Complete Catalogue of all modules FB 18 Electrical Engineering and Information Technology (PO)

Module handbook
FB 18
Date: 02.03.2023
Module handbook: Complete Catalogue of all modules FB 18 Electrical Engineering and Information Technology (PO)

Date: 02.03.2023

FB 18
Email: servicezentrum@etit.tu-darmstadt.de
Contents

1 Bachelor .. 1

1.1 Lectures .. 1
System Dynamics and Automatic Control Systems II .. 1
Programming in Automatic Control (C/C++) .. 3
Electrical Power Engineering .. 4
Electrical Machines and Drives .. 6
Technology of Micro- and Precision Engineering .. 8
Introduction to Electrodynamics .. 9
Computational Electromagnetics and Applications I .. 10
Applications of Electrodynamics .. 11
Technical Electrodynamics .. 12
System Dynamics and Automatic Control Systems I .. 13
Power Electronics .. 15
Electrical Engineering and Information Technology II .. 17
Computer Systems I .. 19
Electronics .. 21
Electronics .. 23
Analog Integrated Circuit Design .. 25
Power Systems I .. 26
Electrical Engineering and Information Technology I .. 27
High Voltage Technology I .. 29
Fundamentals of Communication .. 31
Microwave Engineering I .. 33
Deterministic Signals and Systems .. 35
Communication Technology I .. 37
Measuring Technique .. 39
Electromechanical Systems I .. 41
Information Theory I .. 42
Bioinformatics I .. 43
Microelectronic Devices .. 45
Communication Networks I .. 47
Logic Design .. 49
Software Engineering - Introduction .. 50
Fundamentals of Signal Processing .. 52

1.2 Internships .. 54
Actuators for Mechatronic Systems Laboratory .. 54
Actuators for Mechatronic Systems Lab (for MB) .. 55
Mechatronics Workshop .. 56
Laboratory Matlab/Simulink I .. 57
Digital Design Lab .. 58
Electronics .. 59
Electronics Lab .. 61
HDL Lab .. 62
Measuring Technique .. 63
Electrical Engineering and Information Technology Lab I .. 65
Laboratory of Biomedical Engineering .. 67
1.7 Modules of the B.Sc. Biomedical Engineering

- Terminology, Medical Morphology and Applied Anatomy .. 131
- Natural Scientific Principles for Medical Engineering ... 133
- Biomechanics and Biomaterials .. 135
- Biomedical Engineering .. 137
- Clinical Practical Courses .. 139
- Medical Law, Forensic Medicine and Ethics ... 141

2 Master

2.1 Lectures .. 142

- System Dynamics and Automatic Control Systems III ... 142
- Fuzzy Logic, Neural Networks and Evolutionary Algorithms ... 144
- Evolutionary Systems - From Biology to Technology .. 146
- Computer Vision in Engineering ... 147
- Machine Learning and Deep Learning for Automation Systems ... 149
- Automated Driving ... 151
- Optimization in Multi-Agent Systems .. 153
- Didactics for Engineers .. 155
- Accelerator Physics ... 156
- Plasma Physics .. 157
- Applied Superconductivity .. 158
- Numerical Methods of Accelerator Physics ... 160
- Energy Converters - CAD and System Dynamics .. 161
- Large Generators and High Power Drives .. 163
- Motor Development for Electrical Drive Systems .. 164
- New Technologies of Electrical Energy Converters and Actuators ... 166
- Railway Vehicle Engineering ... 168
- Electrothermal Processes .. 169
- Electric Railways ... 170
- Electric Drives for Cars .. 171
- Microsystem Technology ... 173
- Finite Element Method .. 174
- Computational Electromagnetics and Applications III ... 176
- X-Ray Free Electron Lasers .. 177
- Technical Electrodynamics for iCE ... 179
- Simulation of Beam Dynamics and Electromagnetic Fields in Accelerators 181
- Virtual Prototyping of Electric Drives ... 183
- Optimal and Predictive Control .. 185
- Control of Distributed Cyber-Physical Systems ... 187
- Model Predictive Control and Machine Learning .. 189
- Identification of Dynamic Systems ... 191
- Basics of Biophotonics .. 193
- Fundamentals and Technology of Radiation Sources for Medical Applications 195
- Ion Beam Therapy .. 197
- Advanced Power Electronics ... 199
- Control of Drives ... 201
- Real Time Applications and Communication with Microcontrollers and Programmable Logic Devices ... 203
- Artificial Intelligence in Medicine ... 205
- Low-Level Synthesis ... 207
- High-Level Synthesis .. 209
- Computer Systems II .. 211
- Advanced Digital Integrated Circuit Design ... 212
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor Systems</td>
<td>214</td>
</tr>
<tr>
<td>Computer Aided Design for SoCs</td>
<td>216</td>
</tr>
<tr>
<td>Industrial Electronics</td>
<td>218</td>
</tr>
<tr>
<td>Regulation and Operation of Power Supply</td>
<td>220</td>
</tr>
<tr>
<td>Power Systems II</td>
<td>222</td>
</tr>
<tr>
<td>Power Systems III</td>
<td>224</td>
</tr>
<tr>
<td>Power Plants and Renewable Energies</td>
<td>225</td>
</tr>
<tr>
<td>Power Cable Systems</td>
<td>226</td>
</tr>
<tr>
<td>Electromagnetic Compatibility</td>
<td>228</td>
</tr>
<tr>
<td>Gasinsulated Switchgear and Lines</td>
<td>230</td>
</tr>
<tr>
<td>Antennas and Adaptive Beamforming</td>
<td>232</td>
</tr>
<tr>
<td>Radar Techniques</td>
<td>234</td>
</tr>
<tr>
<td>Microwave Engineering II</td>
<td>235</td>
</tr>
<tr>
<td>High Voltage Technology II</td>
<td>237</td>
</tr>
<tr>
<td>High Voltage Switchgear and Substations</td>
<td>239</td>
</tr>
<tr>
<td>Lightning Physics and Lightning Protection</td>
<td>240</td>
</tr>
<tr>
<td>Acceleration of Charged Particles in Electromagnetic Fields (only for information)</td>
<td>242</td>
</tr>
<tr>
<td>Relativistic Electrodynamics</td>
<td>243</td>
</tr>
<tr>
<td>Lighting Technology I</td>
<td>244</td>
</tr>
<tr>
<td>Advanced Lighting Technology</td>
<td>245</td>
</tr>
<tr>
<td>Optical Technologies in Car Lighting</td>
<td>246</td>
</tr>
<tr>
<td>Solid State Lighting</td>
<td>247</td>
</tr>
<tr>
<td>Communication Technology II</td>
<td>248</td>
</tr>
<tr>
<td>Mobile Communications</td>
<td>250</td>
</tr>
<tr>
<td>Fundamentals of Reinforcement Learning</td>
<td>252</td>
</tr>
<tr>
<td>Sensor Technique</td>
<td>254</td>
</tr>
<tr>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>255</td>
</tr>
<tr>
<td>Bioinformatics II</td>
<td>257</td>
</tr>
<tr>
<td>Introduction to Spintronics</td>
<td>259</td>
</tr>
<tr>
<td>Robust Data Science With Biomedical Applications</td>
<td>261</td>
</tr>
<tr>
<td>Information Theory II</td>
<td>263</td>
</tr>
<tr>
<td>Convex Optimization in Signal Processing and Communications</td>
<td>264</td>
</tr>
<tr>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>266</td>
</tr>
<tr>
<td>Sensor Array Processing and Adaptive Beamforming</td>
<td>268</td>
</tr>
<tr>
<td>Matrix Analysis and Computations</td>
<td>270</td>
</tr>
<tr>
<td>Graph Signal Processing, Learning and Optimization</td>
<td>272</td>
</tr>
<tr>
<td>Terahertz Systems and Applications</td>
<td>274</td>
</tr>
<tr>
<td>Modelling and Simulation of Circuits</td>
<td>276</td>
</tr>
<tr>
<td>Fast Boundary Element Methods for Engineers</td>
<td>278</td>
</tr>
<tr>
<td>Communication Networks II</td>
<td>280</td>
</tr>
<tr>
<td>Multimedia Communications Project II</td>
<td>282</td>
</tr>
<tr>
<td>Software Defined Networking</td>
<td>284</td>
</tr>
<tr>
<td>Transport Protocols and their Design</td>
<td>286</td>
</tr>
<tr>
<td>Application-Layer Protocols on the Internet</td>
<td>287</td>
</tr>
<tr>
<td>Energy Management and Optimization</td>
<td>288</td>
</tr>
<tr>
<td>Machine Learning & Energy</td>
<td>290</td>
</tr>
<tr>
<td>Technology and Economics of Multimodal Energy Systems</td>
<td>292</td>
</tr>
<tr>
<td>Designing the Energiewende</td>
<td>294</td>
</tr>
<tr>
<td>Software-Engineering - Maintenance and Quality Assurance</td>
<td>296</td>
</tr>
<tr>
<td>Real-Time Systems</td>
<td>297</td>
</tr>
<tr>
<td>Adaptive Filters</td>
<td>299</td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>301</td>
</tr>
<tr>
<td>Speech and Audio Signal Processing</td>
<td>302</td>
</tr>
<tr>
<td>Data Science I</td>
<td>304</td>
</tr>
</tbody>
</table>
Resilient Communication Networks ... 306
Hardware for Neural Networks .. 308

2.2 Internships ... 309
Laboratory Control Engineering II ... 309
Power Laboratory I .. 310
Power Laboratory II ... 312
Practical Training with Drives .. 313
Laboratory Matlab/Simulink II ... 314
Advanced Integrated Circuit Design Lab ... 315
Simulation of Electrical Power Networks .. 316
Lighting Technology I ... 317
Advanced Lighting Technology ... 318
Solid State Lighting .. 319
Multimedia Communications Lab II ... 320
Introduction to Scientific Computing with Python .. 322
Digital Signal Processing Lab ... 324

2.3 Seminars ... 325
Design of Electrical Machines and Actuators with Numerical Field Calculation 325
Planning and Application of Electrical Drives (Drives for Electric Vehicles) 326
KeySkills With a Focus on Language .. 327
Accelerator Physics and Technology ... 330
Application, Simulation and Control of Power Electronic Systems 331
Seminar Integrated Electronic Systems Design A .. 333
Seminar: Integrated Electronic Systems Design B ... 334
Computational Modeling for the IGEM Competition 335
International Summer School 'Microwaves and Lightwaves' 337
One World Signal Processing Seminar Series .. 338
Multimedia Communications Seminar II .. 340
Multimedia Communications Seminar I .. 342
Seminar Software System Technology .. 344
Advanced Topics in Statistical Signal Processing ... 345
Signal Detection and Parameter Estimation .. 347
Robust and Biomedical Signal Processing .. 349
Data Science II .. 351

2.4 Project Seminars .. 353
Project Seminar Robotics and Computational Intelligence 353
Project Seminar Automatic Control Systems ... 355
Energy Converters and Electric Drives ... 356
Science in Practice I .. 357
Science in Practice II .. 358
Project Course Practical Application of Mechatronics 359
Project Course Control Engineering ... 360
Artificial Intelligence in Medicine Challenge .. 361
Project Seminar Reconfigurable Systems ... 362
Project Seminar Systems of Biomedical Engineering 363
Project Seminar Network calculation ... 364
Project Seminar Advanced µWave Components & Antennas 365
Project Seminar Application in High-Voltage Technology 366
Project seminar Applications of Lighting Engineering 367
Project seminar Advanced Applications of Lighting Engineering 368
Project seminar Special Applications of Lighting Engineering 369
Project Seminar Wireless Communications ... 371
Project seminar Spintronic Devices ... 372
Project Seminar Emerging Topics in Sensor Array and Multichannel Processing 373
Project Seminar Emerging topics in MIMO Communication Networks .. 374
Multimedia Communications Project Seminar II ... 375
Advanced Project Seminar Energy Information Systems ... 377
Autonomous Driving Lab I .. 378
Autonomous Driving Lab II ... 380
Project Seminar Terahertz Technology, Communication and Sensors 382
Product Development Methodology III ... 384
Product Development Methodology IV ... 385
2.5 Field Trip .. 386
Railway Vehicle Engineering ... 386
Excursion SAE .. 387
2.6 Colloquia ... 388
Industrial Colloquium .. 388
2.7 Modules of the M.Sc. Biomedical Engineering ... 390
Clinical Requirements for Medical Imaging ... 390
Human vs. Computer in Diagnostic Imaging ... 391
Radiotherapy I .. 393
Radiotherapy II ... 394
Nuclear Medicine ... 395
Digital Dentistry and Surgical Robotics and Navigation I .. 396
Digital Dentistry and Surgical Robotics and Navigation II .. 397
Digital Dentistry and Surgical Robotics and Navigation III ... 398
Anesthesia I ... 400
Clinical Aspects ENT & Anesthesia II ... 401
Audiology, Hearing Aids and Hearing Implants .. 403
Basics of Medical Information Management ... 405
Technical Performance Optimization of Radiological Diagnostics 406
Seminar Radiation Physics and Technology in Medicine .. 407
Internship in Surgery and Dentistry I .. 408
Internship in Surgery and Dentistry II .. 410
Internship in Surgery and Dentistry III ... 412
Internship "Medicine Live“ ... 414
Introduction to Ethics: The Example of Medical Ethics ... 416
Current Issues in Medical Ethics ... 418
Anthropological and Ethical Issues of Digitization .. 419
Medical Data Science .. 421
Seminar Medical Data Science - Medical Informatics ... 423
Project seminar „Medical Data Science - Medical Informatics“ 424

3 Interdisciplinary modules of FB 18 .. 425
Standardization, Testing and Approvals in the Electrotechnical Area 425
What is Behind All this? ... 427
What is Behind All this? ... 428
Patents - How to Protect Technical Inventions ... 429

4 Modules for other departments ... 431
Introduction into the Numerical Computation of Electromagnetic Fields 431
Introduction to Electrical Engineering ... 433
Introduction to Electrical Engineering ... 435
Introduction to Electrical Engineering for BEd .. 437
Applied Computational Modeling and Analysis ... 439
Fundamentals of Electrical Engineering and Power Systems .. 441
Bachelor

1.1 Lectures

<table>
<thead>
<tr>
<th>Module name</th>
<th>System Dynamics and Automatic Control Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-ad-1010</td>
</tr>
<tr>
<td>Credit points</td>
<td>7 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>210 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>135 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

1 Teaching content
Main topics covered are:

1. Root locus method (construction and application),
2. State space representation of linear systems (representation, time solution, controllability, observability, observer-based controller design)

2 Learning objectives
After attending the module, a student is capable of:

1. constructing and evaluating the root locus of given systems
2. describing the concept and importance of the state space for linear systems
3. defining controllability and observability for linear systems and being able to test given systems with respect to these properties
4. stating controller design methods using the state space, and applying them to given systems
5. applying the method of linearization to non-linear systems with respect to a given operating point

3 Recommended prerequisites for participation
System Dynamics and Control Systems I

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, MSc MEC, MSc iST, MSc WI-ETiT, MSc iCE, MSc EPE, MSc CE, MSc Informatik

8 Grade bonus compliant to §25 (2)
References
Adamy: Systemdynamik und Regelungstechnik II, Shaker Verlag (available for purchase at the FG office)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-1010-vl</td>
<td>System Dynamics and Automatic Control Systems II</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-ad-1010-ue</td>
<td>System Dynamics and Automatic Control Systems II</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Programming in Automatic Control (C/C++)

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-1020</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Teaching content
Programming in LINUX, Makefiles, C - Programming (Program structures in C, pointer, developer environment and debugger), C++ (object oriented programming)

2 Learning objectives
After attending the lecture, a student is capable of:
1. operating LINUX computers,
2. assembling and using makefiles,
3. recalling and applying the syntax for standard C-blocks,
4. explaining and applying the use of pointers,
5. explaining the concept of object oriented programming in C++

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc iST, MSc MEC, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Adamy: Lecture notes

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-1020-vl</td>
<td>Programming in Automatic Control (C/C++)</td>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr. rer. nat. Tatiana Tatarenko, Prof. Dr.-Ing. Jürgen Adamy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-1020-ue</td>
<td>Programming in Automatic Control (C/C++)</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr. rer. nat. Tatiana Tatarenko, Prof. Dr.-Ing. Jürgen Adamy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Electrical Power Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
The lecture gives an introduction to the technical processes for the use of energy for the human civilization in general and to the basic tasks and challenges of the electrical energy in particular. Biochemical energy processes such as the human metabolism are therefore not subject of the course.

First, the physical basics of the term "energy" are repeated and the different forms of energy (mechanical, thermal, electromagnetic, chemical and nuclear) are explained in terms of the technical use of energy as heat, mechanical movement and electricity.

Then, an overview of the energy resources is given, starting from the solar radiation and its direct and indirect impact, such as the solar heat and the motion of air mass, surface water and sea waves. Next, the energy source of biomass due to solar radiation and the fossil energy sources oil, natural gas and coal will be discussed. The energy sources of nuclear fission (uranium deposits) and nuclear fusion (heavy water), and geothermal energy due to nuclear effects in the Earth's interior are explained as well as the tidal effects caused by planetary motion.

The increasing energy demand of the rapidly growing world population and the geographic distribution of energy sources (deposits, acreage, solar radiation, wind maps, tidal currents, ...) are described. The resulting energy flows on transport routes such as pipelines, waterways, ..., are briefly presented. In another section, energy conversion processes (direct and indirect methods) are illustrated. Large-scale processes such as thermal cycles or hydraulic processes in power plants are discussed mainly, but also marginal processes such as thermionic converters are addressed. Afterwards, a specialization takes place on the subject of electric power supply with respect to the increasing proportion of the electric power applications. The chain from the electric generator to the consumer with an overview of the required resources, the hiring electrical load flow and its stability is addressed. The storage of energy and in particular of electrical energy by converting into other forms of energy will be discussed. Finally, questions for the contemporary use of energy resources in regard to sustainability are mentioned.

2 Learning objectives
Students know the physically based energy basics and have an overview of the energy resources of our planet Earth.

They understand the fundamental energy conversion processes on the technical use of energy in the form of heat as well as mechanical and electrical work.

They have acquired basic knowledge of electrical engineering in the chain of effects from electric power producer to the consumer and are able to educate themselves about current issues of energy use and its future development.

They are able to perform basic calculations for energy content, energy conversion, efficiencies, storage, and for conversion and transportation losses. They are prepared for advanced lectures on energy components and systems, energy industry, and on future forms of energy supply.

3 Recommended prerequisites for participation
Basic knowledge of physics (mechanics, thermodynamics, electrical engineering, structure of matter) and chemistry (binding energy) are desirable and facilitate understanding of the energetic processes.

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
BSc ETiT, BSc WI-ETiT, BSc MEC, BSc iST, BSc CE, MSc ESE

Grade bonus compliant to §25 (2)
At the beginning of the semester, it will be announced whether there will be homework tests accompanying the lecture that will enable an improvement in grades.

References
Lecture notes (slides)
Practice documents (examples, solutions)
Additional and more detailed literature:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1010-vl</td>
<td>Electrical Power Engineering</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1010-ue</td>
<td>Electrical Power Engineering</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Electrical Machines and Drives

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1020</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

Teaching content
Construction and function of induction machine, synchronous machine, direct current machine. Electromagnetic field within machines, armature windings, steady-state performance as motor/generator, application as line-fed and inverter-fed drives. Significance for electric power generation, both to the grid and in stand-alone version.

Learning objectives
With active collaboration during lectures by asking questions related to those parts, which have not been completely understood by you, as well as by independent solving of examples ahead of the tutorial (not as late as during preparation for examination) you should be able to:

1. calculate and explain the stationary operation performance of the three basic types of electric machine sin motor and generator mode,
2. understand the application of electrical machines in modern drive systems and to design simple drive applications by yourself,
3. understand and explain the function and physical background of the components of electrical machines
4. understand and explain the impact of basic electromagnetic field and force theory on the basic function of electrical machines.

