

high speed

4) Driving energy in driving example (time period $t_2 - t_1$): $W_{\rm D} = \int_{t_1}^{t_2} P_{\rm D}(t) \cdot dt$

low speed

Example: Driving force F_A

<u>Data:</u> $m = 1500 \text{ kg}, v = 80 \text{ km/h}, f_R = 0.01, c_w A = 0.56 \text{m}^2$

a) Rain-wet asphalt: $\mu_{max} = 0.5$ at $s_b = 0.11$, Acceleration: dv/dt = 1 m/s², $\Delta = 0.2$, Slope 10%

b) Dry asphalt:
$$\mu_{max} = 1.2$$
 at $s_b = 0.11$,
No acceleration: $dv/dt = 0$
No slope

$$F_{\rm G} = 14700\,{\rm N}, F_{\rm Bg} = 73.5\,{\rm N}, F_{\rm Air} = 166\,{\rm N}$$
a) $F_{\rm N} = 14627\,{\rm N}, F_{\rm Roll} = 146\,{\rm N}, F_{\rm S} = 1463\,{\rm N}, F_{\rm B} = 1800\,{\rm N}$
 $F_{\rm D} = F_{\rm B} + F_{\rm S} + F_{\rm Roll} + F_{\rm Air} + F_{\rm Bg} = 3648\,{\rm N}$
b) $F_{\rm N} = 14700\,{\rm N}, F_{\rm Roll} = 147\,{\rm N}, F_{\rm S} = 0, F_{\rm B} = 0$
 $F_{\rm D} = F_{\rm Roll} + F_{\rm Air} + F_{\rm Bg} = 386.5\,{\rm N}$

Slip losses

- $\mu_{\rm max}$ at $s_{\rm b}$ result for a given state of track.

- For demanded driving force and vehicle weight resp. slope a needed traction force coefficient μ concludes. For sym. Centroid location and two axles:

$$F_{\text{N axle}} = m \cdot g \cdot \cos \alpha / 2$$
 1 driven axle: $\mu = F_{\text{D}} / F_{\text{N,axle}}$

- From above the wheel slip is determined with the aid of $\mu(s)$ -curve or from der *Kloss* function:

$$\frac{s}{s_b} = \frac{\mu_{\max}}{\mu} - \sqrt{\left(\frac{\mu_{\max}}{\mu}\right)^2 - \frac{1}{2}}$$

- Due to the wheel slip the friction power occurs as slip power $P_{\rm sl}$. Hence the driving power equals the mechanic power $P_{\rm m}$ at the driving wheels reduced by this slip power $P_{\rm sl}$.

$$P_{\rm sl} = s \cdot P_{\rm m}$$
 $P_{\rm D} = (1-s) \cdot P_{\rm m}$
losses = friction heat = slip power $P_{\rm sl}$:

Braking slip force: $F_{\rm sl} = P_{\rm sl} / v$

Slip

 $P_{\rm sl} = \frac{s}{1-s} \cdot P_{\rm D}$

Example: Slip losses

<u>Data:</u> $m = 1500 \text{ kg}, v = 80 \text{ km/h}, f_R = 0.01, c_w A = 0.56 \text{m}^2$

- a) Rain-wet asphalt: $\mu_{max} = 0.5$ at $s_b = 0.11$, acceleration: dv/dt = 1 m/s², $\Delta = 0.2$, slope 10%, $F_D = 3648$ N
- b) Dry asphalt: $\mu_{max} = 1.2$ at $s_b = 0.11$, no acceleration: dv/dt = 0 no slope, $F_D = 386.5 \text{ N}$

 $P_{\rm D} = F_{\rm D} v = 81067 \text{ W}, P_{\rm sl} = 2438 \text{ W}, \text{ braking force: } F_{\rm sl} = 109.7 \text{ N} = 3\% \text{ v}. F_{\rm D}$

b)
$$F_{\text{N.axle}}$$
 = 14700 N, μ = 386.5/14700 = 0.0263, s = 0.011,

 $P_{\rm D} = F_{\rm D}v = 8589 \text{ W}, P_{\rm sl} = 94 \text{ W}, \text{ braking force: } F_{\rm sl} = 4.2 \text{ N} = 1.1\% \text{ von } F_{\rm D}$

Conclusion:

Slip losses can be neglected for normal driving conditions in the range of micro slip!

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Electric vehicles – Simulation of the drive components

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 95

Single-stage gear

Single-stage reduction gear

 $i = n_{\rm M} / n_{\rm R}$: transmission ratio

JM

Motor

 $^{\rm M}$ R

d _R

(spur gear)

MM

wheel

 d_{M}

 $v_{U,Gr} = d_M \pi n_M = d_R \pi n_R$ $i = n_M / n_R = d_R / d_M$ $F_{Gt} = 2M_M / d_M = 2M_R / d_R$ $i = M_R / M_M \qquad M_M = M_R / i$

Speed-dependent loss torque due to oil viscosity: $M_{\rm d0} = p_0 M_{\rm N}$

Load-dependent loss torque due to tooth meshing: $M_{d1} = p_1 M_N$

- $m = \text{torque/rated torque} = M/M_N$
- v =speed/rated speed = n/n_N

 $\eta_{\rm G} = \frac{P_{out}}{P_{\rm in}} = \frac{M_{out} 2\pi n_{\rm M}}{M_{\rm in} 2\pi n_{\rm M}} = \frac{M}{M + v \cdot M_{\rm d0} + m \cdot M_{\rm d1}} = \frac{m}{m + v \cdot p_0 + m \cdot p_1}$ <u>Example:</u> $p_0 = 0.011$, $p_1 = 0.0043$, $\eta_{\rm GN} = 0.9849$

n_R

Gear efficiency

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 97

Power requirement to the driving motor

Wheel torque from driving force: $F_{\rm D} = M_{\rm R} / (d_{\rm R} / 2)$

Wheel speed from vehicle speed an wheel slip: $n_{\rm R} = \frac{v}{d_{\rm R}\pi \cdot (1-s)}$

Motor torque over gear and its loss torque: $M_{\rm M} = M_{\rm R} / (i \cdot \eta_{\rm G})$

Motor speed over gear: $n_{\rm M} = n_{\rm R} \cdot i$

PM-synchronous motor – Field oriented operation

 $U_{\rm s}$ = $U_{\rm s1}$: Phase voltage (RMS, fundamental)

 $M_e = \frac{P_{\delta}}{\Omega_{\rm syn}} = m \cdot p \cdot \frac{\Psi_{\rm p}}{\sqrt{2}} \cdot I_{\rm s}$

 $M_{\rm e}$: El. torque

 P_{δ} : Internal power

 $\varOmega_{\!\!\mathrm{syn}}\!\!:\!\!\mathrm{Synchronous}$ speed

m = 3: Number of phases

p: Number of pole pairs

 Ψ_{p} : Flux linkage (peak)

 $I_s = I_{s1}$: Stator phase current (RMS)

 $U_{\rm p}$: back-EMF (RMS)

 $n = f_s / p$

- Stator current is DIRECTLY proportional to torque M_e
- Speed is proportional to stator frequency

PM-synchronous motor – Operation at full flux

$$M_{\rm e} = \frac{P_{\delta}}{\Omega_{\rm syn}} = m \cdot p \cdot \frac{\Psi_{\rm p}}{\sqrt{2}} \cdot I_{\rm s} = k_{\rm T} I_{\rm s} \quad k_{\rm T} = m \cdot p \cdot \frac{\Psi_{\rm p}}{\sqrt{2}}$$

$$k_{\rm T} = m \cdot p \cdot \frac{\Psi_{\rm p}}{\sqrt{2}}$$

Field oriented operation: PM-synchronous motor with I_q impressing:

- a) Thermal continuous torque: Rated torque M_N at n_N
- Ohmic losses P_{Cu}
- Iron losses P_{Fe,s+r},
- Magnet- and friction losses $P_{\rm M}$, $P_{\rm R}$
- b) Demagnetization/inverter current limit:
- Stator field influences magnets: Inverter current limit has to be beneath demagnetization limit.
- c) Short time operation:
- Maximum torque at inverter current limit
- Motor operated at short time, utilization of thermal time constant of motors.
- d) Maximum operating speed: $n_{max} = n_{sl}/1.2$
- e) Voltage limit: Maximum inverter output voltage.

Field weakening for PM-synchronous machines

- From rated speed $n_{\rm N}$ on voltage limit $U_{\rm s,max}$ is reached.
- By impressing a negative *d*current a voltage opposing U_p is induced into the stator winding, so that U_s remains constant.

- *d*-current generates with rotor flux no torque!

- At constant total current q-current has to be reduced due to the required *d*current, so that torque *M* is also being reduced! ("Field weakening range")

Instead of $n_{\text{max,old}}$ (at $U_{\text{s}} = U_{\text{p}}$) a higher n_{max} is reached, but with reduced torque, which is not proportional to I_{s} anymore.