Recommended prerequisites for participation
Mathematics I to III, Electrical Engineering I and II, Physics, Mechanical Engineering

Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

Usability of the module
BSc ETiT, BSc/MSc Wi-ETiT, BEd

Grade bonus compliant to §25 (2)

References
- Detailed textbook and collection of exercises; Complete set of PowerPoint presentations
- L.Matsch: Electromagnetic and electromechanical machines, Int.Textbook, 1972
- S.Nasar et al: Electromechanics and electric machines, Wiley&Sons, 1995
- R.Fischer: Elektrische Maschinen, C.Hanser-Verlag, 2004

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1020-vl</td>
<td>Electrical Machines and Drives</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-bi-1020-ue</td>
<td>Electrical Machines and Drives</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Technology of Micro- and Precision Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bu-1010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
<td>German</td>
<td>Prof. Ph.D. Thomas Burg</td>
</tr>
</tbody>
</table>

1 Teaching content
To explain production processes of parts like: casting, sintering of metal and ceramic parts, injection moulding, metal injection moulding, rapid prototyping, to describe manufacturing processes of parts like: forming processes, compression moulding, shaping, deep-drawing, fine cutting machines, ultrasonic treatment, laser manufacturing, machining by etching, to classify the joining of materials by: welding, bonding, soldering, sticking, to discuss modification of material properties by: tempering, annealing, composite materials.

2 Learning objectives
Provide insights into the various production and processing methods in micro- and precision engineering and the influence of these methods on the development of devices and components.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, MSc MEC, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Script for lecture: Technology of Micro- and Precision Engineering

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bu-1010-vl</td>
<td>Technology of Micro- and Precision Engineering</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Ph.D. Thomas Burg, M.Sc. Niko Faul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bu-1010-ue</td>
<td>Technology of Micro- and Precision Engineering</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Ph.D. Thomas Burg, M.Sc. Niko Faul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module name</td>
<td>Introduction to Electrodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-dg-1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>5 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 **Teaching content**
 Vector calculus, orthogonal coordinate systems, Maxwell's equations, interface and boundary conditions, layered media, electrostatics, scalar potential, Coulomb integral, separation of variables, method of image charges, magnetostatics, vector potential, Biot-Savart law, stationary current fields, fields in matter, energy flow, skin effect, plane waves, polarization, TEM waves, reflection and multi-layer problems, multi conductor transmission lines (capacitance, inductance, and conductance matrix), velocity definitions, basics of rectangular waveguides.

2 **Learning objectives**
 Students will be familiar with Maxwell's equations in integral and differential form for static and dynamic field problems. They will have a mental picture of wave phenomena in free space. They are able to recognise and interpret wave effects in the different areas of electrical engineering. They are able to derive the wave effects from Maxwell's equations and have a good understanding of the necessary mathematical tools.

3 **Recommended prerequisites for participation**
 Lecture notes. Further literature recommendations are given in the course.

4 **Form of examination**
 Module exam:
 - Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

5 **Prerequisite for the award of credit points**
 Passing the final module examination

6 **Grading**
 Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7 **Usability of the module**
 BSc ETiT, BSc Wi-ETiT

8 **Grade bonus compliant to §25 (2)**
 Improvement by up to 0.4 due to bonus points which can be acquired by means of e-learning online tests.

9 **References**
 Lecture notes. Further literature recommendations are given in the course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1010-vl</td>
<td>Introduction to Electrodynamics</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1010-ue</td>
<td>Introduction to Electrodynamics</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Computational Electromagnetics and Applications I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language: German

Module owner: Prof. Dr.-Ing. Herbert De Gersem

1. **Teaching content**
Basics FIT, electrostatics, magnetostatics, magnetoquasistatics, high frequency simulations, convergence studies, discretisation, time- and frequency domain simulations.

2. **Learning objectives**
Students learn the basic concepts of the Finite Integration Technique (FIT) for the numerical solution of Maxwell's equations. Students are, furthermore, introduced to the practical application of the method for numerical field problems.

3. **Recommended prerequisites for participation**
Basics of Maxwell's equations, linear algebra. Recommended: Basic knowledge in knowledge in "Technical Electrodynamics".

4. **Form of examination**
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
Course notes, lecture slides.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1030-vl</td>
<td>Computational Electromagnetics and Applications I</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor: Prof. Dr.-Ing. Herbert De Gersem, Dr.-Ing. Wolfgang Ackermann
Module name
Applications of Electrodynamics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1040</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Vector calculus, Maxwell's equations, electrostatics, magnetostatics, fields of stationary currents, electromagnetic waves and ultrasonic waves, analytical and numerical calculation techniques, wave propagation, reflection and transmission, diffraction, interference and polarization, applications of electromagnetic and ultrasonic waves in medical technology

2 **Learning objectives**
The students get knowledge and intuition on electromagnetic fields and wave propagation phenomena. They are able to recognize and calculate field and wave phenomena in an electrical engineering context. They are familiar with the required mathematical tools. The students have a feeling for the application of electromagnetic fields and waves in medical engineering.

3 **Recommended prerequisites for participation**
"Elektrotechnik und Informationstechnik II" (18-gt-1020), "Mathematics II" (04-00-0109), and "Mathematics III" (04-00-0111)

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 **Usability of the module**
B.Sc. Biomedical Engineering

8 **Grade bonus compliant to §25 (2)**

9 **References**
Lecture slides can be downloaded. Further references will be given in the lecture.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1040-vl</td>
<td>Applications of Electrodynamics</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1040-ue</td>
<td>Applications of Electrodynamics</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module name</td>
<td>Technical Electrodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-dg-1070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>6 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Fields in materials, Green’s functions, separation of variables in generalized orthogonal coordinates, conformal mapping, elliptic integrals and elliptic functions, electromagnetic forces, quasi-stationary fields, general waveguides, resonators, antennas.

2. **Learning objectives**
 Starting with Maxwell’s equations the lecture’s aim is to provide a general understanding of electromagnetic phenomena. Students will be able to apply analytical methods to simple problems. Students will exhibit the ability to deal with more complex electromagnetic formulations and tasks.

3. **Recommended prerequisites for participation**
 Vector analysis, infinitesimal calculus, basics in differential equations. Knowledge of “Introduction to Electrodynamics”

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT, MSc Wi-ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Course notes available (including references)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1070-vl</td>
<td>Technical Electrodynamics</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Dr.-Ing. Wolfgang Ackermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1070-ue</td>
<td>Technical Electrodynamics</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Dr.-Ing. Wolfgang Ackermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
System Dynamics and Automatic Control Systems I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content
Description and classification of dynamic systems; Linearization around an equilibrium point; Stability of dynamic systems; Frequency response; Linear time-invariant closed-loop systems; Controller design; Control structure optimization

2 Learning objectives
Students will know how to describe and classify different dynamic systems. They will be able to analyse the dynamic behaviour in time and frequency domain. The students will be able to design controllers for linear time invariant systems.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc etit, BSc MEC, MSc Informatik

8 Grade bonus compliant to §25 (2)

9 References
- Föllinger: "Regelungstechnik: Einführung in die Methoden und ihre Anwendungen",
- Jörgl: "Repetitorium Regelungstechnik",
- Merz, Jaschke: "Grundkurs der Regelungstechnik: Einführung in die praktischen und theoretischen Methoden",
- Horn, Dourdoumas: "Rechnergestützter Entwurf zeitkontinuierlicher und zeitdiskreter Regelkreise",
- Schneider: "Regelungstechnik für Maschinenbauer",
- Weinmann: "Regelungen, Analyse und technischer Entwurf: Band 1: Systemtechnik linearer und linearisierter Regelungen auf anwendungsnaher Grundlage"

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-1010-vl</td>
<td>System Dynamics and Automatic Control Systems I</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Findeisen, M.Sc. Florian Weigand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-fi-1010-tt</td>
<td>System Dynamics and Automatic Control Systems I- Auditorium Exercise</td>
<td>Tutorial</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Power Electronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1010</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Gerd Griepentrog

1 Teaching content
Power electronic devices convert the energy from the distribution network to the form required by the load. This conversion does not wear out, can be controlled very fast and has a high efficiency. In lecture “Power Electronics” the most important circuits required for the energy conversion are treated, using ideal switches.

The main chapters are:
I.) Line commutated converters in order to understand the basic concepts of power electronic systems.
II.) Self-commutated converters (one, two and four quadrant converters, 3-phase VSI)

2 Learning objectives
The module teaches students after successful completion:
- Understand the ideal concept of power semiconductors
- Calculate and sketch the time-characteristics of all currents and voltages in a line-commutated converter using defined simplifications as well as represent the behavior of currents and voltages during commutation in line-commutated converters for center-tapped as well as for bridge circuits.
- Specify the basic circuit diagrams for one, two and four quadrant DC/DC converters and calculate the characteristics of voltages and currents in these circuits.
- Explain the function of single-phase and three-phase voltage source inverters and calculate the currents and voltages in these circuits using defined simplifications.
- Understand the concept and operation of HVDC converter

3 Recommended prerequisites for participation
Mathe I und II, ETiT I und II, Energietechnik

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Lecture notes, instructions for exercises are available for download in Moodle.

Literature:
- Heumann, K.: „Grundlagen der Leistungselektronik“; Teubner; Stuttgart; 1985

<table>
<thead>
<tr>
<th>Courses</th>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>18-gt-1010-vl</td>
<td>Power Electronics</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Practice</td>
<td>18-gt-1010-ue</td>
<td>Power Electronics</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, M.Sc. Milad Khani, Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Electrical Engineering and Information Technology II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1020</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Electrostatic fields; stationary electrical flow fields; stationary magnetic fields; temporally variable magnetic fields; capacitor networks, transmission lines

2 **Learning objectives**
Upon successful completion of the module the students have detached themselves from the conception that all electrical procedures are line-bound; they have a clear idea of the field term, can read and interpret field plots and also design simple field plots themselves; they understand the difference between a curl and a divergence field, can describe this difference mathematically and are able to recognize the field type from a mathematical description, respectively; they are able to calculate field distributions for simple rotationally symmetric arrangements analytically; they can deal surely with the definitions of the electrostatic, the electrical quasi-static, the magnetostatic and the magneto-electric field; they have recognized the connection and dualism of electricity and magnetism; they control the mathematical apparatus necessary for their description and can apply it to simple examples; they can calculate with nonlinear magnetic circuits; they can compute inductance, capacity and resistance of simple geometrical arrangements and understand them now as physical characteristics of the respective arrangement; they have recognized, how different forms of energy can be transferred into each other and are thereby already able to solve simple scientific engineering problems; they have understood the underlying physical backgrounds for many applications of electrical engineering and are able to describe them mathematically, develop it further in a simple way and apply it to other examples; they are familiar with the system of Maxwell's equations in their integral representation have a first idea of the importance of Maxwell's equations for all conceptual formulations of electrical engineering. They understand the propagation of electromagnetic waves in the free space and on transmission lines for both harmonic ans transient signals.

3 **Recommended prerequisites for participation**
Electrical Engineering and Information Technology I

4 **Form of examination**
Module exam:
• Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc MEC, BSc Wi-ETiT, LA Physik/Mathematik, BSc CE, BSc iST

8 **Grade bonus compliant to §25 (2)**
Notenverbesserung entsprechend 25 (2) APB TU Darmstadt

9 **References**
Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1020-vl</td>
<td>Electrical Engineering and Information Technology II</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-gt-1020-ue</td>
<td>Electrical Engineering and Information Technology II</td>
<td>M.Sc. Daniel Großmann, Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>

- Downloadable slides
Module name
Computer Systems I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
</tr>
</tbody>
</table>

1 Teaching content
Types of instruction sets, memory organization and its impact on the runtime, pipelining, instruction level parallelism, superscalar processors, VLIW processors, floating point numbers and operations, memory subsystem, cache types, virtual address spaces, benchmarking and performance prediction, system architecture and bus systems, peripheral devices.

2 Learning objectives
Upon successful completion of the module, students can analyze and evaluate processors, memory systems and bus systems. They can transform structures of high-level programming languages like subroutine calls into sequences of machine instructions. They are able to measure the performance of computers. They know how instructions are executed in modern processors and thus, they can predict the influence of a specific memory hierarchy onto the execution time of a given program. They know how internal and external bus systems work and can define the essential parameters for their dimension and operation.

3 Recommended prerequisites for participation
Basic knowledge of digital design as it can be obtained by the lecture "Logic Design".

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
- Harris & Harris: Digital Design and Computer Architecture
- Hennessy/Patterson: Computer architecture - a quantitative approach

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1020-vl</td>
<td>Computer Systems I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>18-hb-1020-ue</td>
<td>Computer Systems I</td>
<td>Prof. Dr.-Ing. Christian Hochberger, Prof. Dr. Hans Eveking</td>
</tr>
</tbody>
</table>
Module name
Electronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Klaus Hofmann

Teaching content
Semiconductor Devices: Diode, MOSFET, Bipolar Transistor; Design of Electronic Circuits;
Analog Circuits: Basic Properties, Properties and Application of Operational Amplifiers, Circuit Simulation with SPICE, Small Signal Gain, Single Stage Amplifiers; Frequency Response;
Digital Circuits: CMOS Logic Circuits

Learning objectives
A student is, after successful completion of this module, able to

1. analyse Diodes, MOS- und Bipolartransistors in simple circuits
2. calculate the properties of single transistor circuits, such as small signal gain, input and output resistance
3. design inverting and non-inverting amplifiers from operational amplifiers and knows their ideal and non-ideal properties
4. calculate the frequency behavior of simple transistor circuits
5. distinguish the different methods to construct a logical gate from basic transistors and explain their fundamental properties.

Recommended prerequisites for participation
Basics of Electrical Engineering

Form of examination
Module exam:

- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc iST, BEd

Grade bonus compliant to §25 (2)
A grade improvement of up to 0,4 due to a bonus is possible, which can be earned with tests.

References
Lecture Slide Copies; Richard Jaeger: Microelectronic Circuit Design

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-vl</td>
<td>Electronics</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>18-ho-1011-ue</td>
<td>Electronics</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Electronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every 2. Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 Teaching content
18-ho-1011-vl bzw. -ue:
Semiconductor Elements: Diode, MOSFET, Bipolar transistor. Electronic Circuit Design; Basic Analog Circuits and their properties, Behavior and properties of operational amplifiers, circuit simulation with SPICE, small signal amplification, single stage amplifiers, frequency response; digital circuits: CMOS-logic

18-ho-1011-pr:
Practical experiments in the fields:
- digital circuits: FPGA-programming
- analog circuits: basic building blocks, amplifiers, operational amplifiers, filters and demodulators

2 Learning objectives
A student is after successful attending the lecture able to
1. analyse the behavior of diodes, MOS- and Bipolartransistors in simple circuits,
2. assess the properties of single-transistor amplifiers (MOSFET and BJT), such as small signal behavior, input- and output-resistance;
3. design inverting and non-inverting operational amplifiers with passive components and knows the ideal and non-ideal properties;
4. calculate the frequency response of simple transistor circuits;
5. knows the different circuit techniques (CMOS, NMOS) of logical gates and knows the basic functions (inverter, NAND, NOR).

A student is after successful attending the lab able to
1. perform measurements in time and frequency domain using an oscilloscope on simple operational amplifiers;
2. design and realize a traffic light controller based on a finite state machine using a FPGA as the target implementation;
3. mount passive and active components on a PCB (including preparation of components, soldering) and put the system to function,
4. simulate a circuit (filter) using SPICE and perform measurements on the realization.

3 Recommended prerequisites for participation
Basics of Electrical Engineering

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

Course related exam:
- [18-ho-1011-pr] (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 4)
Course related exam:
- [18-ho-1011-pr] (Study achievement, Optional, Weighting: 3)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc iST, BEd

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-vl</td>
<td>Electronics</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-ho-1011-ue</td>
<td>Electronics</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-ho-1011-pr</td>
<td>Electronics Lab</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Ferdinand Keil</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Analog Integrated Circuit Design

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content
Basic analog Building Blocks: Current Mirrors, Reference Circuits; Multi Stage Amplifier, internal Structure and Properties of Differential and Operational Amplifiers, Feedback Techniques, Frequency Response, Oscillators

2 Learning objectives
A student is, after successful completion of this module, able to 1. derive the fundamental properties of the MOS-Transistors from knowledge of the layout or fabrication process, 2. derive fundamental MOSFET-circuits (current source, current mirror, switch, active resistors, inverting amplifiers, differential amplifiers, output amplifiers, operational amplifiers, comparators) and knows their fundamental properties (y-Parameters, DC- and AC-properties), 3. understands simulation methods for analog circuits on transistor level using SPICE, 4. analyse feedback amplifiers regarding frequency gain, stability, bandwidth, root locus, amplitude and phase-margin, 5. derive and calculate the analog properties of digital logic gates

3 Recommended prerequisites for participation
Lecture "Electronics"

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, MSc iCE, BSc/MSc iST, BSc/MSc MEC, MSc EPE

8 Grade bonus compliant to §25 (2)

9 References
Lecture Slide Copies; Richard Jaeger: Microelectronic Circuit Design

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1020-vl</td>
<td>Analog Integrated Circuit Design</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1020-ue</td>
<td>Analog Integrated Circuit Design</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Power Systems I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1010</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Three-phase network and symmetrical components; overhead lines; cables; transformers; calculation of short-circuit currents; switch equipment; switchgears

2. **Learning objectives**
 The education goals are
 - Presentation of components of power system
 - Functional elaboration of equipment
 - Calculation of the component rating
 - Impact on the electrical power system

3. **Recommended prerequisites for participation**
 Contents of the lecture Electrical Power Engineering

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Optional, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT, BSc/MSc WI-ET, BSc EPE, BSc/MSc CE, BSc/MSc iST, MSc Informatik

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Script, lecture slides, guiding questions, excercises

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1010-vl</td>
<td>Power Systems I</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Felix Korff, M.Sc. Manuel Schwenke, Prof. Dr.-Ing. Jutta Hanson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1010-ue</td>
<td>Power Systems I</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Electrical Engineering and Information Technology I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1070</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Mario Kupnik

1 Teaching content
Units and Equations: Unit systems, equation writing.
Basic definitions: Charge, current, voltage, resistance, energy and power.
Currents and voltages in electrical circuits: Ohmic law, node and mesh equations, parallel and series connections, current and voltage measurement, linear and nonlinear elements, superposition method, star-delta transformation, node and mesh analysis in linear circuits, controlled sources.
AC systems: Time-dependent currents and voltages, steady-state mode sinusoidal currents and voltages in linear RLC-circuits, phasor diagrams, resonances in RLC circuits, AC power, locus diagrams, two-port networks, transformer, polyphase systems.

2 Learning objectives
After successful completion of the module students are able:
• to utilize the basic equations in electrical engineering,
• to determine the currents and voltages in linear and nonlinear circuits,
• to analyze DC and AC systems,
• to calculate simple filter and resonant circuits,
• to apply the complex calculation in electrical AC systems.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc. ETiT, BSc iST, BSc MEC, BSc. Wi-ETiT, BSc CE, LA Physik/Mathematik

8 Grade bonus compliant to §25 (2)

9 References
• Frohne, H. u.a. Moeller Grundlagen der Elektrotechnik
• Clausert, H. u.a. Grundgebiete der Elektrotechnik 1 + 2

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1070-vl</td>
<td>Electrical Engineering and Information Technology I</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-kn-1070-ue</td>
<td>Electrical Engineering and Information Technology I</td>
<td>M.Sc. Rafael Steppan, Prof. Dr. Mario Kupnik, M.Sc. Achraf Kharrat</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
High Voltage Technology I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1080</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jutta Hanson

1 Teaching content
Choice of Voltage Level, Generation of High AC Voltage, Generation of High DC Voltage, Generation of Impulse Voltages, Measurement of High AC/DC/Impulse Voltages, Electrical Fields, Two excursions to manufacturers of high voltage products

2 Learning objectives
The students know why electrical energy is transported and distributed at high voltages and what is the optimal voltage level for different purposes; they are able to identify different basic kinds of electrical stress in the system; they know how to generate and to measure high test voltages in the laboratory; they have understood the requirements in the test standards and why standards are so important at all; they are able to interpret and correctly apply the standards; they know the basic test circuits for generating alternating, direct and impulse voltages, and they can extend and adopt them for special purposes; they are aware of the particular problems of high-voltage measuring techniques and are able to apply high-voltage measuring systems and optimize them for particular tasks; thus, in sum they are basically prepared to plan, erect and operate a high-voltage test laboratory; they can analytically solve the electrical field equations for basic electrode configurations and make use of them for optimizing configurations with regard to dielectric strength; they know about surge propagation on lines and are aware that this is also relevant for impulse measuring techniques and how to handle related problems.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETIT

8 Grade bonus compliant to §25 (2)

9 References
• All lecture slides (ca. 600 pcs.) available for download
• Kind, Feser: High-voltage test techniques, SBA publications
• Kind, Kärner: High-voltage insulation technology, Vieweg

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1080-vl</td>
<td>High Voltage Technology I</td>
<td>Dipl.-Ing. Martin Hallas, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-hs-1080-ue</td>
<td>High Voltage Technology I</td>
<td>Dipl.-Ing. Martin Hallas, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Fundamentals of Communication

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Jakoby

1 Teaching content
Part 1: Chap. 1 will be a brief introduction in “Electrical Information- and Communication Engineering”, presenting signals as carrier of information, classifying electrical signals and describing elements of communication systems. Then, Chap. 2 introduces various line-conducted and wireless transmission media, power budget calculations for both media types, basics of antenna radiation and parameters etc., which will be emphasized by application examples like TV-satellite reception and mobile communication channels.