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 102

Condition for good capability of field weakening

	Voltage	Current i_s	<i>d</i> -axis i_{sd}	q-axis i_{sq}	Power	Speed <i>n</i>	$\cos \varphi$
	$u_{\rm s}$						
a)	0.8	1.0	0	1.0	$P_{\rm N}$	n _N	0.89 ind
b)	1.0	2.0	0	2.0	$2P_{\rm N}$	n _N	0.7 ind
c)	1.0	1.5	-0.8	1.27	$2P_{\rm N}$	$1.7n_{\rm N}$	0.98 ind
d)	1.0	1.7	-1.6	0.5	$2P_{\rm N}$	$4n_{\rm N}$	0.89 cap

High field weakening range: $U_p >> U_{s,max}$, $U_{s,max}$ and R_s neglected

$$I_{\rm s,d} \cong U_{\rm p} \, / \, X_{\rm s} = \Psi_{\rm p} \, / \, L_{\rm s} = \Psi_{\rm p} \, / \, L_{\rm d}$$

The required field weakening current I_d is approximately the generator short circuit current. The short circuit current has to be smaller than the inverter current limit for infinite field weakening!

$$I_{\rm s,d,max} < I_{\rm s,max}$$

Comparison of a well (A) and a badly (B) field weakable PM-synchronous motor

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 104

Example: PM-synchronous motor for E-car drive

a) Torque-current-curve at low speed (full flux)

 b) Measured Torque-speed characteristic at 132V DC-link voltage = battery voltage,

Source: Ackva, A. et al.: EPE 1997, Trondheim

$$M_{\rm pk} = 156 \,{\rm Nm}, P_{\rm pk} = 35 \,{\rm kW}, I_{\rm s,lim} = 315 \,{\rm A}$$

<u>Example:</u> PM-synchronous motor + inverter: Efficiency map

Measured motor output power and system efficiency (PM-synchronous motor + inverter) at 190V DC-link voltage = battery voltage

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 106

Example: PM-Synchronous motor efficiency

Measured operating parameters in continuous operation at a) 132V , b) 160 V DC-link voltage = battery voltage

Speed in 1/min	п	2200	9000
Motor output power in kW	P _M	26	15
Battery voltage in V	U _B	132	160
Battery current in A	I _B	227.5	119
Shaft torque in Nm	М	113	16
Motor fundam. voltage in V	U _{s1} (rms)	52	68.5
Motor fundam. current in A	I _{s1} (rms)	213	164
Power factor	$\cos \varphi_{ m s}$	0.87	0.52
Motor ohmic losses in W	P _{Cu}	2180	1260
Winding temperature in °C	$artheta_{Cu}$	148	142
Motor efficiency in %	η_{M}	90.2	85.9
System efficiency in %	η_{sys}	86.6	78.9

Source: Ackva, A. et al.: EPE 1997, Trondheim

Example: Characteristics of a PM-synchronous motor (Brusa)

Loss groups of the PM-machine

1.Stator:

1.a) Ohmic losses inclusive current harmonics $P_{Cu,s}$

```
1.b) Iron losses in stator iron stack (teeth and yoke)
P_{\text{Fe,s}} = P_{\text{Fe,d}} + P_{\text{Fe,ys}}
```

2. Rotor:

2.a) Eddy current losses in magnets $P_{\rm M}$ due to stator current ripple (of inverter supply) and flux pulsation due to slot openings

2.b) Iron losses in rotor iron stack $P_{\text{Fe},r}$ due to stator current ripple

2.c) Friction losses: Bearing- and air friction P_{ba+fr}

Determination of the motor operating values for the required torque $M_{\rm M}$ and speed $n_{\rm M}$

Motor shaft torque approx. as big as air gap torque: $M_M \approx M_e$ Required q-current: $I_q = \frac{M_M}{3p\Psi_p/\sqrt{2}} < I_{s,max}$ at $f_s = n_M \cdot p$, $\omega_s = 2\pi f_s$ P_M = $2\pi n_M M_M$

Required voltage without field weakening:

$$U_{s1} = \sqrt{(\omega_{s}\Psi_{p} / \sqrt{2} + R_{s}I_{q})^{2} + (\omega_{s}L_{q}I_{q})^{2}} \le U_{s,max}$$

In case $U_{s1} > U_{s,max}$: Required field weakening current I_d (negative): (R_s neglected!)

$$I_{\rm d} = \frac{\sqrt{U_{\rm s,max}^2 - (\omega_{\rm s}L_{\rm q}I_{\rm q})^2} - \omega_{\rm s}\Psi_{\rm p}/\sqrt{2}}{\omega_{\rm s}L_{\rm d}} \le \sqrt{I_{\rm s,max}^2 - I_{\rm q}^2}$$

Motor current: $I_{s1} = \sqrt{I_d^2 + I_q^2} \le I_{s,max}$

In case I_d is too big $\rightarrow I_d$ and therefore torque has to be reduced!