Part 2: Chap. 3 is focused on signal distortions and interferences, especially thermal noise, considering noisy two-port devices and its concatenations, lossy networks, antenna noise temperature and the impact of noise on analog and digital signals. This chapter ends with basics of information theory and channel capacity for AWGN-channels. In contrast, chap 4 deals with noise-reduction and distortion-compensation methods.

Part 3: Chap. 5 introduces sampling of band-limited signals and analog modulation of a pulse carrier (pulse-amplitude- pulse-duration- and pulse-angle-modulation), which will be extended on digital modulation in the baseband by means of pulse-code modulation (PCM), focusing on signal quantizing, analog-digital conversion, minimum bandwidth, bit error rate and error probability of a PCM word. At least, PCM-time-division multiplex and -systems will be discussed.

Part 4: Chap. 7 deals with fundamentals of multiplex- and RF-modulation schemes as well as with frequency conversion, frequency multiplexation and mixing strategies. Then, receiver principles and image frequency problems of heterodyne-receivers as well as amplitude modulation of a sinus carrier will close this chapter. Chap. 8 introduces digital modulation of a harmonic carrier, including band-limited inter-symbol interference-free transmission, matched filtering and binary shift keying of a sinusoidal carrier in amplitude (ASK), phase (PSK) or frequency (FSK). From this follows higher-order modulation schemes like M-PSK or M-QAM. A brief outlook on the functionality of channel coding and interleaving in chap. 9 will end up the lecture.

2 Learning objectives
Aim of the Lecture: To teach the fundamentals of communications (physical layer), primarily the transmission of signals from a source to a sink, possible modulation and access methods as well as signal distortion and noise. The introduction of communications is a basement for further lectures like Communication Technology, Laboratories of Communication Technology (NTP A, B), Microwave Eng., Optical Communications, Mobile Communications and Terrestrial and satellite-based radio systems.

3 Recommended prerequisites for participation
Deterministic Signals and Systems

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
 Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, Wi-ETiT

8 Grade bonus compliant to §25 (2)
9 References

| Courses |
|-----------------|-----------------|
| Course Nr. | Course name |
| 18-jk-1010-vl | Fundamentals of Communications |
| Instructor | Type | SWS |
| Prof. Dr.-Ing. Rolf Jakoby | Lecture | 3 |

| Courses |
|-----------------|-----------------|
| Course Nr. | Course name |
| 18-jk-1010-ue | Fundamentals of Communications |
| Instructor | Type | SWS |
| Prof. Dr.-Ing. Rolf Jakoby | Practice | 1 |
Module name
Microwave Engineering I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Jakoby

1 Teaching content
Electromagnetic spectrum, kinds of transmission media, frequency ranges, bit rates, applications; Radio-Frequency (RF) and Microwave Circuits, Components and Modules, Passive RF Circuits with R-, L- and C-Lumped Elements: Resonant and Equivalent RLC Circuits, Graphical Representation of RF Circuits with the Smith Chart, Lumped-Element Impedance Matching; Theory and Applications of Transmission Lines: General Transmission-Line Equations, Lossless Transmission Lines as Circuit Elements, Line Terminations, Transmission-Line devices; Scattering-Matrix Formulation of N-Port RF Devices: Characterization of Microwave Networks, Concatenation of Two S-Matrixes, Applications of S-Parameters; Passive microwave components: waveguide splitter, circulator, directional coupler, filter, attenuator, matching network; Antennas: Antenna performance parameter, Ideal dipole with uniform current distribution, Antenna arrays of ideal dipoles, Image theory, Antenna modelling, Transmission Factor and Power Budget of Radio Links: Friis transmission equation, Gain and effective aperture of antennas, Radar equation, System noise temperature, Antenna noise temperature, Power budget of radio links, Basic propagation effects: reflection, transmission, scattering, diffraction; The radio channel: The two-ray propagation model, Doppler shift Multipath propagation, Stochastic behaviour of the mobile radio channel

2 Learning objectives

3 Recommended prerequisites for participation
Nachrichtentechnik, Grundlagen der Technischen Elektrodynamik

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Script will be hand out; Literature will be recommended in first lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1020-vl</td>
<td>Microwave Engineering I</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>18-jk-1020-ue</td>
<td>Microwave Engineering I</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Jakoby

Type
Practice

SWS
1
Module name
Deterministic Signals and Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1010</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language: German

Module owner: Prof. Dr.-Ing. Anja Klein

1 Teaching content
Fourier Series: Motivation; Fourier series with real coefficients; Fourier series with complex coefficients; examples and applications
Fourier Transform: Motivation - Derivation from Fourier series - Dirichlet conditions - delta function - step function - properties of F-transform - special cases - examples and applications - transmissions systems - expansion into partial fractions
Convolution: Time invariant systems - convolution in frequency domain - Parseval's theorem - properties - examples and applications
Systems and Signals: Bandlimited and time limited systems - systems with only one energy store - examples and applications
Laplace Transform: Motivation - single sided L-transform - inverse L-transform - theorems of L-transform - examples and applications
Linear differential equations: Time invariant systems - rules - general differentiation - linear passive electrical networks - equivalent circuits for passive electrical elements - examples and applications
z-Transform: motivation - sampling - numerical order - definition - examples - transfer function - sampling theorem - examples and applications
Discrete Fourier Transform: motivation, derivation sampling, examples and applications

2 Learning objectives
The student should understand the principles of integral transformations. He should apply them for the solution of physical problems. The techniques of this lecture are essential tools which will be needed in many follow-up lectures and exercises.

3 Recommended prerequisites for participation
Elektrotechnik und Informationstechnik I und Elektrotechnik und Informationstechnik II

4 Form of examination
Module exam:
 • Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETIT, BSc MEC, BSc Wi-ETIT, LA Physik/Mathematik, BSc CE, BSc iST

8 Grade bonus compliant to §25 (2)

9 References
A script of the lecture or slides respectively, will be provided in electronic form.

Basic Literature:
Wolfgang Preuss, "Funktionaltransformationen", Carl Hanser Verlag, 2002; Klaus-Eberhard Krueger "Transformationen", Vieweg Verlag, 2002;
T. Frey, M. Bossert, Signal- und Systemtheorie, Teubner Verlag, 2004

Further Literature:
Dieter Mueller-Wichards "Transformationen und Signale", Teubner Verlag, 1999

Exercises:
Hwei Hsu "Signals and Systems", Schaum's Outlines, 1995

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>Course name</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>SWS</td>
</tr>
</tbody>
</table>

Course Nr.	18-kl-1010-ue
Course name	Deterministic Signals and Systems
Instructor	Prof. Dr.-Ing. Marius Pesavento, M.Sc. Maximilian Wirth, Prof. Dr.-Ing. Anja Klein
Type	Practice
SWS	2
Module name
Communication Technology I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
</tr>
</tbody>
</table>

1 Teaching content

2 Learning objectives
After completion of the module, students possess the ability to:
- classify signals and communication systems,
- understand, model and analyse basic components of communication systems,
- understand, evaluate and compare communication systems for transmission over additive white Gaussian noise channels,
- model and analyse base-band communication systems,
- describe and analyse bandpass signals and bandpass communication systems in the equivalent base-band,
- understand, model, evaluate, compare and apply linear modulation schemes,
- design receiver structures for different modulation schemes,
- detect linear modulated data after transmission over additive white Gaussian noise channels in an optimum way,
- understand and model OFDM,
- understand and model CDMA,
- understand and compare the basic properties of multiple access schemes.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc CE, MSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1020-vl</td>
<td>Communication Technology I</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. rer. nat. Sabrina Klos, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-kl-1020-ue</td>
<td>Communication Technology I</td>
<td>Dr. rer. nat. Sabrina Klos, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Measuring Technique

Module nr. 18-kn-1011
Credit points 6 CP
Workload 180 h
Self-study 105 h
Module duration 1 Term
Module cycle Summer term

Language
German

Module owner
Prof. Dr. Mario Kupnik

1 Teaching content
The module includes theoretical discussion and practical application of the measuring chain in detail on example the electrical variables (current, voltage, impedance, power) and selected non-electrical variables (frequency, time, force, pressure and acceleration).
In the lecture the following chapter will be thematically treated measuring signals and measuring equipment (oscilloscope, laboratory testing equipment), static measurement error and disturbance variables (especially temperature), basic measurement circuits, AD conversion principles and filtering, measurement method non-electrical variables and the statistics of measurements (distributions, statistic safe tests).
The topics of the lecture are discussed in the exercise of the module. Examples are analyzed and their application in measurement scenarios are practiced.
The practicum of the module consists of five experiments which are time closely matched in time to the lecture:
- Measuring of signals in the time range with digital storage oscilloscope, trigger conditions
- Measuring of signals in the frequency range with digital storage oscilloscope, error of measurement (aliasing / subsampling, leakage) and window functions
- Measuring of mechanical dimensions with suitable primary sensors, sensor electronics / amplifier circuits
- Computer-based measuring
- Importing of sensor signals, whose processing and the resulting automated control of a process using a programmable logic controller (PLC)

2 Learning objectives
The students know the structure of the measuring chain and the specific properties of the corresponding elements.
They know the structure of electronic measuring instruments and basic measuring circuits for electrical and selected non-electrical variables and can apply them. They know the basics of capturing, processing, transferring and storage of measurement data and can describe error sources and quantifying their influences.
In the practicum, the students deepen the basis of the measurements with the oscilloscope, the understanding of the relationship between time and frequency range. Methodically they are able to document and evaluate the data during laboratory measuring.

3 Recommended prerequisites for participation
Basics of ETIT I-III, Math I-III, Electronic

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)
Course related exam:
- [18-kn-1011-pr] (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 4)
Course related exam:
- [18-kn-1011-pr] (Study achievement, Optional, Weighting: 2)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
- Slide set of lecture
- Exercise documents
- Practical experiment manuals

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1011-vl</td>
<td>Measuring Technique</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kn-1011-ue</td>
<td>Measuring Technique</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-kn-1011-pr</td>
<td>Measuring Technique Lab</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Electromechanical Systems I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1050</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Mario Kupnik</td>
</tr>
</tbody>
</table>

1 Teaching content
Structure and design methods of electromechanical systems, mechanical, acoustical and thermal networks, transducers between mechanical and acoustical networks. Design and devices of electromechanical transducers.

2 Learning objectives
Comprehension, description, calculation and application of the most relevant electromechanical transducers, comprising electrostatic transducer (e.g. microphone and accelerometer), piezoelectric transducers (e.g. micro motors, micro sensors), electrodynamic transducer (loudspeaker, shaker), piezomagnetic transducer (e.g. ultrasonic source). Design of complex electromechanical systems like sensors and actuators and their applications by applying the discrete element network method.

3 Recommended prerequisites for participation
Electrical Engineering and Information Technology I

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc WI-ETiT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1050-vl</td>
<td>Electromechanical Systems I</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr. Mario Kupnik, M.Sc. Omar Dali</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1050-ue</td>
<td>Electromechanical Systems I</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr. Mario Kupnik, M.Sc. Omar Dali</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name

Information Theory I

<table>
<thead>
<tr>
<th>Module nr. 18-kp-1010</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language

English

Module owner

Prof. Dr. techn. Heinz Köppl

1 Teaching content

This lecture course introduces the fundamentals of information and network information theory.

Outline:

- information, uncertainty, entropy, mutual information, capacity, differential entropy, typical sequences, Gaussian channels, basics of source and channel coding, linear block codes, Shannon's source coding theorem, Shannon's channel coding theorem, capacity of Gaussian channels, capacity of bandlimited channels, Shannon's bound, bandwidth efficiency, capacity of multiple parallel channels and waterfilling, Gaussian vector channel, Multiple Access Channel, Broadcast Channel, rate region.

2 Learning objectives

Students will understand the fundamentals of classic information theory.

3 Recommended prerequisites for participation

Knowledge of basic communication theory and probability theory.

4 Form of examination

Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination.

6 Grading

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module

BSc ETiT, BSc iST, MSc iCE, BSc Wi-ETiT, BSc/MSc CE

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1010-vl</td>
<td>Information Theory I</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Heinz Köppl, M.Sc. Anam Tahir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1010-ue</td>
<td>Information Theory I</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Heinz Köppl, M.Sc. Anam Tahir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Bioinformatics I

Module nr.
18-kp-1020

Credit points
3 CP

Workload
90 h

Self-study
60 h

Module duration
1 Term

Module cycle
Winter term

Language
German/English

Module owner
Prof. Dr. techn. Heinz Köppl

Teaching content

• Biomolecular foundations of high-throughput measurement techniques (Microarrays, RNA-Seq, genome sequencing, proteinarrays, mass-spectrometry, flow-cytometry, mass-cytometry, genomics, proteomics, metabolomics)
• Foundations of statistics and machine learning (decision theory, regression, classification and clustering)
• Exact substring search, dynamic programming, algorithms for sequence comparison (PAM, BLAST, BLAST2, etc), alignment of multiple sequences (ClustalW, DAlign, etc)
• Important databases in bioinformatics and their use in medicine and biology (GenBank, Gene Expression Omnibus, Rfam, UniProt, Pfam, KEGG, BREND, Pathway Commons)
• Analysis of interaction networks (modularity, graph partitioning, spanning trees, differential network analysis, network motifs, STRING database, PathBLAST)
• Introduction to structural biology, structure prediction for RNA and proteins, Protein Data Bank (PDB)

Learning objectives
After successful completion students are aware of frequently used high-throughput methods in molecular biology and are familiar with the resulting data format. They know the most important bioinformatics databases and acquired the necessary background to understand standard bioinformatics algorithms and to implement them from scratch in R or Matlab. Students are familiar with the basics of structural analysis and with structure prediction. With respect to communication skills, students learned to exchange information, ideas, problems and solutions related to bioinformatics with experts and with lay persons.

Recommended prerequisites for participation
"General Computer Science I"

Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

Prerequisite for the award of credit points
Passing of Module final exam

Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
BSc Biomedical Engineering

Grade bonus compliant to §25 (2)

References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1020-vl</td>
<td>Bioinformatics I</td>
<td>Prof. Dr. techn. Heinz Köppl</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Module name</td>
<td>Microelectronic Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-pr-1030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>75 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Teaching content

1. Introduction: Semiconductor Devices & Microelectronic
2. Semiconductor: Materials, Physics & Technology
3. PN-Junction
4. Metal-Oxide-Semiconductor Capacity
5. Schottky Contact
6. MOS-Field-Effect-Transistor (MOSFET)
7. CMOS: Digital Applications
8. MOS-Memory
9. Bipolar- Junction-Transistor
10. Outlook: Scaling Limits & SET,...

2. Learning objectives

- Understand the physical properties and processes in semiconductor devices and materials
- the operation of basic semiconductor devices like diode, MOS-Transistor and bipolar transistor
- Understand functionality of basic circuits like rectifier circuit, 1-transistor amplifier and inverter from the device point of view.
- Goal: Understand state-of-the art semiconductor devices and circuits as a basis for a successful engineering career

3. Recommended prerequisites for participation

Electrical Engineering and Information Technology I, Electrical Engineering and Information Technology II, Laboratory ETiT, Laboratory Electronics, Mathematics I, Mathematics II, Physics

4. Form of examination

Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5. Prerequisite for the award of credit points

Passing the final module examination

6. Grading

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7. Usability of the module

BSc ETiT

8. Grade bonus compliant to §25 (2)

9. References
Skript: Microelectronic devices - the Basics

5. Thomas Tille, Doris Schmidt-Landsiedel: Mikroelektronik, ISBN 3540204229

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-pr-1030-vl</td>
</tr>
<tr>
<td>18-pr-1030-ue</td>
</tr>
</tbody>
</table>
1 Teaching content
In this class the technologies that make today's communication networks work are introduced and discussed. This lecture covers basic knowledge about communication networks and discusses in detail the physical layer, the data link layer, the network layer and parts of the transport layer.

The physical layer, which is responsible for an adequate transmission across a channel, is discussed briefly. Next, error control, flow control and medium access mechanisms of the data link layer are presented. Then the network layer is discussed. It comprises mainly routing and congestion control algorithms. After that basic functionalities of the transport layer are discussed. This includes UDP and TCP. The Internet is thoroughly studied throughout the class.

Detailed Topics are:
- ISO-OSI and TCP/IP layer models
- Tasks and properties of the physical layer
- Physical layer coding techniques
- Services and protocols of the data link layer
- Flow control (sliding window)
- Applications: LAN, MAN, High-Speed LAN, WAN
- Services of the network layer
- Routing algorithms
- Broadcast and Multicast routing
- Congestion Control
- Addressing
- Internet protocol (IP)
- Internetworking
- Mobile networking
- Services and protocols of the transport layer
- TCP, UDP

2 Learning objectives
This lecture teaches about basic functionalities, services, protocols, algorithms and standards of network communication systems. Competencies acquired are basic knowledge about the lower four ISO-OSI layers: physical layer, datalink layer, network layer and transport layer; Furthermore, basic knowledge about communication networks is taught. Attendants will learn about the functionality of today's network technologies and the Internet.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)
Usability of the module
Wi-CS, Wi-etit, BSc CS, BSc etit, BSc iST

Grade bonus compliant to §25 (2)
Grade improvement is achieved by solving voluntary additional assignments due weekly in writing during the lecture period. The maximum grade improvement is 1.0. For a grade improvement to be awarded, a minimum number of points (50% of the maximum achievable points) must be reached. Above this minimum number, the grade improvement increases proportionally (from 0.0 grade improvement at the minimum number to a maximum of 1.0 grade improvement at 95% of the maximum achievable points). Above 95% of the maximum achievable points, the bonus is 1.0. Components of the additional assignments can be classical exercises, answering quizzes, creating wiki articles or quizzes. Participation in these is mandatory to receive the grade improvement. The grade improvement has no influence on passing the exam.

References
Selected chapters from the following books:
- Larry L. Peterson, Bruce S. Davie: Computernetze, Ein modernes Lehrbuch, 2. Auflage, Dpunkt Verlag, 2000

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-1010-vl</td>
<td>Communication Networks I</td>
<td>Prof. Dr.-Ing. Ralf Steinmetz</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-sm-1011-vl</td>
<td>Communication Networks I (Prof. Scheuermann)</td>
<td>Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-sm-1010-ue</td>
<td>Communication Networks I</td>
<td>Prof. Dr.-Ing. Ralf Steinmetz</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-sm-1011-ue</td>
<td>Communication Networks I (Prof. Scheuermann)</td>
<td>Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Logic Design

Module nr.
18-sm-1040

Credit points
6 CP

Workload
180 h

Self-study
120 h

Module duration
1 Term

Module cycle
Winter term

Language
German

Module owner
Prof. Dr. rer. nat. Björn Scheuermann

1 Teaching content
Boolean algebra, logic gates, hardware description languages, flipflops, sequential circuits, state-diagrams and -tables, technology mapping, programmable logic circuits

2 Learning objectives
By this module, Students will be enabled to
- rewrite boolean expressions and transform them into circuits of logic gates
- analyze and synthesize digital circuits
- describe digital circuits in a hardware description language
- extract finite state machines from informal descriptions and implement them with synchronous circuits

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc MEC, BSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
David Harris und Sarah Harris: Digital Design and Computer Architecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-1040-vl</td>
<td>Logic Design</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-sm-1040-ue</td>
<td>Logic Design</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Software Engineering - Introduction

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Andreas Schürr

1. **Teaching content**
 The lecture gives an introduction to the broad discipline of software engineering. All major topics of the field - as entitled e.g. by the IEEE's “Guide to the Software Engineering Body of Knowledge” - get addressed in the indicated depth. Main emphasis is laid upon requirements elicitation techniques (software analysis) and the design of software architectures (software design). UML (2.0) is introduced and used throughout the course as the favored modeling language. This requires the attendees to have a sound knowledge of at least one object-oriented programming language (preferably Java).
 During the exercises, a running example (embedded software in a technical gadget or device) is utilized and a team-based elaboration of the tasks is encouraged. Exercises cover tasks like the elicitation of requirements, definition of a design and eventually the implementation of executable (proof-of-concept) code.