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 110

Loss calculation in the PM-synchronous motor

Ohmic losses (stator):
$$P_{\text{Cu,s}} = 3R_{\text{s}}(\mathcal{G}) \cdot I_{\text{s1}}^{2}$$

Iron losses: $P_{\text{Fe}} = P_{\text{Fe0}} \cdot \left(\frac{\omega_{\text{s}}}{\omega_{\text{N}}}\right)^{1.8} \cdot \left(\frac{U_{\text{s1}}}{\omega_{\text{s}}\Psi_{\text{p}}/\sqrt{2}}\right)^{2}$
Friction losses: $P_{\text{fr}} = 2\pi n_{\text{M}} M_{\text{fr}}(n_{\text{M}})$

Additional losses (eddy current losses in magnets, rotor parts, winding) at sinusoidal current:

$$P_{\rm ad} = P_{\rm ad,N} \cdot \left(\frac{\omega_{\rm s}}{\omega_{\rm N}}\right)^{1.5} \cdot \left(\frac{I_{\rm s1}}{I_{\rm sN}}\right)^2$$

Additional losses due to current ripple with switching frequency (about constant value, a. o. depending on modulation degree *m*): $P_{ad,inv}$

Total losses of motor:
$$P_{d,M} = P_{Cu,s} + P_{Fe} + P_{ad} + P_{fr} + P_{ad,inv}$$

Motor efficiency: $\eta_M = P_M / (P_M + P_{d,M}) = P_M / P_e \qquad \cos \varphi_s = P_e / (3U_{s1}I_{s1})$

Example: Motor losses

Rated data:

6-pole PM-synchronous motor, $M_{\rm N}$ = 95.5 Nm, $n_{\rm N}$ = 2200/min, $P_{\rm N}$ = 22 kW $f_{\rm N}$ = 110 Hz, $L_{\rm d}$ = 0.186 mH, $L_{\rm q}$ = 0.219 mH, $R_{\rm s, 20^\circ C}/R_{\rm s, 155^\circ C}$ = 10.5/16.0 mOhm $\Psi_{\rm p}$ = 98 mVs (20°C), $P_{\rm Fe0}$ = 248 W, $P_{\rm adN}$ = 110 W, $P_{\rm ad,inv}$ = 56 W, $M_{\rm fr}$ = 0.05 Nm $I_{\rm sN}$ = 174 A, $U_{\rm sN}$ = 50 V, motor weight 45 kg, water jacket cooling

Ohmic losses, 155°C: 1453 W

Iron losses: 270 W

Friction losses: 11.5 W

Additional losses: 110 W

Additional losses due to current ripple: 56 W

Total losses: 1900 W

 $\cos \varphi_{\rm s} = 0.916$

Motor efficiency: 92.05%

Source: Ackva, A. et al.: EPE 1997, Trondheim

Modeling of the inverter

 $I_{\rm B}$: Battery current $i_{\rm d}$: DC-link current $i_{\rm C}$: capacitor current *C*: DC-link capacity

The DC-link current i_d contains the alternating part from the switching frequency f_T of the transistors, which flows as capacitor current i_C and therefore hardly loading the battery. The DC-part is the battery current, which is being distributed on the three phases with the fundamental frequency f_s as stator frequency.

mainly the battery voltage $U_{\rm B}$.