2. **Learning objectives**
 This lecture aims to introduce basic software engineering techniques - with recourse to a set of best-practice approaches from the engineering of software systems - in a practice-oriented style and with the help of one running example.
 After attending the lecture students should be able to uncover, collect and document essential requirements with respect to a software system in a systematic manner using a model-driven/centric approach. Furthermore, at the end of the course a variety of means to acquiring insight into a software system’s design (architecture) should be at the student's disposal.

3. **Recommended prerequisites for participation**
 sound knowledge of an object-oriented programming language (preferably Java)

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT, BSc iST, BSc Wi-ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
 www.es.tu-darmstadt.de/lehre/se-i-v/

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-1010-vl</td>
<td>Software Engineering - Introduction</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>18-su-1010-ue</td>
<td>Software Engineering - Introduction</td>
<td>Prof. Dr. rer. nat. Andreas Schürr, M.Sc. Lars Fritsche</td>
</tr>
</tbody>
</table>
Module name
Fundamentals of Signal Processing

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1030</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
The course covers the following topics:
- The basic concepts of stochastic
- The sampling theorem
- Discrete-time noise processes and their properties
- Description of noise processes in the frequency domain
- Linear time-invariant systems: FIR and IIR filters
- Filtering of noise processes: AR, MA, and ARMA models
- The Matched filter
- The Wiener filter
- Properties of estimators
- The method of least squares

2 Learning objectives
The course covers basic concepts of signal processing, and illustrates them with practical examples. It serves as an introductory course for advanced lectures in digital signal processing, adaptive filtering, communications, and control theory.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
In general, the examination takes place in form of a written exam (duration: 120 minutes). If up to 10 students register in semesters in which the lecture does not take place, there will will be an oral examination (duration: 30 min.). The type of examination will be announced within one working week after the end of the examination registration phase.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Lecture notes and slides can be downloaded here:
- http://www.spg.tu-darmstadt.de
- Moodle platform

Further reading:

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1030-vl</td>
<td>Fundamentals of Signal Processing</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1030-ue</td>
<td>Fundamentals of Signal Processing</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2 Internships

<table>
<thead>
<tr>
<th>Module name</th>
<th>Actuators for Mechatronic Systems Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-bi-1030</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>75 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
</tr>
</tbody>
</table>

1 Teaching content
Safety instructions; Practical experiments about electrical energy conversion and mechatronic actuators:
- Record preparation (one for each group) for every experiment.
- One exam for all practical experiments at the end of the semester.
- The mark for the students result from the practical experiments, the prepared records and the results of the 2 short exams.

2 Learning objectives
The use of mechanical actors is trained and knowledge in using the actors is acquired.

3 Recommended prerequisites for participation
Recommended lecture "Elektrische Antriebe (MEC)" and "Maschinenelemente und Mechatronik 1"

4 Form of examination
Module exam:
- Module exam (Study achievement, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Examination, Weighting: 100 %)

7 Usability of the module
BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Detailed textbook with description for the performance of the lab tests

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1030-pr</td>
<td>Actuators for Mechatronic Systems Laboratory</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>18-bi-2090-tt</td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>Course name</td>
<td>Laboratory Briefing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Tutorial</td>
<td>0</td>
</tr>
</tbody>
</table>

54
Module name
Actuators for Mechatronic Systems Lab (for MB)

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1031</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
<td>German</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
</tr>
</tbody>
</table>

1 Teaching content
Safety instructions; Practical experiments about electrical energy conversion and mechatronic actuators:
- Record preparation (one for each group) for every experiment.
- One exam for all practical experiments at the end of the semester.
- The mark for the students result from the practical experiments, the prepared records and the results of the 2 short exams.

2 Learning objectives
The use of mechanical actors is trained and knowledge in using the actors is acquired.

3 Recommended prerequisites for participation
Recommended lecture "Elektrische Antriebe (MEC)" and "Maschinenelemente und Mechatronik 1"

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc Maschinenbau

8 Grade bonus compliant to §25 (2)

9 References
Detailed textbook with description for the performance of the lab tests

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1030-pr</td>
<td>Aktuators for mechatronic systems Lab</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2090-tt</td>
<td>Laboratory Briefing</td>
<td>Tutorial</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Mechatronics Workshop

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1050</td>
<td>2 CP</td>
<td>60 h</td>
<td>45 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
During the mechatronic workshop students get the possibility to design and construct their own fixture, which contains a ball track and a ball elevator mechanism. Therefore dimensional plans have to be understood correctly. Afterwards all components (i.e. circuit board, rails and holders) have to be designed and manufactured within the electronic lab and the workshop, where students work independently with turning, drilling and milling machines.

The mechatronic workshop allows students to gain practical experience and knowledge in construction, assembling and PCB layout design.

2 Learning objectives
Understanding of construction plans, circuit layout design, practical experience with turning, drilling and milling machines.

3 Recommended prerequisites for participation
You have to bring your own printed copy of the script. This is mandatory for attending the course. The script will be published on the moodle platform.

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc/MSc ETiT, BSc/MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
- Lecture Notes „Mechatronics Workshop“

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1050-pr</td>
<td>Mechatronics Workshop</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder
Module name
Laboratory Matlab/Simulink I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-1030</td>
<td>3 CP</td>
<td>90 h</td>
<td>45 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content
In this lab tutorial, an introduction to the software tool MatLab/Simulink will be given. The lab is split into two parts. First the fundamentals of programming in Matlab are introduced and their application to different problems is trained. In addition, an introduction to the Control System Toolbox will be given. In the second part, the knowledge gained in the first part is applied to solve a control engineering specific problem with the software tools.

2 Learning objectives
On completion of the module students will have acquired fundamentals in the handling of Matlab/Simulink and the application to control engineering tasks.

3 Recommended prerequisites for participation
The lab should be attended in parallel or after the lecture “System Dynamics and Control Systems I”

4 Form of examination
Module exam:
 • Module exam (Study achievement, Oral/written examination, Default RS)
Report (including submission of programming code) and/or Presentation and/or Oral examination (25 minutes) and/or Colloquium (testate), but never more than two out of it. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
BSc eti; BSc MEC

8 Grade bonus compliant to §25 (2)
In case of E-Learning: Possibility to improve the grade up to 1,0

9 References
 • Lecture notes for the lab tutorial can be obtained at the secretariat
 • Lunze; Regelungstechnik I
 • Dorp; Bishop: Moderne Regelungssysteme
 • Moler: Numerical Computing with MATLAB

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-1030-pr</td>
<td>Laboratory Matlab/Simulink I</td>
<td>M.Sc. Alexander Steinke, Prof. Dr.-Ing. Rolf Findeisen</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Digital Design Lab

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
<td>German</td>
</tr>
</tbody>
</table>

Module owner
Prof. Dr.-Ing. Christian Hochberger

1. **Teaching content**
- Introduction to the MP3 encoding standard for audio signals
- Analysis of the individual steps of the decoding process wrt. the used algorithms
- Analysis of the individual steps of the decoding process wrt. the storage of intermediate results
- Design and configuration of the datapath to realize the individual process steps
- Simulation on functional level and with timing annotation
- Check, whether the design meets all restrictions
- Test of the final HW design with all relevant MP3 variants (short and long frames)

2. **Learning objectives**
After successfully completing the module, students will be able to map complex processes onto a digital target architecture by hand. They master the tools for implementing their solution on an FPGA. They know strategies to systematically search for errors. They can explore a design through simulation.

3. **Recommended prerequisites for participation**
Basic knowledge of digital design

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1030-pr</td>
<td>Digital Design Lab</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Christian Hochberger
Module name
Electronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every 2. Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Teaching content**

 - **18-ho-1011-vl bzw. -ue:**
 - Semiconductor Elements: Diode, MOSFET, Bipolartransistor. Electronic Circuit Design; Basic Analog Circuits and their properties, Behavior and properties of operational amplifiers, circuit simulation with SPICE, small signal amplification, single stage amplifiers, frequency response; digital circuits: CMOS-logic

 - **18-ho-1011-pr:**
 - Practical experiments in the fields:
 - digital circuits: FPGA-programming
 - analog circuits: basic building blocks, amplifiers, operational amplifiers, filters and demodulators

2. **Learning objectives**

 A student is after successful attending the lecture able to

 1. analyse the behavior of diodes, MOS- and Bipolartransistors in simple circuits,
 2. assess the properties of single-transistor amplifiers (MOSFET and BJT), such as small signal behavior, input- and output-resistance;
 3. design inverting and non-inverting operational amplifiers with passive components and knows the ideal and non-ideal properties;
 4. calculate the frequency response of simple transistor circuits;
 5. knows the different circuit techniques (CMOS, NMOS) of logical gates and knows the basic functions (inverter, NAND, NOR).

 A student is after successful attending the lab able to

 1. perform measurements in time and frequency domain using an oscilloscope on simple operational amplifiers;
 2. design and realize a traffic light controller based on a finite state machine using a FPGA as the target implementation;
 3. mount passive and active components on a PCB (including preparation of components, soldering) and put the system to function,
 4. simulate a circuit (filter) using SPICE and perform measurements on the realization.

3. **Recommended prerequisites for participation**

 Basics of Electrical Engineering

4. **Form of examination**

 - **Module exam:**
 - Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

 - **Course related exam:**
 - [18-ho-1011-pr] (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**

 Passing the final module examination

6. **Grading**
Module exam:
 • Module exam (Technical examination, Examination, Weighting: 4)
Course related exam:
 • [18-ho-1011-pr] (Study achievement, Optional, Weighting: 3)

7 Usability of the module
 BSc ETiT, BSc Wi-ETiT, BSc iST, BEd

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-vl</td>
<td>Electronics</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-ue</td>
<td>Electronics</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-pr</td>
<td>Electronics Lab</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Ferdinand Keil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Electronics Lab

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content
Lab experiments on:
• Digital Circuits: FPGA programming
• Analog Circuits: Basic Components, Amplifiers, Operational Amplifiers, Filters and Demodulators

2 Learning objectives
A student is, after successful completion of this module, able to
• perform measurement on operational amplifier circuits in the time- and frequency domain using an oscilloscope
• design a traffic light controller using state diagrams and download the program to a FPGA,

3 Recommended prerequisites for participation
Basics of Electrical Engineering; Lecture "Electronics" which is running in parallel

4 Form of examination
Module exam:
• Module exam (Study achievement, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Slide Copies of Lecture "Electronics"; Richard Jaeger: Microelectronic Circuit Design

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-pr</td>
<td>Electronics Lab</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Ferdinand Keil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-ho-1030-ev</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introductory course
0
Module name
HDL Lab

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1090</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content
Realisation of a VHDL- or Verilog-based VLSI System Design Project in a Team with industrial constraints

2 Learning objectives
A student is, after successful completion of this module, able to 1. design, optimize and verify a complex digital system (e.g. a pipelined CPU or signal processor) using Verilog or VHDL, 2. synthesize the HDL description using commercial CAD software to a gate level description

3 Recommended prerequisites for participation
Mandatory Prerequisite: Lecture Computer Aided Design for System on Chips, At least one high-level Programming Language, Basic Know-How Linux/Unix, Computer Architectures

4 Form of examination
Module exam:
 • Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc/MSc ETiT, BSc/MSc Wi-ETiT, MSc iCE, BSc/MSc iST, BSc/MSc MEC, MSc EPE

8 Grade bonus compliant to §25 (2)

9 References
Lecture slides „HDL: Verilog and VHDL“

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1090-pr</td>
<td>HDL Lab</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann
1 **Teaching content**

The module includes theoretical discussion and practical application of the measuring chain in detail on example the electrical variables (current, voltage, impedance, power) and selected non-electrical variables (frequency, time, force, pressure and acceleration).

In the lecture the following chapter will be thematically treated measuring signals and measuring equipment (oscilloscope, laboratory testing equipment), static measurement error and disturbance variables (especially temperature), basic measurement circuits, AD conversion principles and filtering, measurement method non-electrical variables and the statistics of measurements (distributions, statistic safe tests).

The topics of the lecture are discussed in the exercise of the module. Examples are analyzed and their application in measurement scenarios are practiced.

The practicum of the module consists of five experiments which are time closely matched in time to the lecture:

- Measuring of signals in the time range with digital storage oscilloscope, trigger conditions
- Measuring of signals in the frequency range with digital storage oscilloscope, error of measurement (aliasing / subsampling, leakage) and window functions
- Measuring of mechanical dimensions with suitable primary sensors, sensor electronics / amplifier circuits
- Computer-based measuring
- Importing of sensor signals, whose processing and the resulting automated control of a process using a programmable logic controller (PLC)

2 **Learning objectives**

The students know the structure of the measuring chain and the specific properties of the corresponding elements. They know the structure of electronic measuring instruments and basic measuring circuits for electrical and selected non-electrical variables and can apply them. They know the basics of capturing, processing, transferring and storage of measurement data and can describe error sources and quantifying their influences.

In the practicum, the students deepen the basis of the measurements with the oscilloscope, the understanding of the relationship between time and frequency range. Methodically they are able to document and evaluate the data during laboratory measuring.

3 **Recommended prerequisites for participation**

Basics of ETiT I-III, Math I-III, Electronic

4 **Form of examination**

Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

Course related exam:
- [18-kn-1011-pr] (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**

Passing the final module examination

6 **Grading**

Module exam:
- Module exam (Technical examination, Examination, Weighting: 4)

Course related exam:
- [18-kn-1011-pr] (Study achievement, Optional, Weighting: 2)

7 **Usability of the module**
BSc ETiT, BSc Wi-ETiT, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References

- Slide set of lecture
- Exercise documents
- Practical experiment manuals

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1011-vl</td>
<td>Measuring Technique</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-kn-1011-ue</td>
<td>Measuring Technique</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-kn-1011-pr</td>
<td>Measuring Technique Lab</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Electrical Engineering and Information Technology Lab I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1040</td>
<td>4 CP</td>
<td>120 h</td>
<td>60 h</td>
<td>2 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Mario Kupnik

1 Teaching content
After a safety instruction for electrical equipment, students do lab experiments covering foundations of electrical engineering by using theoretical and experimental instructions to improve basic electrical understanding. Building up a test set autonomously and performing of measurements and evaluations in the form of logs to confirm the theoretical knowledge and lead to independent work in practice.

The following experiments are performed:
• Investigate real behavior of ohmic resistors
• Investigate real behavior of capacitors and inductors
• Calculate impedances of basic two-terminal circuits using network theory
• Measure of electrical power in AC circuits and investigate in the real behaviour of transformers
• DC technology, capacity and inductors, AC technology - Impedances and two-terminal circuits, transformer & power;

2 Learning objectives
After preparing the afternoons independently and self-implementing the measurement setup and measurement tasks by active participation in the practical group and by thorough preparation of the associated measurement protocols, you should be able to:

1. Perform the measurement of basic electrical parameters of DC and AC circuits, independently and in compliance with safety rules
2. Measuring the frequency response of passive electrical networks and resonant circuits, and electric power measurement
3. The measurement of circuits for the determination of magnetic, electro-thermal and high-frequency. You have to be able to build and run your own measurements
4. Interpretations of the measurement results in terms of its technical meaning, but also their accuracy and error sources safely.

3 Recommended prerequisites for participation
Parallel attending the lectures and exercises, "Electrical Engineering I and II"

4 Form of examination
Module exam:
• Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT

8 Grade bonus compliant to §25 (2)
9 References
detailed script with instructions for the experiments; Clausert, H. / Wiesemann, G.: Grundgebiete der Elektrotechnik, Oldenbourg, 1999

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-kn-1040-pr</td>
</tr>
<tr>
<td>18-kn-1041-pr</td>
</tr>
<tr>
<td>18-kn-1040-tt</td>
</tr>
</tbody>
</table>
Module name
Laboratory of Biomedical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1050</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Heinz Köppl

1 Teaching content
This module addresses the different branches of biomedical engineering. Contents of lab experiments cover current topics of biomedical engineering like medical robotics, measuring and sensor technology, biomechanics, radiotherapy, imaging techniques, biosignal-monitoring, gerontology or Lab-on-a-Chip.

2 Learning objectives
After successful completion of this module students will be familiar with practical applications of medical engineering and have learnt to identify necessary practical methods and work techniques and to implement them correctly. They will also have gained experience in experimental works in autonomous small groups from a medical engineering context.

3 Recommended prerequisites for participation
Recommended are „Electrical Engineering and Information Technology I“, and „Electrical Engineering and Information Technology II“

4 Form of examination
Module exam:
 • Module exam (Study achievement, Optional, Duration: 60 Min., Default RS)
Module final exam:
 • Module exam (Study achievements, oral/written, Duration: 30 min. for oral examination / Duration: 60 min. for written examination, standard grading system)

5 Prerequisite for the award of credit points
Passing of Module final exam

6 Grading
Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1050-pr</td>
<td>Laboratory of Biomedical Engineering</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Ph.D. Thomas Burg, Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr.-Ing. Abdelhak Zoubir, Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Jürgen Adamy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-kp-1050-tt</td>
<td>Preliminary</td>
<td>Preliminary discussion</td>
<td>0</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Heinz Köppl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Software Lab Computational Electromagnetics and Applications I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1010</td>
<td>8 CP</td>
<td>240 h</td>
<td>195 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

<table>
<thead>
<tr>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Sebastian Schöps</td>
</tr>
</tbody>
</table>

1 **Teaching content**

2 **Learning objectives**
Students will understand basic concepts of numerical solution techniques to field problems related to different physical domains. They will exhibit the ability to write small simulation programs in Matlab.

3 **Recommended prerequisites for participation**
Recommended: "Computational Electromagnetics and Applications" (also in parallel).

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 20 Min., Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, MSc ETiT, BSc CE

8 **Grade bonus compliant to §25 (2)**

9 **References**
Course notes will be provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1010-pr</td>
<td>Software Lab Computational Electromagnetics and Applications I</td>
<td>Prof. Dr. rer. nat. Sebastian Schöps</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Multimedia Communications Lab I

Teaching content
The course deals with cutting edge development topics in the area of multimedia communication systems. Beside a general overview it provides a deep insight into a special development topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and basic scientific competences in one or more of the following topics:

- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia/e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Applications for distributed workflows
- Resource-based Learning

Learning objectives
The ability to solve simple problems in the area of multimedia communication shall be acquired. Acquired competences are:

- Design of simple communication applications and protocols
- Implementing and testing of software components for distributed systems
- Application of object-oriented analysis and design techniques
- Presentation of project advances and outcomes

Recommended prerequisites for participation
Keen interest to explore basic topics of cutting edge communication and multimedia technologies. Further we expect:

- Basic experience in programming Java/C# (C/C++).
- Knowledge in computer communication networks. Lectures in Communication Networks I and/or Net Centric Systems are recommended.

Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-1020-pr</td>
<td>Multimedia Communications Lab 1</td>
<td>Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz, M.Sc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Julian Zobel, M.Sc. Fridolin Siegmund</td>
</tr>
<tr>
<td>Type</td>
<td>Internship</td>
<td>SWS 3</td>
</tr>
<tr>
<td>SWS</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Module name
Software Lab

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-1020</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. rer. nat. Florian Steinke</td>
</tr>
</tbody>
</table>

1 **Teaching content**
The lab covers the following basic software development skills:
- working together and software development in teams
- lightweight software engineering process eXtreme Programming (XP)
- training of advanced OO/Java programming skills and coding standards
- software documentation using JavaDoc
- the basics of the development tool eclipse
- regression testing methods (test framework JUnit) to increase software quality
- more sophisticated data structures and algorithms

2 **Learning objectives**
Students participating in the lab deepen their basic programming knowledge (acquired in Computer Science for Engineers). The focus is on development of "medium-size" software in contrast to programming small toy examples, working in teams and evolution of existing software (framework). Afterwards students are expected to be able to develop small software systems using a "light-weight" software development process. Furthermore, they will appreciate training in more sophisticated software engineering techniques needed for the development of "real-world" software systems.

3 **Recommended prerequisites for participation**
Basics in Java (as taught in Introduction to Computer Science for Engineers).
Windows-Account of the ETIT PC-Pool

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETIT, BSc Wi-ETIT

8 **Grade bonus compliant to §25 (2)**

9 **References**
www.es.tu-darmstadt.de/lehre/sp/Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-1020-pr</td>
<td>Software Lab</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. nat. Florian Steinke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The programming lab is divided into two parts. In the first part of the lab, the basic concepts of the programming languages C and C++ are taught during the semester through practical exercises and presentations. All aspects will be deepened by extended practical exercises in self-study on the computer. For this purpose, all necessary materials such as presentation slides, presentation recordings, exercises, sample solutions of the exercises and recordings of the exercise discussions are provided in purely digital form.

The second part of the lab is about programming a microcontroller using the C programming language. For this purpose, the students are provided with a microcontroller for two days, with which they can work on practical programming tasks under supervision.

The following topics will be covered in the course:
- Basic concepts of the programming languages C and C++
- Memory management and data structures
- Object-oriented programming in C++
- (Multiple) Inheritance, polymorphism, parametric polymorphism
- (Low-level) Programming of embedded systems with C

For more details please visit our course website: http://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/c-und-c-p and the corresponding Moodle course.
Grade improvements up to 0.4 according to APB 25(2) can be achieved through a bonus system for regularly submitted bonus assignments. The course content is divided into the following topics as part of the exercise: (1) Fundamentals, (2) Memory Management, (3) Object Orientation, (4) Advanced Concepts, (5) C and Embedded C. There is one assignment sheet for each of the first four topic areas (1-4), whereas the last topic area (5) is divided into two assignment sheets. Each assignment sheet is to be solved and handed in by the students. An assignment sheet is considered either passed or failed. The bonus is credited in proportion to the ratio of passed assignment sheets and the total number of assignment sheets.

\[
\text{Total bonus} = 0.4 \times \frac{\text{Number of passed tasks}}{\text{Total number of bonus tasks}}
\]

9 References
A recording of the presentations as well as presentation slides are available in the corresponding Moodle course (https://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/c-und-c-p).
Additional literature:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-1030-pr</td>
<td>C/C++ Programming Lab</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Andreas Schürr
1.3 Seminars

<table>
<thead>
<tr>
<th>Module name</th>
<th>Seminar Electronic Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-ho-1070</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Every Semester</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 Teaching content
Analysis of state-of-the-art circuit concepts and presentation of selected examples

2 Learning objectives
After attending the seminar, a student is capable of analysing of state-of-the-art circuit concepts and preparing didactical materials and presentations, based on the know-how gained in the lectures “Electronics” and “Analog Integrated Circuit Design”

3 Recommended prerequisites for participation
Electronics, Electronic and Integrated Circuits

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
BSc ETIT

8 Grade bonus compliant to §25 (2)

9 References
Will be provided at the begin of the seminar

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1070-se</td>
<td>Seminar Electronic Circuits</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Seminar Terahertz Components & Applications

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1010</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Investigating and solving specific problems concerning the development of Terahertz devices as well as of applications of THz technology. The specific task will be defined based on current research topics. The project seminar includes working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience. Topics include, e.g.:
- Optics on chip
- Semiconductor devices
- Light-matter interaction

2 **Learning objectives**
After completion of the course, students possess:
- the ability to apply theoretical models to practical problems
- deep and special knowledge in a particular field related to THz science, optics or semiconductor physics
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report, the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 **Recommended prerequisites for participation**
Previous knowledge one of the following disciplines: Optics, semiconductor physics, or THz technology

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc Wi-ETiT, BSc/MSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**
Will be announced once the topic is defined.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1010-se</td>
<td>Seminar Terahertz Components & Applications</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
1.4 Introductory Seminar Courses

<table>
<thead>
<tr>
<th>Module name</th>
<th>Proseminar Electrical Engineering and Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-ad-1000</td>
</tr>
<tr>
<td>Credit points</td>
<td>2 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>30 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Every Semester</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

1 Teaching content
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 Learning objectives
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc MEC, BSc iST

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1. **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2. **Learning objectives**
The student will be able to understand and analyze scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bu-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Ph.D. Thomas Burg</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1. **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2. **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**

4. **Form of examination**
Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content
Content and goals
- Elaboration of a technical topic in cooperation with a research associate as supervisor
- Detailed study of technical articles
- Deeper understanding of the technical topic treated therein
- Practical experience with technical documentation
- Learning modern presentation techniques and their application
- Presentation and discussion of the technical topic in front of a group of people

Organizational information about the course
- In the 5th semester of the bachelor study etit or WI- etit
- Can be completed at any department of etit, also outside the chosen specialization.
- For the department Control and Cyber-physical systems applies: students inform themselves at the scientific staff if and which topics are currently offered. The specializations of the staff members can be found on the website or directly on the notice board of the department
- Start time and duration of the project work (e.g. in a block or during lectures) can be arranged individually with the project supervisor.
- Depending on the topic, teamwork may be possible

2 Learning objectives
The students are able to comprehend and analyze scientific texts, present technical facts in an orderly manner and present them in a structured manner. Using the example of an original work, they can correctly summarize it in writing and refer to its contents.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
Report and/or term paper and/or presentation (in preparation for the thesis). The type of examination will be announced at the beginning of the course.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
</tr>
</tbody>
</table>
Module name
Proseminar etit

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christoph Hoog Antink

1 Teaching content

Content and goals
- Elaboration of a technical topic in cooperation with a research associate as supervisor
- Detailed study of technical articles
- Deeper understanding of the technical topic treated therein
- Practical experience with technical documentation
- Learning modern presentation techniques and their application
- Presentation and discussion of the technical topic in front of a group of people

Organizational information about the course
- In the 5th semester of the bachelor study etit or WI- etit
- Can be completed at any department of etit, also outside the chosen specialization.
- For this department applies: students inform themselves at the scientific staff if and which topics are currently offered. The specializations of the staff members can be found on the website or directly on the notice board of the department
- Start time and duration of the project work (e.g. in a block or during lectures) can be arranged individually with the project supervisor.
- Depending on the topic, teamwork may be possible
- The module is offered each semester

2 Learning objectives
The students are able to comprehend and analyze scientific texts, present technical facts in an orderly manner and present them in a structured manner. Using the example of an original work, they can correctly summarize it in writing and refer to its contents.

3 Recommended prerequisites for participation

4 Form of examination

Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

Report and/or term paper and/or presentation (in preparation for the thesis). The type of examination will be announced at the beginning of the course.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading

Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
BSc etit

8 Grade bonus compliant to §25 (2)

9 References
To be determined individually depending on the topic.
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-1000-ps</td>
<td>Proseminar etit</td>
<td>Prof. Dr.-Ing. Christoph Hoog Antink</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christian Hochberger

1 **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Analysis of basic electronic circuits and presentation of selected examples

2. **Learning objectives**
 After attending the seminar, a student is capable of analysing basic electronic circuits and preparing didactical materials and presentations

3. **Recommended prerequisites for participation**
 Electronics

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Will be provided at the begin of the seminar

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jutta Hanson

1 Teaching content
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 Learning objectives
The student will be able to understand and analyze scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
 • Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc MEC, BSc iST

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
 • Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Prof. Dr.-Ing. Rolf Jakoby, Dr.-Ing. Martin Schüßler</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Harald Klingbeil

1 **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology. More information is available here: https://www.bt.tudarmstadt.de/fgbt_lehre/fgbt_lehrveranstaltungen/index.en.jsp

2 **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-1000-ps</td>
<td></td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Harald Klingbeil

Type
Introductory seminar course

SWS
2
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Myriam Koch

1 Teaching content
Content and goals
- Elaboration of a technical topic in cooperation with a research associate as supervisor
- Detailed study of technical articles
- Deeper understanding of the technical topic treated therein
- Practical experience with technical documentation
- Learning modern presentation techniques and their application
- Presentation and discussion of the technical topic in front of a group of people

Information about the course
- In the 5th semester of the bachelor program ETIT or WI-ETIT
- Can be taken at any professorship at ETIT, also outside the chosen specialization.
- For the High Voltage Laboratories: The students inform themselves with the scientific staff if and which topics are currently offered. The specializations of the staff members can be found on the website or directly on the notice board of the department.
- Start time and duration of the project work (e.g. as a block or during a lecture) can be arranged individually with the project supervisor.
- Depending on the topic, teamwork may be possible.
- The proseminar ETIT is offered every semester.

Link: https://www.hst.tu-darmstadt.de/lehre_hst/prosem_hst/index.de.jsp

2 Learning objectives
After successful completion of the module, the students will be able to understand and analyse scientific papers, to present technical facts properly and well structured. They know how to summarize and present the given topic.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc etit

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ke-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Prof. Dr. Myriam Koch</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology. Additional information can be found here.

2. **Learning objectives**
 The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
 BSc ETIT

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2. **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**
Basic knowledge from the first four semesters

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT, BSc MEC, BSc iST, BSc Wi-ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>M.Sc. Sumedh Dongare, Prof. Dr.-Ing. Anja Klein</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
<tr>
<td>Module name</td>
<td>Proseminar ETiT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-kn-1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>2 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>30 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Every Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content

2 Learning objectives

3 Recommended prerequisites for participation

4 Form of examination
 Module exam:
 • Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
 Passing the final module examination

6 Grading
 Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>18-kn-1000-ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name</td>
<td>Proseminar ETiT</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
</tr>
<tr>
<td>Type</td>
<td>Introductory seminar course</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Heinz Köppl

1 Teaching content
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 Learning objectives
The student will be able to understand and analyze scientific papers, to present technical facts properly and well-structured. He knows how to summarize and present the given topic.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Heinz Köppl
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. rer. nat. Markus Meinert</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 - Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2. **Learning objectives**
 - The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**

4. **Form of examination**
 - Module exam:
 - Module exam (Study achievement, Oral/written examination, Default RS)

5. **Prerequisite for the award of credit points**
 - Passing the final module examination

6. **Grading**
 - Module exam:
 - Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7. **Usability of the module**
 - BSc ETiT, BSc MEC, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-1000-ps</td>
<td>Introductory seminar course</td>
<td>Prof. Dr. rer. nat. Markus Meinert</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Module name</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-pe-1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>2 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>30 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Every Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2. **Learning objectives**
 The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT, BSc MEC, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>M.Sc. Wassim Suleiman, Prof. Dr.-Ing. Marius Pesavento</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Sascha Preu

Teaching content
- **Literature seminar:** Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology. Interested students please directly contact Prof. Sascha Preu for definition of a topic: sascha.preu@tu-darmstadt.de
 - Link to TSYS-website.

Learning objectives
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

Recommended prerequisites for participation

Form of examination
- **Module exam:**
 - Module exam (Study achievement, Optional, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
- **Module exam:**
 - Module exam (Study achievement, Optional, Weighting: 100 %)

Usability of the module
- BSc ETiT, BSc MEC, BSc iST

Grade bonus compliant to §25 (2)

References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td></td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

1 Teaching content
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 Learning objectives
The student will be able to understand and analyze scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc MEC, BSc iST

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sebastian Schöps
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1. **Teaching content**
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

This seminar addresses students of Electrical Engineering disciplines and covers various topics from the fields of computer science and electrical engineering. It is usually the first seminar that students take during their studies. Therefore, the focus lies on the process of finding, reading, and understanding scientific publications (conference papers, articles) related to a given topic and on categorizing and summarizing the results in oral form (presentation) and written form (short paper). Some potential topics are:
- Knowledge & Educational Technologies
- Adaptive Communication Systems
- Multimedia Technologies & Serious Games

For more information please refer to the webpage: https://www.kom.tu-darmstadt.de/en/teaching/current-courses/11/proseminar-etit/

2. **Learning objectives**
The students will be able to understand and analyse scientific papers, as well as to present technical facts in a proper and well-structured manner. They know how to summarize and present publications from a given topic area.

3. **Recommended prerequisites for participation**
Solid knowledge in computer communication networks. Lectures in Communication Networks I and II are recommended.

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**
Depending on specific topic (selected articles of journals, magazines, and conferences).

Courses

100
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. rer. nat. Florian Steinke</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology. Additional information can be found here.

2. **Learning objectives**
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3. **Recommended prerequisites for participation**

4. **Form of examination**
Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
BSc ETiT, BSc MEC, BSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>M.Sc. Christopher Ripp, Prof. Dr. rer. nat. Florian Steinke</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
<tr>
<td>Module name</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-su-1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>2 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>30 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Every Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 **Teaching content**
 In this course, the students produce scientific reports from changing subject areas. Each student has to explore a subject related to IT system development and produce a written report as well as a final talk with a presentation. A list of the subjects of the current semester is available at www.es.tu-darmstadt.de/lehre/sst.

2 **Learning objectives**
 After a successful participation, the students will be able to explore an unknown topic under scientific aspects. The students learn to support the exploration by a literature research and to analyze the subject critically. They achieve the skills to present a definite subject in a written report as well as in an oral presentation.

3 **Recommended prerequisites for participation**
 Introduction to Computer Science for Engineers, Software Lab; Software Engineering I or comparable skills

4 **Form of examination**
 Module exam:
 • Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
 Passing the final module examination

6 **Grading**
 Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
 BSc ETiT, Informatik, iST, Wi-ETiT

8 **Grade bonus compliant to §25 (2)**

9 **References**
 http://www.es.tu-darmstadt.de/lehre/proseminar-etit/

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-su-1000-ps</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
</tbody>
</table>
Module name
Proseminar Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1000</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
Read published books or papers on a given subject in Electrical Engineering and Information Technology. Write a summary and present it using multimedia technology.

2 Learning objectives
The student will be able to understand and analyse scientific papers, to present technical facts properly and well structured. He knows how to summarize and present the given topic.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
 • Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc MEC, BSc iST

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1000-ps</td>
<td>Proseminar Electrical Engineering and Information Technology</td>
<td>Introductory seminar course</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Abdelhak Zoubir
1.5 Project Seminars

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1090</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content
Analysis, experiment and simulation of exemplary electrical devices, e.g.:
- Single-phase transformer
 - Analytical calculation of various parameters of the transformer
 - Experimental setup with iron yoke and coils, various measurements and experiments (e.g. short circuit test, measurements with and without airgap, with and without iron core, etc.)
 - Modeling & simulation of the experimental setup using CST EM Studio
- Cavity resonator
 - Analytical calculation of resonance frequencies
 - Calibration of a network analyzer
 - Measurement of diverse cavity resonators by means of a network analyzer
 - Modeling & simulation of cavity resonators using CST EM Studio
- Electrical motor
 - Analytical calculation of various parameters of the motor
 - Construction of own electrical motor with common household material
 - Optimization of the rotational speed
 - Modeling & simulation of the built motor using CST EM Studio
- Vibrations and beats
 - Analytical calculation of mass-damper-systems and electrical oscillating circuits via differential equations
 - Analytical calculation of coupled oscillating circuits (beat phenomenon)
 - Pendulum experiments and measurements of the frequencies using a cell phone app
 - Comparison between mechanical and electrical oscillating circuits
 - Modeling & simulation of the oscillating circuits using LTSpice or own code
- Cathode-ray tube
 - Analytical calculation of various parameters of the cathode-ray tube
 - Measurement of deflections in the electrical field
 - Plotting, reading and interpreting Lissajous figures
 - Modeling & simulation of Helmholtz coils and cathode-ray tube using CST EM Studio

2 Learning objectives
The students are able to explain the physical working principle, technical implementation and relevance of several exemplary electrical devices. They are able to evaluate analytical models, set up simulation models and carry out measurements for the exemplary setups. They are capable of critically assessing and comparing the results and reporting them in a concise way. They are acquainted with the strengths and weaknesses of theory, simulation and experiment in electrical engineering.

3 Recommended prerequisites for participation
Basic knowledge on electric circuits and electromagnetic fields which is part of, e.g., Electrical Engineering and Information Technology I and Electrical Engineering and Information Technology II

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral/written examination, Default RS) Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
BSc etit

8 Grade bonus compliant to §25 (2)

9 References
Experiment instructions

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-1090-pj</td>
<td>Project Seminar Analysis, Measurement and Simulation of electromagnetic set-ups</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Project Seminar Computer Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1040</td>
<td>9 CP</td>
<td>270 h</td>
<td>210 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Students elaborate on a research-oriented subject in the area of computer-systems. They present a written documentation and a presentation of the acquired advanced knowledge. They provide a set of alternative solutions to a given problem.

2. **Learning objectives**
 Students are able to systematically develop design alternatives to a given problem. They learn to acquire the necessary fundamental knowledge in terms of references and terminology.

3. **Recommended prerequisites for participation**
 Basic knowledge of digital design

4. **Form of examination**
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT, BSc/MSc iST

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1040-pj</td>
<td>Project Seminar Computer Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Project Seminar Integrated Electronic Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1060</td>
<td>9 CP</td>
<td>270 h</td>
<td>210 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Research-oriented project in the domain of Integrated Electronic Systems or Microelectronic System Design, Final Report and Presentation of Results in a Team

2. **Learning objectives**
 After completion of this module, a student is able to fulfill/implement a given task or project in the domain of Integrated Electronic System design (optionally in a group of students), write a final report and present the results to an audience.

3. **Recommended prerequisites for participation**
 Lecture Electronic and Integrated Circuits

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Oral examination, Weighting: 100 %)

7. **Usability of the module**
 BSc ETiT, Wi ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Material on the subject will be handed out

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1060-pj</td>
<td>Project Seminar Integrated Electronic Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Project Seminar Electrical Power Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1090</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
</tr>
</tbody>
</table>

1 Teaching content
Students elaborate on a research-oriented subject in the area of electrical power systems. They present a written documentation and/or a presentation of the acquired advanced knowledge. They provide a set of alternative solutions to a given problem.

More information can be found here.

2 Learning objectives
After successful completion of the module, students have learned how to acquire basic knowledge (literature, terminology) on a research-oriented topic and present it in a summarised form. They have learned to systematically work out alternative solutions to a given problem.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1090-pj</td>
<td>Project Seminar Electrical Power Systems</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Jutta Hanson
Module name
Project Seminar Communication and Sensor Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1041</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

1 Teaching content
Investigating and solving specific problems concerning communication and sensor systems (Problems concerning communications engineering, microwave technology, signal processing, sensor networks etc. are possible, topics will be defined out of the recent research topics of the involved labs), working on a a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications for a given task, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience.

2 Learning objectives
After completion of the course, students possess:
- the ability to apply methods of communication and sensor systems to practical problems
- deep and special knowledge in a particular field of communication and sensor systems (communications engineering), RF technology, signal processing, sensor networks
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report
- the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge in chosen discipline, e.g. communication technology, signal processing, microwave technology, sensor networks

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc CE, BSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1041-pj</td>
<td>Project Seminar Communication and Sensor Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Jakoby, Dr.-Ing. Martin Schüßler
Module name
Project Seminar Particle Accelerator Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-1020</td>
<td>9 CP</td>
<td>270 h</td>
<td>210 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Harald Klingbeil

1 Teaching content
Work on a more complex project in the field of particle accelerator technology. Depending on the specific problem, measurement aspects, analytical aspects, and simulation aspects will be included. More information is available here: https://www.bt.tu-darmstadt.de/fgbt_lehre/fgbt_lehrveranstaltungen/index.en.jsp

2 Learning objectives
Students will be able to solve complex engineering problems with different measurement techniques, analytical approaches or simulation methods. They are able to estimate measurement errors and modeling and simulation errors. They know how to present the results on a scientific level in talks and a paper. Students are able to organize teamwork.

3 Recommended prerequisites for participation
Good understanding of electromagnetic fields, broad knowledge of different electrical engineering disciplines.

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral examination, Duration: 20 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
BSc ETIT

8 Grade bonus compliant to §25 (2)

9 References
Suitable material is provided based on specific problem.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-1020-pj</td>
<td>Project Seminar Particle Accelerator Technology</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Harald Klingbeil
Module name
Project Seminar Communication and Sensor Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1041</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Anja Klein

1 Teaching content
Investigating and solving specific problems concerning communication and sensor systems (Problems concerning communications engineering, microwave technology, signal processing, sensor networks etc. are possible, topics will be defined out of the recent research topics of the involved labs), working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications for a given task, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience.