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 114

Line-to-line inverter output voltage: *m* = 0.5

Line-to-line inverter output voltage: *m* = 1.0

Square wave operation: Over modulation $m = \infty$

Estimation of max. inverter output voltage

Maximum inverter fundamental output voltage at:

a) Square wave operation:

Line-to-line voltage peak value:

$$\hat{U}_{LL1} = \frac{4}{\pi} \cdot \sin\left(\frac{2}{3} \cdot \frac{\pi}{2}\right) \cdot U_{d} = \frac{2\sqrt{3}}{\pi} \cdot U_{d}$$
Phase voltage, RMS-value: $U_{s1} = \hat{U}_{LL1} / (\sqrt{2} \cdot \sqrt{3}) = \frac{\sqrt{2}}{\pi} \cdot U_{d}$
b) At linear limit of modulation $m = 1$: $\hat{U}_{LL1} = \frac{\sqrt{3}}{2} \cdot U_{d}$ $U_{s1} = \frac{U_{d}}{2\sqrt{2}}$

Example:

Battery voltage $U_{\rm B} = U_{\rm d} = 480$ V:

a)
$$\hat{U}_{LL1} = 529V$$
 $U_{s1} = 216V$
b) $\hat{U}_{LL1} = 415V$ $U_{s1} = 170V$

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 118

Modeling of the inverter

 I_{s1} : Fundamental of stator phase current

 U_{s1} : Fundamental of stator phase voltage

$$U_{\rm s1} = U_{\rm LL1} / \sqrt{3}$$

 φ_{s1} : Phase angle between I_{s1} and U_{s1}

P_{d,inv}: Inverter losses

Power balance

$$P_{\rm B} = 3U_{\rm s1}I_{\rm s1}\cos\varphi_{\rm s1} + P_{\rm d,inv}$$

Inverter losses:

- Conduction losses P_{inv,C}
- Switching losses P_{inv,S}
- Base supply $P_{inv,0}$ = approx. 50 W

 $P_{d,inv}$

Modeling of the inverter

IGBT: Insulated Gate Bipolar Transistor = switching transistor

D: Free wheeling diode (antiparallel): Conducts current during voltage brake

Example: IGBT a. Diode FS200 R06KE3, Fa. Infineon

Blocking voltage: $U_{CE,sperr} = 600 \text{ V}$, battery voltage should not exceed 500 V

IGBT:

Collector continuous-/peak current: $I_{C,N} = 200 \text{ A}$, $I_{C,pk} 400 \text{ A} (1 \text{ ms})$, $U_{CE,N} = 300 \text{ V}$ Continuous junction temperature 125°C: $U_{CE,sat} = 1.6 \text{ V}$ at 200 A Conducting voltage $U_{CE0} = 0.8 \text{ V}$, conducting resistance $R_{TD} = 4 \text{ m}\Omega$ Switch-on-/-off losses at $U_{CE,N}$, $I_{C,N}$: 1.7 mJ/6.7 mJ per switching process Free wheeling diode: Continuous-/peak current: $I_{F,N} = 200 \text{ A}$, $I_{F,pk} 400 \text{ A} (1 \text{ ms})$, $U_{F,N} = 300 \text{ V}$

Continuous junction temperature 125°C: conducting voltage $U_{F0} = 0.8$ V, Conducting resistance $R_{FD} = 2.5$ m Ω

Cut-off losses at $U_{\text{F,N}}$, $I_{\text{F,N}}$: 5.2 mJ per switching process

Power switch IGBT (inverter)

FS200 R06KE3, Fa. Infineon

Conduction characteristics

Switching losses (t_{on} = 40 ns, t_{off} = 70 ns)

Free wheeling diode (inverter)

FS200 R06KE3, Fa. Infineon

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 122

Estimation of losses of the inverter

for modulation degree $0 \le m \le 1$

- Conduction losses per IGBT:

$$P_{\mathrm{T,D}} = U_{\mathrm{CE0}}\hat{I}_{\mathrm{s}} \cdot \left(\frac{1}{2\pi} + \frac{m \cdot \cos\varphi_{\mathrm{s}}}{8}\right) + R_{\mathrm{TD}}\hat{I}_{\mathrm{s}}^{2} \cdot \left(\frac{1}{8} + \frac{m \cdot \cos\varphi_{\mathrm{s}}}{3\pi}\right)$$

- Switching losses per IGBT: $P_{\mathrm{T,S}} = \frac{f_{\mathrm{T}}}{\pi} \cdot \frac{\hat{I}_{s}}{I_{\mathrm{C,N}}} \cdot \frac{U_{\mathrm{d}}}{U_{\mathrm{CE,N}}} \cdot \left(E_{\mathrm{on}} + E_{\mathrm{off}}\right)$
- Conduction losses per Diode:

$$P_{\rm D,D} = U_{\rm F0}\hat{I}_{\rm s} \cdot \left(\frac{1}{2\pi} - \frac{m \cdot \cos\varphi_{\rm s}}{8}\right) + R_{\rm FD}\hat{I}_{\rm s}^2 \cdot \left(\frac{1}{8} - \frac{m \cdot \cos\varphi_{\rm s}}{3\pi}\right)$$