2 Learning objectives
After completion of the course, students possess:
- the ability to apply methods of communication and sensor systems to practical problems
- deep and special knowledge in a particular field of communication and sensor systems (communications engineering), RF technology, signal processing, sensor networks
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report
- the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge in chosen discipline, e.g. communication technology, signal processing, microwave technology, sensor networks

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc CE, BSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1041-pj</td>
<td>Project Seminar Communication and Sensor Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
M.Sc. Sumedh Dongare, Prof. Dr.-Ing. Anja Klein
Module name
Project Seminar Communication and Sensor Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1041</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Heinz Köppl

1 Teaching content
Investigating and solving specific problems concerning communication and sensor systems (problems concerning communications engineering, microwave technology, signal processing, sensor networks etc. are possible, topics will be defined out of the recent research topics of the involved labs), working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications for a given task, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience.

2 Learning objectives
After completion of the course, students possess:
- the ability to apply methods of communication and sensor systems to practical problems
- deep and special knowledge in a particular field of communication and sensor systems (communications engineering), RF technology, signal processing, sensor networks
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report
- the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge in chosen discipline, e.g. communication technology, signal processing, microwave technology, sensor networks

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc CE, BSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-1041-pj</td>
<td>Project Seminar Communication and Sensor Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Heinz Köppl

Instructor
Prof. Dr. techn. Heinz Köppl

Type
Project seminar

SWS
4
Module name
Project Seminar Communication and Sensor Systems

Module nr. 18-pe-1041 Credit points 8 CP Workload 240 h Self-study 180 h Module duration 1 Term Module cycle Every Semester

Language German/English

Module owner Prof. Dr.-Ing. Marius Pesavento

1 Teaching content
Investigating and solving specific problems concerning communication and sensor systems (Problems concerning communications engineering, microwave technology, signal processing, sensor networks etc. are possible, topics will be defined out of the recent research topics of the involved labs), working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications for a given task, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience.

2 Learning objectives
After completion of the course, students possess:
- the ability to apply methods of communication and sensor systems to practical problems
- deep and special knowledge in a particular field of communication and sensor systems (communications engineering), RF technology, signal processing, sensor networks
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report
- the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge in chosen discipline, e.g. communication technology, signal processing, microwave technology, sensor networks

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc CE, BSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr. 18-pe-1041-pj</th>
<th>Course name Project Seminar Communication and Sensor Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento, M.Sc. Yufan Fan</td>
</tr>
<tr>
<td>Type</td>
<td>Project seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Project Seminar Terahertz Systems & Applications

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>18-pr-1020</th>
<th>Credit points</th>
<th>9 CP</th>
<th>Workload</th>
<th>270 h</th>
<th>Self-study</th>
<th>210 h</th>
<th>Module duration</th>
<th>1 Term</th>
<th>Module cycle</th>
<th>Every Semester</th>
</tr>
</thead>
</table>

Language
German/English

Module owner
Prof. Dr. rer. nat. Sascha Preu

1 Teaching content
Investigating and solving specific problems concerning the development of Terahertz devices and systems as well as of applications of THz technology. The specific task will be defined based on current research topics. The project seminar includes working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience. Topics include, e.g.:
- Optics on chip
- Semiconductor devices
- Light-matter interaction

2 Learning objectives
After completion of the course, students possess:
- the ability to apply theoretical models to practical problems
- deep and special knowledge in a particular field related to THz science, optics or semiconductor physics
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report
- the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge one of the following disciplines: Optics, semiconductor physics, or THz technology

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc/MSc iST

8 Grade bonus compliant to §25 (2)

9 References
Will be announced once the topic is defined

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1020-pj</td>
<td>Project Seminar Terahertz Systems & Applications</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sascha Preu
Module name
Project Seminar Communication and Sensor Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1041</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. rer. nat. Sascha Preu

1 Teaching content
Investigating and solving specific problems concerning the development of Terahertz sensors and -systems as well as of applications of THz technology. The specific task will be defined based on current research topics. The project seminar includes working on a given task by one’s own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience. Topics include, e.g.:
• Optics on chip
• Semiconductor devices
• Light-matter interaction

2 Learning objectives
After completion of the course, students possess:
• the ability to apply theoretical models to practical problems
• deep and special knowledge in a particular field related to THz science, optics or semiconductor physics
• the skills to find, analyze and evaluate scientific reference papers for a particular topic
• the capability to summarize the achieved scientific findings in the form of a concise report, the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge one of the following disciplines: Optics, semiconductor physics, or THz technology

4 Form of examination
Module exam:
• Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi-ETiT, BSc CE, BSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced once the topic is defined.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-1041-pj</td>
<td>Project Seminar Communication and Sensor Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sascha Preu
Module name
Multimedia Communications Project Seminar I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-1030</td>
<td>9 CP</td>
<td>270 h</td>
<td>210 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Ralf Steinmetz</td>
</tr>
</tbody>
</table>

1 **Teaching content**
The course deals with cutting edge scientific and development topics in the area of multimedia communication systems. Besides a general overview, it provides a deep insight into a special scientific topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and scientific competences in one or more of the following topics:

- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia/e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Applications for distributed workflows
- Resource-based Learning

2 **Learning objectives**
The ability to solve and evaluate technical problems in the area of design and development of future multimedia communication networks and applications using state of the art scientific methods. Acquired competences are among the following:

- Searching and reading of project relevant literature
- Design of communication applications and protocols
- Implementing and testing of software components
- Application of object-orient analysis and design techniques
- Acquisition of project management techniques for small development teams
- Evaluation and analyzing of technical scientific experiments
- Writing of software documentation and project reports
- Presentation of project advances and outcomes

3 **Recommended prerequisites for participation**
Keen interest to develop and explore challenging solutions and applications in cutting edge multimedia communication systems. Further we expect:

- Basic experience in programming Java/C# (C/C++).
- Basic knowledge in Object oriented analysis and design.
- Knowledge in computer communication networks. Lectures in Communication Networks I and/or Net Centric Systems are recommended.

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc/MSc iST, MSc MEC, Wi-CS, Wi-ETiT, BSc/MSc CS

8 **Grade bonus compliant to §25 (2)**

9 **References**
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:
- Erich Gamma, Richard Helm, Ralph E. Johnson: "Design Patterns: Objects of Reusable Object Oriented Software" (ISBN 0-201-63361-2)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>
Module name
Project Seminar Electromagnetic CAD

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1020</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

1. **Teaching content**
Work on a more complex project in numerical field calculation using commercial tools or own software.

2. **Learning objectives**
Students will be able to simulate complex engineering problems with numerical field simulation software. They are able to estimate modelling and numerical errors. They know how to present the results on a scientific level in talks and a paper. Students are able to organize teamwork.

3. **Recommended prerequisites for participation**
Good understanding of electromagnetic fields, knowledge about numerical simulation methods.

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 20 Min., Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7. **Usability of the module**
MSc ETIT

8. **Grade bonus compliant to §25 (2)**

9. **References**
Course notes "Computational Electromagnetics and Applications I-III", further material is provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-1020-pj</td>
<td>Project Seminar Electromagnetic CAD</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Sebastian Schöps
Module name
Project Seminar Energy Information Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-1010</td>
<td>9 CP</td>
<td>270 h</td>
<td>210 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German
Module owner
Prof. Dr. rer. nat. Florian Steinke

1 Teaching content
Students elaborate on a research-oriented subject in the area of computer-systems. They present a written documentation and/or a presentation of the acquired advanced knowledge. They provide a set of alternative solutions to a given problem.

2 Learning objectives
Students are able to systematically develop design alternatives to a given problem. They learn to acquire the necessary fundamental knowledge in terms of references and terminology.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-1010-pj</td>
<td>Project Seminar Energy Information Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Florian Steinke
Module name
Projektseminar Software Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-1060</td>
<td>9 CP</td>
<td>270 h</td>
<td>210 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
</tr>
</tbody>
</table>

1 Teaching content
The course deals with various development and research topics in the area of model-driven engineering and object-oriented software engineering. Besides a general overview, it provides a deep insight into a special scientific topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and scientific competences in one or more of the following topics:

- Model-Driven Engineering and Model Synchronization
- Model Transformation
- Object-Oriented Refactorings
- Program Variability (Software Product Lines)
- Feature Model Analysis

Additional information and topic description for the current semester: http://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/projektseminar-softwaresysteme/

2 Learning objectives
The student gains practical experience in development (reengineering and maintenance) of complex software systems. He/She learns to work and function in a team, and to analyze and solve a non-trivial task. Moreover, students exercise using theoretical knowledge in the group (e.g. from lectures like software engineering - introduction / Design / Maintenance & Quality Assurance) to solve a concrete and practical problem.

Students that have successfully completed this seminar are able to independently organize and set-up a non-trivial software project and function to analyze and solve a certain task. Attendees gain the following skills in detail:

- realistic time and resource management (project management)
- experience with tools for version control and change management
- usage of CASE tools for model-based software development
- planning and execution of quality assurance measures

3 Recommended prerequisites for participation
Mandatory: Basic software technology knowledge and advanced knowledge of object-oriented programming languages

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, MSc ETiT, BSc iST

8 Grade bonus compliant to §25 (2)

9 References
Each topic is covered by a specific selection of papers and articles.

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-su-1060-pj</td>
</tr>
</tbody>
</table>
Module name
Project Seminar Communication and Sensor Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1041</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
Investigating and solving specific problems concerning communication and sensor systems (Problems concerning communications engineering, microwave technology, signal processing, sensor networks etc. are possible, topics will be defined out of the recent research topics of the involved labs), working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications for a given task, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience.

2 Learning objectives
After completion of the course, students possess:
- the ability to apply methods of communication and sensor systems to practical problems
- deep and special knowledge in a particular field of communication and sensor systems (communications engineering), RF technology, signal processing, sensor networks
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report
- the ability to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge in chosen discipline, e.g. communication technology, signal processing, microwave technology, sensor networks

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc Wi ETiT, BSc CE, BSc iST, BSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-1041-pj</td>
<td>Project Seminar Communication and Sensor Systems</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Product Development Methodology I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-1010</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Mario Kupnik

1 Teaching content
Practical experience in the methods used for the development of technical products. Work in a project team.

2 Learning objectives
Applying the development methodology to a specific development project in a team. To do this, students can create a schedule, can analyze the state of the art, can compose a list of requirements, can abstract the task, can work out the sub-problems, can seek solutions with different methods, can work out optimal solutions using valuation methods, can set up a final concept, can derive the parameters needed by computation and modeling, can create the production documentation with all necessary documents such as part lists, technical drawings and circuit diagrams, can build up and investigate a laboratory prototype and can reflect their development in retrospect.

3 Recommended prerequisites for participation
Parallel attendance of Proseminar ETiT Option MPE

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, BSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Script: Development Methodology (PEM)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-1010-pj</td>
<td>Product Development Methodology I</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Ph.D. Thomas Burg, Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr. Mario Kupnik, Prof. Dr.-Ing. Tran Quoc Khanh
Module name
Product Development Methodology II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-1020</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Klaus Hofmann

Teaching content
Practical experiences by using methodical procedures in the development of technical products. In addition teamwork, verbal and written representation of results and the organization of development. Work in a project team and organize the development process independently.

Learning objectives
Applying the development methodology to a specific development project in a team. To do this, students can create a schedule, can analyze the state of the art, can compose a list of requirements, can abstract the task, can work out the sub-problems, can seek solutions with different methods, can work out optimal solutions using valuation methods, can set up a final concept, can derive the parameters needed by computation and modeling, can create the production documentation with all necessary documents such as bills of materials, technical drawings and circuit diagrams, can build up and investigate a laboratory prototype and can reflect their development in retrospect.

Recommended prerequisites for participation
Product Development Methodology I

Form of examination
Module exam:
• Module exam (Study achievement, Optional, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
• Module exam (Study achievement, Optional, Weighting: 100 %)

Usability of the module
BSc ETiT, BSc WI-ETiT, MSc MEC

Grade bonus compliant to §25 (2)

References
Script: Development Methodology (PEM)

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-1020-pj</td>
<td>Product Development Methodology II</td>
<td>Prof. Ph.D. Thomas Burg, Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr. Mario Kupnik, Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>

Type: Project seminar
SWS: 3
1.6 Projects and Mentoring

<table>
<thead>
<tr>
<th>Module name</th>
<th>Mentoring as a Subject-Specific Instrument (for iST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-de-1031</td>
</tr>
<tr>
<td>Credit points</td>
<td>1 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>30 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>15 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>2 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>PD Dr.-Ing. Oktay Yilmazoglu</td>
</tr>
</tbody>
</table>

1 Teaching content
The following learning content is taught in the Mentoring:
• reflection of own study decision and situation,
• basics of the working techniques,
• learning techniques and time management methods.

The mentoring consists of student-led tutorials in the scope of normally twelve units consisting of group and one-on-one talks, as well as workshop elements and the simulation of an examination situation.

For students without exam success in the first semester (WiSe) in an examination in the field of fundamentals (catalog 1 to 3) of the study and examination plan, the second semester (SoSe) takes place, usually in the scope of three units consisting of one-to-one talks and workshop elements.

2 Learning objectives
Through the mentoring, the students were encouraged to reflect on their study decision and situation. Mentoring enables students to learn and to train working methods and learning methods. They realize the importance of application of time management methods in learning processes and acquire the ability to implement them target-oriented for enhancement of learning success. Students reflect own actions in learning processes and receive feedback from the mentor to gain a higher level of self-competence. After completion of this module students have the ability to optimize time management for learning success, to develop the personal learning style and methods and apply learning methods adequate to the met situation and conditions. Students have the ability to analyse reasons for personal problems of understanding and solve them by means of adequate actions and methods.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Study achievement, Optional)
• participation in the moodle-course, usually until the end of the second semester, also answering of questionnaires, completion of homework and other activities in the context of the meetings
• seminar paper (optional repetition of the examination)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc iST

8 Grade bonus compliant to §25 (2)

9 References
- Other materials are provided in Moodle

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-de-1031-tt</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Dr.-Ing. Emna Ayari, PD Dr.-Ing. Oktay Yilmazoglu</td>
</tr>
</tbody>
</table>

127
1 Teaching content
The following learning content is taught in the Mentoring:
- reflection of own study decision and situation,
- basics of the working techniques,
- learning techniques and time management methods.

The mentoring consists of student-led tutorials in the scope of normally twelve units consisting of group and one-on-one talks, as well as workshop elements and the simulation of an examination situation.

For students without exam success in the first semester (WiSe) in an examination in the field of "fundamentals of electrical engineering and information technology" or "fundamentals of mathematics" of the study and examination plan, the second semester (SoSe) takes place, usually in the scope of three units consisting of one-to-one talks and workshop elements.

2 Learning objectives
Through the mentoring, the students were encouraged to reflect on their study decision and situation. Mentoring enables students to learn and to train working methods and learning methods. They realize the importance of application of time management methods in learning processes and acquire the ability to implement them target-oriented for enhancement of learning success. Students reflect own actions in learning processes and receive feedback from the mentor to gain a higher level of self-competence. After completion of this module students have the ability to optimize time management for learning success, to develop the personal learning style and methods and apply learning methods adequate to the met situation and conditions. Students have the ability to analyse reasons for personal problems of understanding and solve them by means of adequate actions and methods.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
BSc etit, BSc Mec

8 Grade bonus compliant to §25 (2)

9 References
• Kurt Landau, Arbeitstechniken für Studierende der Ingenieurwissenschaften; Verlag ergonomia oHG, Stuttgart, ISBN 3-935089-65-1
• Other materials are provided in Moodle

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-1032-tt</td>
<td>Mentoring</td>
<td>PD Dr.-Ing. Oktay Yilmazoglu</td>
<td>Lecture</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Mentoring for Biomedical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-1033</td>
<td>2 CP</td>
<td>60 h</td>
<td>45 h</td>
<td>2 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
PD Dr.-Ing. Oktay Yilmazoglu

1 Teaching content
This module addresses the main features of work techniques, studying methods and time management methods. In addition the specificity of interdisciplinary collaboration and individual challenges arising from it are discussed.

2 Learning objectives
Mentoring enables students to learn, to identify and to train working methods and learning methods. They realize the importance of application of time management methods in learning processes and acquire the ability to implement them target-oriented for enhancement of learning success. Students reflect their own actions in learning processes and receive feedback from the mentor to gain a higher level of self-competence. After completion of this module students have the ability to optimize time management for learning success, to develop the personal learning style and methods and apply learning methods adequate to the met situation and conditions. Students have the ability to analyse reasons for personal understanding and solve them by means of adequate actions and methods, as well as shape further learning processes autonomously.

3 Recommended prerequisites for participation
None

4 Form of examination
Module exam:
• Module exam (Study achievement, Special form)
Module final exam:
• Module exam (Study achievements, Special form, pass/fail grading system)

5 Prerequisite for the award of credit points
active participation (min. 80% of obligatory dates*)

6 Grading
Module exam:
• Module exam (Study achievement, Special form, Weighting: 100 %)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Other relevant materials are provided in Moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-1033-vl</td>
<td>Mentoring for Biomedical Engineering</td>
<td>Dipl.-Soz. Goran Beil, PD Dr.-Ing. Oktay Yilmazoglu</td>
<td>Lecture</td>
<td>1</td>
</tr>
</tbody>
</table>
1.7 Modules of the B.Sc. Biomedical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>2 Term</td>
<td>Winter term</td>
<td>German</td>
<td>Prof. Dr. Thomas Vogl</td>
</tr>
</tbody>
</table>

1 Teaching content
The module deals with the fundamentals of the morphology of the human body, its tissue structures and their relationships. In particular, human organs are discussed in their microscopic and macroscopic anatomy including the sensory systems, the musculoskeletal system, the cardiovascular system, the digestive system, the nervous system and the stomatognathic system. This includes the knowledge transfer of medical and dental terminology. Anatomical structures and functional relationships are explained on the basis of common clinical cases and thus the direct reference to the clinic is established. At the same time, the module discusses methods and devices that can be used to represent the anatomy and functions of the body, such as medical imaging. In addition, the participants gain initial knowledge about the organizational structures of diagnostic processes. On the basis of a discussion of medical methods and theoretical approaches in surgical disciplines, the participant learns central medical problems.

2 Learning objectives
After successfully completing the module, the students understand the basics of medical terminology and can tap into the most important and common medical terms. They are familiar with the fundamentals of the microscopic and macroscopic anatomy of important body systems and have acquired a deeper understanding of common medical problems, especially in the fields of surgery, internal medicine and dentistry. They know various media for obtaining information about the morphology of the body and can assess their differential diagnostic reliability. In addition, the students are familiar with important clinical pictures, can explain them in diagnostics and therapy as an example and discuss them with medical professionals and as well as with laypersons.

3 Recommended prerequisites for participation
None

4 Form of examination
Course related exam:
- [18-mt-1010-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
- [18-mt-1011-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing of Technical examination

6 Grading
Course related exam:
- [18-mt-1010-vl] (Technical examination, Examination, Weighting: 50 %)
- [18-mt-1011-vl] (Technical examination, Examination, Weighting: 50 %)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1010-vl</td>
<td>Terminology and Medical Morphology</td>
<td>Prof. Dr. Thomas Vogl</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>18-mt-1011-vl</td>
<td>Applied Anatomy</td>
<td>Prof. Dr. Thomas Vogl</td>
<td>Lecture</td>
<td></td>
</tr>
</tbody>
</table>
Module name
Natural Scientific Principles for Medical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1020</td>
<td>6 CP</td>
<td>180 h</td>
<td>90 h</td>
<td>2 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Ingrid Fleming

1 Teaching content
This module deals with medical biological fundamentals, which are the basis for the application of engineering methods to living systems in biology, medicine, and dentistry. In addition to the fundamentals of terminology, cell biology, chemistry, and genetics, basic knowledge about chemical and biochemical procedures and processes are also conveyed. Hereon building up, the participants gain insight into first physiological processes within the human body and their relationships. Physiological and exemplary pathophysiological functional relationships are explained on the basis of common clinical pictures and thus the direct clinical reference is established. At the same time, the participants gain their first knowledge of diagnostic procedures in medicine and dentistry and get an overview of the organizational structures of diagnostic processes. On the basis of discussion of medical methods and theoretical approaches in conservative or metabolically-related disciplines, the participants learn key medical questions.