- Cut-off losses per Diode:

$$P_{\rm D,S} = \frac{f_{\rm T}}{\pi} \cdot \left(0.55 + 0.45 \cdot \frac{\hat{I}_{\rm s}}{I_{\rm F,N}}\right) \cdot \frac{U_{\rm d}}{U_{\rm F,N}} \cdot E_{\rm red}$$

For higher modulation degree *m* the IGBTs conduct more often and the diodes less, hence the IGBT losses increase with increasing *m*!

- Conduction- and switching losses for 6 IGBTs and Diodes:

$$P_{\text{inv,S+D}} = 6 \cdot (P_{\text{T,D}} + P_{\text{T,S}} + P_{\text{D,D}} + P_{\text{D,S}})$$

Example: Losses of the inverter

m = 1, $\cos \varphi_{s} = 0.8$, $U_{d} = 480$ V, $f_{T} = 12$ kHz, $I_{s1} = 100$ A, $U_{s1} = 170$ V

Output fundamental power: $P_{a} = 3l$

 $P_{\rm e} = 3U_{\rm s1}I_{\rm s1}\cos\varphi_{\rm s1} = 40.8\,\rm kW$

Loss component	Losses in W		
Transistor conduction losses	38.8 W		
Transistor switching losses	36.3 W		
Diode conduction losses	8.7 W		
Diode switching losses	27.6 W		
Sum per transistor-diode pair	111.4 W		
Sum aver all 6 pairs	668.4 W		
Efficiency in %	98.27		

Inverter efficiency: $\eta_{inv} = P_e / (P_e + P_{d,inv})$

Board grid energy demand

(is added as additional losses of the inverter)

Component	Power consumption in W	
Control devices	60	
Headlight	90	
Vehicle reg. light a. rear light	25	
Instrument light	20	
Ventilation	50	
Power steering	25	
Sum	270	

Average demand: (day/night)

(warm/cold)

(rain/dry)

in minimum 150 W

More electric consumers:

Wiper motor, compressor for air conditioning, radio + DVD-player, navigation, heatable windows and mirrors, electric adjustable chassis (suspension), electric heating

12 V supply: From battery (e. g. 400 V DC) by DC-DC-converter to 12 V DC step-down

Modeling of the battery

R

- $U_{\rm B0}$: No-load voltage
- $R_{\rm Bi:}$ Internal battery resistance
- Q: Obtained amount of el. charge
- $t_{\rm B}$: Discharge time for Q at current I = const.
- $W_{\rm B}$: Obtained energy from battery
- $Q_{\rm N}$: Rated charge (Ah), often also denoted as C
- $y = 1-Q/Q_{\rm N}$: State of Charge SOC

$$U_{\rm B} = U_{\rm B0} - I_{\rm B} \cdot R_{\rm Bi}$$
$$Q = I_{\rm B} \cdot t_{\rm B} \qquad \text{Dis}$$
$$W_{\rm B} = Q \cdot U_{\rm B} \qquad \text{Ch}$$

Discharging: $I_{\rm B} > 0$

Charging: $I_{\rm B} < 0$

 $Q_{\text{Rest}} = y \cdot Q_{\text{N}}$

Consumer reference system

Example:

Pb-battery: $U_{B0} = 144 \text{ V},$ $R_{Bi} = 0.055 \Omega, Q_N = 100 \text{ Ah}$

Battery current I at obtained power $P_{\rm B}$

$$U_{\rm B} = U_{\rm B0} - I_{\rm B} \cdot R_{\rm Bi}$$

$$P_{\rm B} = (U_{\rm B0} - I_{\rm B} \cdot R_{\rm Bi})I_{\rm B}$$

For a fixed power the batteries can be charged/discharged with a) low current and high voltage

b) High current and low voltage (unfavorable).

a)
$$I_{\rm B} = \frac{U_{\rm B0}}{2R_{\rm Bi}} - \sqrt{\left(\frac{U_{\rm B0}}{2R_{\rm Bi}}\right)^2 - \frac{P_{\rm B}}{R_{\rm Bi}}} \le I_{\rm B,max}$$

b)
$$I_{\rm B} = \frac{U_{\rm B0}}{2R_{\rm Bi}} + \sqrt{\left(\frac{U_{\rm B0}}{2R_{\rm Bi}}\right)^2 - \frac{P_{\rm B}}{R_{\rm Bi}}} \le I_{\rm B,max}$$