2 Learning objectives
Students who have successfully completed this module can understand the biological, biochemical, and physiological context and apply it to the development and evaluation of biomedical diagnostic and therapeutic systems. In addition, the students, having understood cellular and molecular biological processes acquired in this module, will be prepared to discuss medical content with medical professionals and laymen and to understand the basic biomedical literature. They know various media for gathering information about metabolic processes in the body and can assess their reliability.

3 Recommended prerequisites for participation
None

4 Form of examination
Course related exam:
- [18-mt-1021-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
- [18-mt-1020-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
- [18-mt-1022-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
Module final exam:
- Module exam (per course one Technical examination, Written examination, Duration: 60 min, standard grading system)

5 Prerequisite for the award of credit points
Passing of Technical examination

6 Grading
Course related exam:
- [18-mt-1021-vl] (Technical examination, Examination, Weighting: 1)
- [18-mt-1020-vl] (Technical examination, Examination, Weighting: 1)
- [18-mt-1022-vl] (Technical examination, Examination, Weighting: 1)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1020-vl</td>
<td>Cell Biology</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Ingrid Fleming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-mt-1021-vl</td>
<td>Biochemistry</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Ingrid Fleming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-mt-1022-vl</td>
<td>Physiology</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Ingrid Fleming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Biomechanics and Biomaterials

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1030</td>
<td>6 CP</td>
<td>180 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Ingo Marzi</td>
</tr>
</tbody>
</table>

1 Teaching content
This module deals with the basics of biomechanics. Basis for this is the anatomy of the musculoskeletal system. Among these is integrated the introduction into rigid bodies, multi-body models of human body parts, different modeling variants or the determination of the reaction forces and moments in human joints. In addition, this module deals with material sciences for considering the human body and with materials that are used in particular in medical technology. These include medical-grade materials used to make implants that remain temporarily or permanently in the body, as well as biomaterials used to replace body tissues (skin, bones, cartilage, etc.). In the areas of biomechanics and biomaterials, the basics of osteosynthesis techniques with implants and endoprosthetics are presented as well as basic principles of tissue engineering in the fields of medicine and dentistry.

2 Learning objectives
After successfully completing this module, students gain knowledge and understanding of the biomechanical basis of human body functions. They shall be able to independently and critically use biomechanical methods. Students are familiar with the basic materials and their mechanical and biological properties used in the human body. In particular, students are familiar with the requirement profile for material behavior regarding medical engineering. They are able to independently select materials for an application from medical engineering, to assess their advantages and disadvantages and to explain them in an argumentative manner.

3 Recommended prerequisites for participation
Recommended is „Terminology, Medical Morphology and Applied Anatomy“

4 Form of examination
Course related exam:
- [18-mt-1030-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
- [18-mt-1031-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)

Module final exam:
- Module exam (per course one Technical examination, Written examination, Duration: 60 min, standard grading system)

5 Prerequisite for the award of credit points
Passing of Technical examination

6 Grading
Course related exam:
- [18-mt-1030-vl] (Technical examination, Examination, Weighting: 50 %)
- [18-mt-1031-vl] (Technical examination, Examination, Weighting: 50 %)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1030-vl</td>
<td>Biomechanics</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Ingo Marzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-mt-1031-vl</td>
<td>Biomaterials</td>
<td>Event</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Ingo Marzi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Biomedical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1040</td>
<td>9 CP</td>
<td>270 h</td>
<td>135 h</td>
<td>2 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Kai Zacharowski

1 Teaching content
Biomedical engineering supports medicine with technical solutions in the areas of prevention, diagnostics and therapy. This module focuses on applications in the fields of anesthesiology, internal medicine, neurology and dentistry. Punctually, other disciplines complement the program. In particular, current research and development projects in the field of device technology are presented, taking into account the underlying biotechnology. In addition, anatomy and functional processes in the human body are presented and discussed in the context of common clinical pictures. By this, the transfer of scientific questions from a fundamental area and theory into real clinical application will be illustrated by practical examples. Methods and devices with which the anatomy and functions of the body can be represented, are in a particular focus. One core area is the understanding and application of medical imaging and image processing such as segmentation, filtering and image reconstruction. The use and importance of different devices and methods are presented in a problem-oriented manner. This includes the use of interventional procedures that includes invasive patient treatment by imaging support. The second core area is presentation and application of intracorporeal sensory and actuarial systems detecting and affecting body functions minimal invasively.

2 Learning objectives
After successful completion of the module, the students gained insights into the implementation and application of medical devices and biotechnological procedures. They are informed about the current R & D-status of medical device technologies and special biotechnology. In addition, they can independently apply their acquired knowledge to interdisciplinary questions in medicine and engineering and thus express a position related to a specific field.

3 Recommended prerequisites for participation
Recommended are „Terminology, Medical Morphology and Applied Anatomy“ and „Natural Scientific Principles for Medical Engineering“

4 Form of examination
Course related exam:
• [18-mt-1043-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
• [18-mt-1042-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
• [18-mt-1041-vl] (Technical examination, Examination, Duration: 60 Min., Default RS)
Module final exam:
• Module exam (per course one Technical examination, Written examination, Duration: 60 min, standard grading system)

5 Prerequisite for the award of credit points
Passing of Technical examination

6 Grading
Course related exam:
• [18-mt-1043-vl] (Technical examination, Examination, Weighting: 1)
• [18-mt-1042-vl] (Technical examination, Examination, Weighting: 1)
• [18-mt-1041-vl] (Technical examination, Examination, Weighting: 1)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)
By participating in online tests in BMT1, a bonus can be acquired for the BMT2 exam. The following key applies:
"points achieved at the end of the semester" → "grade improvement": 60% → 0.1; 65% → 0.2; 70% → 0.3; 75% → 0.4; ≥ 80% → 0.5. The bonus is converted into raw points, i.e., a bonus of 0.5 corresponds to half the points of a whole grade step (e.g., 3.0 to 2.0). The BMT2 exam must be passed without a bonus to receive the bonus. The total score results from achieved points in BMT2 + bonus points and is rounded.

References
Leonhardt, Steffen, Walter, Marian: Medizintechnische Systeme, Springer-Verlag, einschlägige Lehrbücher und Fachartikel zu den verschiedenen klinischen Einsatzgebieten

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1040-vl</td>
<td>Biomedical Engineering I</td>
<td>Prof. Dr. Dr. Kai Zacharowski, Prof. Dr.-Ing. Christoph Hoog Antink</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-mt-1041-vl</td>
<td>Biomedical Engineering II</td>
<td>Prof. Dr. Dr. Kai Zacharowski</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-mt-1042-vl</td>
<td>Biosensors</td>
<td>Prof. Dr. Dr. Kai Zacharowski</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-mt-1043-vl</td>
<td>Medical Imaging</td>
<td>Prof. Dr. Dr. Kai Zacharowski</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Clinical Practical Courses

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1120</td>
<td>6 CP</td>
<td>180 h</td>
<td>180 h</td>
<td>2 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Robert Sader

1 Teaching content
In small groups, students have the opportunity to participate in the everyday clinical practice of various medical disciplines and to experience the use of medical devices in daily use as well as to experience the possibilities and limitations of the device technologies. They participate in various everyday clinical situations in a hospital and learn the clinical communication channels, workflows and treatment strategies.

2 Learning objectives
Students know the day-to-day work of a physician and the communication structures of a hospital. They understand the terminology and "language" of a medical doctor and can communicate with them sufficiently. They are familiar with a wide range of applications of medical devices and products and are informed about the current state of development of medical devices.

3 Recommended prerequisites for participation
Recommended are „Terminology, Medical Morphology and Applied Anatomy“ and „Natural Scientific Principles for Medical Engineering“ und „Biomedical Engineering“.
As well as being vaccinated against measles, mumps, varicella, tetanus and hepatitis B according to the recommendation of the Standing Committee on Vaccinations.

4 Form of examination
Module exam:
• Module exam (Technical examination, Paper)
Module final exam:
• Module exam (Technical examination, Presentation, pass/fail grading system)
After course II the examinee compiles a two-page summary of a medical device, describing functional principle and possible applications but also its limitations in the medical field.

5 Prerequisite for the award of credit points
Passing of Technical examination

6 Grading
Module exam:
• Module exam (Technical examination, Paper, Weighting: 100 %)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-1120-pr</td>
<td>Clinical Practical Courses I</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. Dr. Robert Sader

<table>
<thead>
<tr>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship</td>
<td>0</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>18-mt-1121-pr</td>
<td>Clinical Practical Courses II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dr. Robert Sader</td>
<td>Internship</td>
<td>0</td>
</tr>
</tbody>
</table>
Module name
Medical Law, Forensic Medicine and Ethics

Module nr. 18-mt-1140
Credit points 3 CP
Workload 90 h
Self-study 45 h
Module duration 1 Term
Module cycle Summer term

Language German

Module owner Prof. Dr. Markus Parzeller

1 Teaching content
This module deals with the legal foundations of the (inter-) national health system and the medical law (among these the medical drug law (AMG), the medical device law (MPG), the transplantation law (TPG)) and practical aspects, e.g. in forensic medicine. It will also cover the basics of medical ethics and bioethics, which will give a closer look to the ethical aspects of research on humans and the development of medical technologies in a legal-ethical context.

2 Learning objectives
Upon successful completion of this module, students are sensitized to legal issues, current case law and ethical aspects in medical engineering and (bio) medicine, including actual and future research projects. They can derive scientifically based judgments that take into account social, legal, scientific, ethical and practical knowledge.

3 Recommended prerequisites for participation
None

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing of Module final exam

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Legal commentaries and textbooks of relevant areas of law, current case-law from legal databases, ethic and legal medicine basic literature.

Courses

Course Nr. 18-mt-1140-vl
Course name Medical Law, Forensic Medicine and Ethics
Instructor Prof. Dr. Markus Parzeller
Type Lecture SWS 3
2 Master

2.1 Lectures

<table>
<thead>
<tr>
<th>Module name</th>
<th>System Dynamics and Automatic Control Systems III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-ad-2010</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Topics covered are:
 1. basic properties of non-linear systems,
 2. limit cycles and stability criteria,
 3. non-linear control of linear systems,
 4. non-linear control of non-linear systems,
 5. observer design for non-linear systems

2. **Learning objectives**
 After attending the module, a student is capable of:
 1. explaining the fundamental differences between linear and non-linear systems,
 2. testing non-linear systems for limit cycles,
 3. stating different definitions of stability and testing the stability of equilibria,
 4. recalling the pros and cons of non-linear controllers for linear systems,
 5. recalling and applying different techniques for controller design for non-linear systems,
 6. designing observers for non-linear systems

3. **Recommended prerequisites for participation**

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**
 MSc ETiT, MSc MEC, MSc iST, MSc WI-ETiT, MSc iCE, MSc EPE, MSc CE, MSc Informatik
<table>
<thead>
<tr>
<th>8</th>
<th>Grade bonus compliant to §25 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Adamy: Systemdynamik und Regelungstechnik III (available for purchase at the FG office)</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2010-vl</td>
<td>System Dynamics and Automatic Control Systems III</td>
<td>M.Sc. Karsten Kreutz, Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-ad-2010-ue</td>
<td>System Dynamics and Automatic Control Systems III</td>
<td>M.Sc. Karsten Kreutz, Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Fuzzy Logic, Neural Networks and Evolutionary Algorithms

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>1 Term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Teaching content
Fuzzy systems: basics, rule based fuzzy logic, design methods, decision making, fuzzy control, pattern recognition, diagnosis; Neural networks: basics, multilayer perceptrons, radial basis functions, pattern recognition, identification, control, interpolation and approximation, Neuro-fuzzy: optimization of fuzzy systems, data driven rule generation; Evolutionary algorithms: optimization problems, evolutionary strategies and their applications, genetic programming and its applications

2 Learning objectives
After attending the module, a student is capable of:
• recalling the elements and set-up of standardized fuzzy-logic, neural networks and evolutionary algorithms,
• discussing the pros and cons of certain set-ups of systems from computational intelligence for solving a given problem,
• recognizing situations in which tools taken from computational intelligence can be applied for problem solving,
• creating programs from algorithms taught in the lecture, and
• extending the learned standard procedures in order to solve new problems.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc iST, MSc ETiT, MSc MEC, MSc WI-ETiT, MSc iCE, MSc EPE, MSc CE, MSc Informatik

8 Grade bonus compliant to §25 (2)

9 References
Adamy: Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen, Shaker Verlag (available for purchase at the FG office)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2020-vl</td>
<td>Fuzzy Logic, Neuronal Networks and Evolutionary Algorithms</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-ad-2020-ue</td>
<td>Fuzzy Logic, Neuronal Networks and Evolutionary Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Evolutionary Systems - From Biology to Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2050</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Teaching content
theory of biological evolution, introduction to genetics, population genetics, population growth, evolutionary algorithms, applications, DNA computing, artificial life, theory of evolutionary algorithms, optimization algorithms, multi-objective optimization, meta models, co-evolution, genetic coding, representations of evolutionary algorithms, developmental processes, self-adaptation

2 Learning objectives
After attending the module, a student is capable of:

1. understanding the basic principles of evolutionary biology on a systems level,
2. transferring of this knowledge to the technical domain (evolutionary algorithms),
3. applying evolutionary algorithms to hard optimization problems,
4. gaining insight into the potentials and challenges of interdisciplinary research (natural and engineering/computer science).

3 Recommended prerequisites for participation
Introductory courses mathematics. Basic computer skills.

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc iST, MSc WI-ETiT, MSc iCE, MSc EPE, MSc CE, MSc Informatik, Biotechnik

8 Grade bonus compliant to §25 (2)

9 References
• D.J. Futuyama: Evolutionary Biology. W. Henning, Genetik, Springer Verlag
• I. Rechenberg: Evolutionsstrategie ‘94
• H.-P. Schwefel: Evolution and Optimum Seeking

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2050-vl</td>
<td>Evolutionary Systems - From Biology to Technology</td>
<td>Prof. Dr.-Ing. Jürgen Adamy, Prof. Dr. rer. nat. Bernhard Sendhoff</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Computer Vision in Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2090</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

1 **Teaching content**

A Basics
- Scene Representation 2D and 3D Geometry
- Image Acquisition
 - Geometric Projections, Camera Calibration
- Objective and Illumination
- Discrete 2D signals
 - Separability, Sampling
 - Transformation, Interpolation
 - Convolution, Correlation
 - Discrete Fourier Transformation

B Basics of Image Analysis
- Filtering
 - Basics 2D Filter Design
 - Linear Filtering
 - Nonlinear Filtering
- Image Decompositions
 - Multi-scale Representation
 - Pyramids
 - Filter Banks
- Image Features
 - Structure
 - Moments, Histograms

2 **Learning objectives**
After successful completion, the module teaches mathematical basics needed to solve computer vision problems in the field of engineering. The focus is on methods that are relevant for measuring and control tasks. Applications range from visual quality inspection, visual robotics, photogrammetry, visual odometry up to visually guided driver assistance etc.

The students should obtain a good understanding for the relations between the three-dimensional world and its two-dimensional projection onto the image plane of a camera. They also should learn about methods that exist to infer knowledge from the world given image data. They should develop some feeling for the different kinds of problems that arise in computer vision and how to choose an efficient solution in terms of algorithms.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)

The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 10 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture.

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
• Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc IST, MSc CE, MSc IST

8 Grade bonus compliant to §25 (2)

9 References
References / Textbooks: Lecture slides, exercise sheets and matlab-code.
Further reading

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2090-vl</td>
<td>Computer Vision in Engineering</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Thomas Guthier, Prof. Dr.-Ing. Jürgen Adamy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructor:
Dr.-Ing. Thomas Guthier, Prof. Dr.-Ing. Jürgen Adamy

Type:
Lecture

SWS:
2
Module name
Machine Learning and Deep Learning for Automation Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2100</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Teaching content
- Concepts of machine learning
- Linear methods
- Support vector machines
- Trees and ensembles
- Training and assessment
- Unsupervised learning
- Neural networks and deep learning
- Convolutional neuronal networks (CNNs)
- CNN applications
- Recurrent neural networks (RNNs)

2 Learning objectives
Upon completion of the module, students will have a broad and practical view on the field of machine learning. First, the most relevant algorithm classes of supervised and unsupervised learning are discussed. After that, the course addresses deep neural networks, which enable many of today's applications in image and signal processing. The fundamental characteristics of all algorithms are compiled and demonstrated by programming examples. Students will be able to assess the methods and apply them to practical tasks.

3 Recommended prerequisites for participation
Fundamental knowledge in linear algebra and statistics
Preferred: Lecture “Fuzzy logic, neural networks and evolutionary algorithms”

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 7 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
• A. Géron: Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow. 2. Aufl., O'Reilly, 2019

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2100-vl</td>
<td>Machine Learning and Deep Learning for Automation Systems</td>
<td>Dr.-Ing. Michael Vogt, Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Automated Driving

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2110</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Teaching content

- History of Automated Driving
- Terminology and Paths towards Automated Driving
- Architectures, Building Blocks, and Components
- Perception & Environment Models
- Data Fusion & State Estimation
 - Deep Dive: Target Tracking & Traffic Participant Fusion
 - Deep Dive: Grid Fusion & Free Space Estimation
 - Deep Dive: Road Model Fusion
- Localization, Digital Maps, and Vehicle-To-X Communication
- Situation Understanding, Prediction, and Criticality Assessment
 - Deep Dive: Probabilistic Driving Maneuver Detection
- Behavior & Trajectory Planning, Decision Making
- Automated Driving Software Development & Test
- Open Challenges & State-of-the-Art Research Topics

2 Learning objectives
After visiting the lecture, the student
- is familiar with the history and terminology of automated driving systems,
- knows important architectures, building blocks, and components of automated vehicles,
- understands different perception, environment model, and data fusion approaches,
- has an idea about relevant methods (e.g. Bayesian Inference & Probabilistic Graphical Models, State Estimation, Deep Learning, Dempster-Shafer Theory) and knows how they can be beneficially applied in different of automated driving areas (e.g. detection, target tracking & traffic participant fusion, grid fusion, road model fusion, localization),
- is familiar with the challenges of situation understanding, prediction, and criticality assessment and knows exemplary methods to tackle the problem,
- is aware of exemplary behavior & trajectory planning approaches,
- knows best practices about automated driving software development & test (e.g. continuous integration, verification & validation, test-driven development, key performance indicators), and
- is familiar with open challenges and research topics.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc (WI-) etit, MSc MEC, MSc iCE, MSc CE

8 Grade bonus compliant to §25 (2)

9 References
Own lecture slides are distributed in advance of any lecture. For more detailed insights into the topic area, the following books can be recommended:

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2110-vl</td>
<td>Automated Driving</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Dr.-Ing. Matthias Schreier, Prof. Dr.-Ing. Jürgen Adamy
Module name
Optimization in Multi-Agent Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2130</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
<td>English</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

1 Teaching content

Part I: Classical theory of unconstrained and constrained optimization:
- useful facts from analysis (differentiable functions, gradients, Hessian matrices, convex functions)
- necessary and sufficient conditions of extremum
- unconstrained optimization problem: existence, uniqueness, and stability of solution, gradient descent in convex optimization, its convergence and convergence rate
- Karush-Kuhn-Tucker condition
- optimization subjected to convex simple constraints, gradient projection method and its convergence properties
- optimization subjected to inequality constraints, primal-dual approach, Lagrangian, Arrow-Hurwicz-Uzawa iterative procedure

Part II: Optimization in multi-agent systems: Distributed (cooperative) optimization
- consensus in multi-agent systems, motivating examples
- communication protocols: gossip, weight-balanced communication
- consensus algorithm and its convergence (with the proof for weight-balanced communication)
- distributed optimization problems in multi-agent systems, motivating examples
- gradient-based procedure with weight-balanced communication and its convergence
- constrained distributed optimization (motivating examples, projected gradient-based procedure with weight-balanced communication and its convergence, discussion on the primal-dual approach)
- state of the art (convergence rate discussion, unbalanced communication, modern applications and their challenges)

Part III: Optimization in multi-agent systems: Game-theoretic (non-cooperative) optimization
- general game formulation, examples
- Nash equilibrium concept
- discrete action games, existence of a mixed-strategy Nash equilibrium
- continuous action games (continuous action games with convex cost functions, examples)
- variational inequalities, game mappings, and their connection to Nash equilibria problems in convex games
- existence and uniqueness of Nash equilibrium in convex games
- gradient methods in convex games (convergence in the case of games with strongly monotone mappings, non-convergence in the case of games with purely monotone mappings, regularized algorithms and their convergence)
- state of the art (convergence rate discussion, information settings in the system: communication- and payoff-based methods, modern applications and their challenges)

2 Learning objectives
Firstly, students refresh the knowledge on the classical results in convex optimization. Next, students deal with two main types of optimization problems in multi-agent systems: cooperative and non-cooperative optimization. Some practical examples are demonstrated. Students learn how to solve cooperative optimization problems by mean of consensus-type communication-based algorithms in the networked multi-agent systems. Moreover, they get insights in the modern applications and current challenges of cooperative optimization. In the case when each agent in a multi-agent system follows the goal to optimize its own objective a so-called non-cooperative game-theoretic optimization problem is formulated in the system. Students are able to formulate this problem, namely to define a game with its main component and solution concepts (action sets, individual cost functions, Nash equilibria). Further the focus is on continuous action convex games. To find a solution (a Nash equilibrium in a given game), students use the connection between Nash equilibria in games and solutions of the corresponding variational inequalities. Furthermore, students are able to investigate the properties of the game (strongly/strictly monotone, merely monotone game) to apply an appropriate optimization procedure (gradient-based or regularized one) to achieve a solution. Finally, students get insights in different settings of information in the game-theoretic optimization (where only partial information is available to each agent) and know approaches that can be applied in each case.