Modeling: Traction battery

Equivalent circuit

- Discharging of battery and charging without gassing reaction (SOC ≤ 80 %)
- For charging of battery with gassing reaction
 > 80 %

- Modeling
 - EC-parameters: characteristics
 - *U*_{0,Batt} = f(*SOC*)
 - *R*_{i,Batt} = f(SOC)
 - $R_{Gas} = f(SOC)$
 - SOC: Ah-balance

Example: Modeling of the Ni-metal-hydride-battery

Technical data

Battery parameter	Data
Number of cells in series	n _{cell} = 228
min./max. cells voltage	$U_{\text{cell,min/Max}} = 0.9 \text{ V} / 1.6 \text{ V}$
Min./max. battery-no-load voltage	$U_{\rm batt,min/max}$ = 273 V / 330 V
Battery rated capacity	Q _{batt,N} = 6,5 Ah
Number of parallel battery branches	a _{batt} = 1
Internal resistance $R_{Bi} = f(SOC)$	R _{Bi} = 0.85 … 1.2 Ω

NiMH-Battery Toyota Prius II

Batteries for hybrid- vs. E - car

Ni-Me-hydride-battery (Comp. Ovonics) for hybrid vehicle

- Battery voltage (no-load): 160 V
- 10.5 Ah
- Battery internal resistance: at -5°C: 0.05 Ohm, at 40°C: 0.01 Ohm
- Battery maximum current: For 10 s: 292 A; for 1 s: 365 A

Lead-gel-battery for E-car:

- Battery voltage (no-load): 144 V = 12 x 12 V-cells
- 100 Ah
- Battery internal resistance: 0.055 Ohm
- Battery maximum current: 300 A

In hybrid vehicles the necessary amount of energy storage is much smaller then in E-cars (range!), but the power peaks due to recuperation during braking or due to high power consumption during "boosting" are much higher. Hence a protection of the batteries with an additional super cap-storage is recommended, as they have high power densities.

Battery cells in comparison

	Lead-gel	Ni-metal-hydride	Li-ion
Cell voltage	2 V	1.2 V	3.5 V
Energy density	30 Wh/kg	80 Wh/kg	100 Wh/kg
Efficiency	70 85 %	85 %	90%
Operating temp.	0 55°C	-20 55°C	-2060°C

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Electric vehicles

- Simulation examples

Planning and application of electrical drives (PAED) – Drives for electric vehicles

a) *Example:*

Constant speed – Range calculation

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 133

Example: Range calculation for *v* = const.

Tasks:

No slope: $\alpha = 0$, v = const. = 120 km/h, m = 1437 kg, $c_w A = 0.56 \text{ m}^2$, $d_R = 0.6 \text{ m}$ $f_R = 0.01$, $\eta_G = 0.9$, i = 8.02, Q = 100 Ah, $U_{B0} = 192 \text{ V}$, $R_{Bi} = 0.055 \Omega$ (Pb-Gel) SOC: start: 100%, end: 25%, PM-synchronous motor 6-poles and IGBT-inverter (efficiency field for $U_B = 190 \text{ V}$), board grid: 400 W

Results:

- 1) Driving resistances: $F_{Bg} \cong 0$, $F_{Roll} = 141$ N, $F_{L} = 375$ N, $F_{D} = 515$ N, $P_{D} = 17.17$ kW
- 2) Wheel speed and gear: $n_{\rm W}$ = 1061/min, $n_{\rm M}$ = 8509/min, $P_{\rm M}$ = 19.078 kW
- 3) Motor data: $M_{\rm M}$ = 21.4 Nm, driving system efficiency: 80% (inverter: 93%, PM-syn. motor 86%) 4) Battery power: 19.078/0.8 + 400 = 24248 W = $P_{\rm B}$, $I_{\rm B} = \frac{U_{\rm B0}}{2R_{\rm Bi}} - \sqrt{\left(\frac{U_{\rm B0}}{2R_{\rm Bi}}\right)^2 - \frac{P_{\rm B}}{R_{\rm Bi}}} = 131.2 \,\rm{A}$
- 5) Range: $y = 1 SOC_{end} = 0.75$, $t = Q \cdot y/I_B = 2058 \text{ s} = 34.3 \text{ min}$, $s = v \cdot t = 68.6 \text{ km}$

Example: PM-synchronous drive

Torque- quadrature current-curve

Power+ efficiency (motor + inverter)

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Speed cycles – Range calculation and capability of acceleration

Example: Specification for a fictive E-car – during cycle and at max. acceleration

Specification:

- *m* = 900 kg (empty) $c_w A = 0.5 \text{ m}^2$, $d_R = 0.623 \text{ m}$, $\Delta = 0.2$ rotating mass adding factor,
- $f_{\rm R}$ = 0.008, $\eta_{\rm G}$ accord. Efficiency field, *i* = 8, Q = 30 Ah, $U_{\rm B0}$ = 480 V, $R_{\rm Bi}$ = 0.0696 Ω (Li-Ion, *comp. Kokam*), PM-synchronous motor 6-poles (*comp.. Brusa*, 6.17.12): 4500/min, 85 Nm, max. 11000/min, IGBT-inverter: *comp.. Brusa*, DMC524, 80 kW (106 kW short time), 600 V blocking voltage, board grid: 150 W

The vehicle is designed for v_{max} = 150 km/h : motor speed = 10200/min.

Example: Driving resistances

Speed in km/h	Driving resistance in N	
0	0	
25	85.2	
50	128.5	
75	201.5	
100	302	
125	432	
138	513	
150	591	

α = 0

<u>Example:</u> E-car solutions in motor characteristic field

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 139

<u>Example:</u> Border lines of a PMsynchronous-motor (Brusa)

<u>Example:</u> E-car: PM-motor and vehicle-load data

Point in characteristic	Speed in m/s resp. km/h	I _d in A	I _q in A
1 (<i>n</i> _N / <i>M</i> _d)	13.8 / 49.7	0	102
2 (<i>n</i> _N / <i>M</i> _{S2})	13.62 / 49	0	139
3 (<i>n</i> _{max} / <i>M</i> _d)	41.55 / 149.6	84	7
4 (n _{max} / M _{S2})	41.05 / 147.78	109.5	52.5

Speed	SpeedThermal continuous torque in NmMaximum short tin (S2-5 min oper	
n _N = 58.1 /s	115 / point 1	151 / point 2
n _{max} = 170.1 /s	8 / point 3	60 / point 4

<u>Example:</u> E-car (Brusa-drive) calculated efficiency field

Example: Losses in four operation points Due to high accelerating force slip losses also occur!

	Point 1	Point 2	Point 3	Point 4
Losses in W	(n / M)	(n/M)	(n / M)	(n / M)
	(// _N / // _d)	(// _N / W _{S2})	$(n_{\text{max}} / N_{\text{d}})$	(11 _{max} / 1 v 1 _{S2})
Wheel slip losses	1237	2280	16	936
Gear	190	247	127	365
Power electronics	794	916	736	985
Board grid	150	150	150	150
Motor	1944	3245	3700	5190
Battery	623	1135	51	1605
Sum of losses	4838	7973	4780	9231
Driving power in kW	40.5	52.5	8.4	62.8
Efficiency in %				
Total vehicle	89.3	86.8	63.7	87.2
Motor	95.6	94.4	70.0	92.5
Power electronics	98.4	98.4	94.3	98.5
		Ω	= 0	

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 143

Example: Range E-car in FTP-72 cycle

<u>Example:</u> E-car in FTP-72 cycle – Recuperation

Time in s

	FTP-72	FTP-75
State of charge with recuperation	94%	91%
State of charge without recuperation	90,9%	86,5%
Savings	34%	33,3%

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 145

۰

<u>Example:</u> E-car in FTP-72 cycle – Battery loading

100

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 146

Example: E-car results in sprint

- 7,2 seconds from zero to 100 km/h

Empty car mass 900 kg, α = 0

- 15,2 seconds from zero to 150 km/h

Sample: E-car operating time in % in the motor operation map

- Evenly screened occurrence of operation points during the FTP-72 cycle
- Torque-speed-combinations at gear input in steps of 10 Nm and 10 1/s

Institut für Elektrische Energiewandlung | Prof. Dr.-Ing. habil. Dr. h.c. A. Binder | Seite 148

Example: E-car: Occurrence of different operation points and correlating efficiency during FTP-72 cycle

- Area size of points = duration of this operation point
- Color = efficiency

Planning and application of electrical drives (PAED) – Drives for electric vehicles

Have fun while self-designing an E-car-drive ! Source: Tesla roadster