3 Recommended prerequisites for participation
Mathematics I, II, III

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc etit, MSc iCE, BSc/Msc iST, MSc WI-etit

8 Grade bonus compliant to §25 (2)

9 References
2. F. Facchinei J.-S. Pang "Finite-Dimensional Variational Inequalities and Complementarity Problems"

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2130-vl</td>
<td>Optimization in Multi-Agent Systems</td>
<td>Dr. rer. nat. Tatiana Tatarenko, Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-ad-2130-ue</td>
<td>Optimization in Multi-Agent Systems</td>
<td>Dr. rer. nat. Tatiana Tatarenko, Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Didactics for Engineers

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2300</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jürgen Adamy

1 Teaching content
What is didactics? What is methodology? Various didactic models; German educations system in professional training (Duales System); objectivism and subjectivism; grading; technol-ogy didactics

2 Learning objectives
Students are able to impart knowledge.
A student is, after successful completion of this module, able to understand

1. the difference between didactics and methodology,
2. which didactic models exist,
3. the german educations system in professional training,
4. what important aspects of grading exist.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Pass module final exam

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc/MSc ETiT, MEC, iST, MedTec, Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
slide copies, record, current literature (list will be provided in lecture)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2300-vl</td>
<td>Didactics for Engineers</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Jürgen Adamy
Module name

Accelerator Physics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2010</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language

German

Module owner

Prof. Dr. Oliver Boine-Frankenheim

1. **Teaching content**
 Beam dynamics in linear- and circular accelerators, working principles of different accelerator types and of accelerator components, measurement of beam properties, high-intensity effects and beam current limits.

2. **Learning objectives**
 The students will learn the working principles of modern accelerators. The design of accelerator magnets and radio-frequency cavities will discussed. The mathematical foundations of beam dynamics in linear and circular accelerators will be introduced. Finally the origin of beam current limitations will be explained.

3. **Recommended prerequisites for participation**
 BSc in ETiT or Physics

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Oral examination, Weighting: 100 %)

7. **Usability of the module**
 MSc ETiT, MSc Physics

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Lecture notes, transparencies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2010-vl</td>
<td>Accelerator Physics</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor:

Prof. Dr. Oliver Boine-Frankenheim, Prof. Dr. rer. nat. Joachim Enders
Module name
Plasma Physics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2020</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. Oliver Boine-Frankenheim

1 Teaching content
The lecture will cover the following topics:

2 Learning objectives
The fundamental properties of plasmas, waves in plasmas as well as the interaction of electromagnetic fields with plasmas should be worked out and understood by the students during the course of this lecture.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Physik

8 Grade bonus compliant to §25 (2)

9 References
The transparencies can be downloaded from the TUCaN site.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2020-vl</td>
<td>Plasma Physics</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Oliver Boine-Frankenheim</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

157
Module name
Applied Superconductivity

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. Oliver Boine-Frankenheim

1 Teaching content

• Basics and modelling of electrical conductivity at DC and RF
• Kamerligh-Onnes experiment, Meissner effect, London equations
• Superconductor state diagram (phase diagram)
• Introduction to Ginzburg-Landau theory (if necessary also: introduction to basic quantum mechanics)
• Typ I / II Superconductor, Flux quantization, Flux vortices
• Superconducting cables
• Superconductor magnetization, Hysteresis, Bean's model
• Cooper pairs (briefly: findings of the BCS theory)
• AC superconductivity, two fluid model, RF cavities
• Cooper pair tunneling, Josephson junctions, SQUIDs
• Applications: Magnets in accelerator and medical technology, precision field and current measurements, superconducting motors, generators, and transformers
• Experimental demonstration of high temperature superconductors

2 Learning objectives
The students obtain a phenomenological understanding of superconductivity, which enables them to apply superconductors in engineering practice. Starting from Maxwellian electrodynamics, superconductors are introduced as perfect conductors at zero frequency. Both their DC and AC properties are discussed. Theory shall be reduced as much as possible. Quantum mechanics is not a requirement for the course, however, simplified quantum mechanical models will be introduced. The focus of the lecture is put on applications, e.g. magnet technology or precision metrology.

3 Recommended prerequisites for participation
Electrodynamics (Maxwell's equations)

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc W1-ETiT, MSc iCE, BSc/MSc CE

8 Grade bonus compliant to §25 (2)

9 References

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-bf-2030-vl</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
<tr>
<td>Prof. Dr. Oliver Boine-Frankenheim, Dr.-Ing. Uwe Niedermayer</td>
</tr>
</tbody>
</table>
Module name
Numerical Methods of Accelerator Physics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2050</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. Oliver Boine-Frankenheim

1 Teaching content
- Illustration of accuracy requirements on numerical methods using simple examples from accelerator physics
- Methods for numerical field computation of accelerating cavities and magnets
- Stability analysis and eigenvalue problems in accelerator physics
- Methods for particle tracking in electromagnetic fields
- Techniques for sampling beam distribution functions
- Methods for selfconsistent numerical integration of a beam distribution function in electromagnetic fields
- Surrogate modelling for control room applications
- Interactive (python) notebooks and example scripts for every discussed method and application

2 Learning objectives
After successful completion of the module, the students understand basic models of accelerator physics and suitable procedures for their numerical solution and can apply them.

3 Recommended prerequisites for participation
BSc in etit or Physics

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc etit, MSc MedTec, MSc Physik

8 Grade bonus compliant to §25 (2)

9 References
Lecture slides and material including example (python) scripts will be available for download. Further literature references will be given over the course of the lectures.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bf-2050-vl</td>
<td>Numerical Methods of Accelerator Physics</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. Oliver Boine-Frankenheim, Dr. Adrian Oeftiger
Module name
Energy Converters - CAD and System Dynamics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2010</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
Design of cage-rotor and wound-rotor induction machines: Calculation of forces, torque, losses, efficiency, cooling and temperature rise. Transient machine performance of converter-fed dc machines and line-fed and inverter-fed ac machines. Theory is illustrated by examples: Sudden short circuit, load step, run up. For control design transfer functions of machines are derived. In the exercise lessons demonstration examples of power transformer and induction motor design are given. The students design one induction machine in small groups by themselves. Transient performance calculation is trained by using Laplace-Transformation and MATLAB.

2 Learning objectives
With active collaboration during lectures by asking questions related to those parts, which have not been completely understood by you, as well as by independent solving of examples ahead of the tutorial (not as late as during preparation for examination) you should be able to:

1. do and explain the electromagnetic design of an induction machine both analytically and with use of computer program,
2. understand and predict the thermal performance of electrical drives in a simplified way,
3. calculate the instationary performance of separately excited DC drives
4. to predict the dynamical performance of AC polyphase machines with space vector theory and use the MATLAB/Simulink package for this purpose.

3 Recommended prerequisites for participation
Bachelor of Science in Electrical Engineering, Power Engineering or similar

4 Form of examination
Module exam:
• Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc EPE

8 Grade bonus compliant to §25 (2)
Grade improvement is achieved by solving voluntary additional assignments due weekly in writing during the lecture period. The maximum grade improvement is 1.0 grade. Actual grade improvement is proportional to the percentage of additional assignments correctly completed. Grade improvement does not affect passing.

9 References
Detailed textbook and collection of exercises; Complete set of PowerPoint presentation
Vas, P.: Vector control of ac machines, Oxford Univ. Press, 1990

| Courses |
|-----------------|-----------------|-----------------|
| Course Nr. | Course name | Type | SWS |
| 18-bi-2010-vl | Energy Converters - CAD and System Dynamics | Lecture | 3 |
| Instructor | Prof. Dr. techn. Dr.h.c. Andreas Binder | Type | SWS |
| 18-bi-2010-ue | Energy Converters - CAD and System Dynamics | Practice | 2 |
| Instructor | Prof. Dr. techn. Dr.h.c. Andreas Binder | Type | SWS |

162
Module name
Large Generators and High Power Drives

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
Design of large electric generators: Special cooling methods with air, hydrogen and water, loss evaluation, especially eddy current losses, and measures to reduce the additional losses. Design of big hydrogenerators up to 800 MVA and turbo generators up to 2000 MVA with desing examples. Application of power electronics in large variable speed drives with synchronous motors: Synchronous converter and cyclo-converter. Numerous photographs to illustrate applications, excursion with students to special firms or plants.

2 Learning objectives
Expert knowledge in design of generators, large drives, their cooling systems and operational performance is acquired.

3 Recommended prerequisites for participation
Physics, Electrical Machines and Drives, Electrical Power Engineering

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc EPE, MSc ETIT, MSc MEC, MSc WI-ETIT

8 Grade bonus compliant to §25 (2)

9 References
Detailed textbook with calculated examples; Vas, P.: Parameter estimation, condition monitoring, and diagnosis of electrical machines, Clarendon Press, 1993

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2020-vl</td>
<td>Large Generators and High Power Drives</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr. Georg Traxler-Samek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2020-ue</td>
<td>Large Generators and High Power Drives</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr. Georg Traxler-Samek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 **Teaching content**
For the wide field of the drive technology at low and medium power range from 1 kW up to about 500 kW...1 MW the conventional drives and the current trends of developments are explained to the students. Grid operated and inverter-fed induction drives, permanent-magnet synchronous drives with and without damper cage ("brushless dc drives"), synchronous and switched reluctance drives and permanent magnet and electrically excited DC servo drives are covered. As a "newcomer" in the electrical machines field, the transversal flux machines and modular synchronous motors are introduced.

2 **Learning objectives**
For the students who are interested in the fields of design, operation or development of electrical drives in their future career, the latest knowledge about
- modern computational methods (e.g. finite elements),
- advanced materials (e.g. high energy magnets, ceramic bearings),
- innovative drive concepts (e.g. transversal flux machines) and
- measurement and experiment techniques are imparted.

3 **Recommended prerequisites for participation**
Completed Bachelor of Electrical Engineering or equivalent degrees

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 **Usability of the module**
MSc ETiT, MSc MEC, not MSc EPE

8 **Grade bonus compliant to §25 (2)**

9 **References**
A detailed script is available for the lecture. In the tutorials design of PM machines, switched reluctance drives and inverter-fed induction motors are explained.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2030-vl</td>
<td>Motor Development for Electrical Drive Systems</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Dr.-Ing. Andreas Jöckel</td>
<td>Lecture</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-bi-2030-ue</td>
<td>Motor Development for Electrical Drive Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Dr.-Ing. Andreas Jöckel</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
New Technologies of Electrical Energy Converters and Actuators

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2040</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
Goal: The application of new technologies, i.e. super conduction, magnetic levitation techniques and magneto-hydrodynamic converter principles, are introduced to the students. The physical operation mode in principle, implemented prototypes and the current state of the development are described in detail.

Content:
Application of the superconductors for electrical energy converters:
• rotating electrical machines (motors and generators),
• solenoid coils for the fusion research,
• locomotive- and railway transformers,
• magnetic bearings.
Active magnetic bearings (“magnetic levitation”):
• basics of the magnetic levitation technique,
• magnetic bearings for high speed drives in kW to MW range,
• application for high-speed trains with linear drives.
Magneto-hydrodynamic energy conversion:
• physical principle,
• state of the art and perspectives.
Fusion research:
• magnetic field arrangements for contactless plasma inclusion,
• state of the current research.

2 Learning objectives
Basic knowledge in application of superconductivity in energy systems is understood as well as magnetic levitation, magneto-hydrodynamics and fusion technology.

3 Recommended prerequisites for participation
Physics, Electrical Machines and Drives, Electrical Power Engineering

4 Form of examination
Module exam:
• Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc EPE, MSc ETiT, MSc MEC, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2040-vl</td>
<td>New Technologies of Electrical Energy Converters and Actuators</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-bi-2040-ue</td>
<td>New Technologies of Electrical Energy Converters and Actuators</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Railway Vehicle Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2050</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
From the comprehensive and interdisciplinary domain of the railway technology (vehicle technology, signal and safety technology, construction engineering and railway operating technology) the lecture picks out the domain of the automotive engineering with the emphasis of the mechanical part. It offers an interrelated introduction into selected chapters of the rail vehicle engineering with special emphasis in the railway-specific technical solutions and procedures. The lecture is divided into 7 chapters, whereby four chapters the theoretical basic topics cover and three chapters the fundamental components of the rail vehicle present.
In a one-day excursion, it is possible to gain insights into the production of modern rail vehicles. Participation is voluntary.

2 Learning objectives
Basic understanding of mechanical parts of railways and their components.

3 Recommended prerequisites for participation
Bachelor in Electrical Engineering, Mechatronics or Mechanical Engineering

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
In general, the examination takes place in form of a written exam (duration: 90 minutes). If up to 20 students register in semesters in which the lecture does not take place, there will be an oral examination (duration: 30 min.). The type of examination will be announced within one working week after the end of the examination registration phase.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc EPE, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2050-vl</td>
<td>Railway Vehicle Engineering</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Electrothermal Processes

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2070</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
First the technical and economic importance of electrothermal processes will be pointed out. In addition to that, advantages, characteristics and applications of electroheat processes will be shown by typical examples. The second part of the lecture is about thermotechnical and electrotechnical basics, which are necessary to understand electrothermal processes. The main part of the lecture deals with examples of electrothermal processes, like induction heating (focus), conductive and dielectric heating as well as indirect resistance heating. Examples from industry are shown, and it will be explained how the applications are designed with numerical simulation tools (FEM-based) and analytical methods (calculation of electromagnetic fields). At the end of the lecture special processes like laser applications will be shown.

2 Learning objectives
Understanding of design and calculation of electrothermal processes and their applications

3 Recommended prerequisites for participation
B.Sc. Electrical Engineering or Mechatronics

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc EPE, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2070-vl</td>
<td>Electrothermal Processes</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder, Dr.-Ing. Jörg Neumeyer
Module name
Electric Railways

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2140</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
- Mechanics of traction
- Electrical part of traction vehicles
- Converter and motors for electrical traction
- Monitoring systems
- Comparison of different power supply systems
- DC- and AC- systems for light- and heavy rail
- Problems of earthing and earth return currents
- Sub stations, converters, power plants

2 Learning objectives
Comprehension of the basic concepts of electric traction vehicles and power supply for electric railways

3 Recommended prerequisites for participation
Basic knowledge in electrical machines and drives

4 Form of examination
Module exam:
 • Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2140-vl</td>
<td>Electric Railways</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Electric Drives for Cars

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2150</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
This course introduces the students to the different design aspects of electric drives used in automotive applications, comprising both high power density high speed traction and small mass produced auxiliary drives. Since the target audience comprises students from different degree programmes, the course first reviews basics of electromagnetic power conversion principles and design principles of PM based machines. The discussion of the electric drives themselves comprises the various facets of their design as part of a complex system, such as operating requirements, configurations, material choices, parasitic effects and their mitigation, electric and thermal stress, as well as manufacturing related questions, notably as they affect the design of the mass produced auxiliary drives.

2 Learning objectives
At the end of the course, the students will know about design principles of PM based machines, electric drives: topologies, operating areas, dynamic performance and configuration of traction drives for hybrid cars and electric vehicles as they apply to electric drives for cars. In addition to traction drives, they will also be familiar with auxiliary drives used in cars. They will understand the parasitic effects of inverter induced bearing currents, the insulation material used for the electric winding and the winding stress at inverter supply. They will be familiar with the different cooling principles and thermal modelling, as well as the thermal aspects of the integration into the car. They will also know about the main failure modes that may occur with electric drives used for cars, the different lamination sheets used and their manufacturing.

3 Recommended prerequisites for participation
Completed Bachelor of Electrical Engineering or equivalent degree.

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Pass module final exam

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2150-vl</td>
<td>Electric drives for cars</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr. Annette Mütze
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2150-ue</td>
<td>Electric drives for cars</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Prof. Dr. Annette Mütze</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Module name</td>
<td>Microsystem Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-bu-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>75 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Ph.D. Thomas Burg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Teaching content**
 - Introduction and definitions to micro system technology; definitions, basic aspects of materials in micro system technology, basic principles of micro fabrication technologies, functional elements of microsystems, micro actuators, micro fluidic systems, micro sensors, integrated sensor-actuator systems, trends, economic aspects.

2. **Learning objectives**
 - To explain the structure, function and fabrication processes of microsystems, including micro sensors, micro actuators, micro fluidic and micro-optic components, to explain fundamentals of material properties, to calculate simple microsystems.

3. **Recommended prerequisites for participation**
 - BSc

4. **Form of examination**
 - Module exam:
 - Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5. **Prerequisite for the award of credit points**
 - Passing the final module examination

6. **Grading**
 - Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**
 - MSc ETiT, MSc MEC, MSc WI-ETiT, MSc Medizintechnik

8. **Grade bonus compliant to §25 (2)**

9. **References**
 - Script for lecture: Mikrosystemtechnik

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bu-2010-vl</td>
<td>Microsystem Technology</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Ph.D. Thomas Burg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>18-bu-2010-ue</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Ph.D. Thomas Burg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Finite Element Method

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2010</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Every 2. Semester</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content

- Fundamentals of the Finite Element Method: weighted residuals, projection methods, variational formulations, weak formulations; Finite elements: definitions, classification, first order Whitney element complex, higher order elements; convergence and precision;
- Implementation details: data structures, matrix assembly, postprocessing of the solution;
- FEM application to electromagnetic problems: electrostatics, magnetostatics, stationary currents, quasistatics, wave propagation.

2 Learning objectives
Students will master the theoretical basics of finite element methods. They understand details regarding the implementation of the method for stationary and quasistationary fields. They can apply the finite element method in electrical engineering.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT

8 Grade bonus compliant to §25 (2)

9 References

- Lecture slides.
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2010-vl</td>
<td>Finite Element Method</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. Irina Munteanu</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Computational Electromagnetics and Applications III

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2020</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

Teaching content

Learning objectives
Students learn the theoretical basis of advanced simulation techniques for time dependent electromagnetic fields. Furthermore, the lecture mediates practical skills for the implementation, analysis and application of simulation codes for common problems of Electrical Engineering.

Recommended prerequisites for participation

Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

Usability of the module
MSc ETIT

Grade bonus compliant to §25 (2)

References
Lecture slides, matlab scripts, various literature sources

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2020-vl</td>
<td>Computational Electromagnetics and Applications III</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Privatdozent Dr. rer. nat. Erion Gjonaj</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
X-Ray Free Electron Lasers

Module nr.
18-dg-2110

Credit points
4 CP

Workload
120 h

Self-study
75 h

Module duration
1 Term

Module cycle
Summer term

Language
English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content
Optical lasers cannot produce x-rays of photons and high-gain free-electron lasers (FELs) are being developed as extremely bright sources of x-ray radiation. The peak brightness of these facilities exceeds that of other sources by more than ten orders of magnitude. FELs produce hard x-ray beams with very high transverse coherence and femtosecond pulse length. These characteristics open up new areas of x-ray science, such as femtosecond time-domain spectroscopy etc.

In this course an overview of the basics of FEL physics is given. We start our discussion from basics principles of particle acceleration and synchrotron radiation, consider the electron motion in an undulator and explain the most important steps to derive the high-gain FEL model. The performance of the high-gain FEL in the linear and the non-linear regimes is considered.

The self-amplified spontaneous emission (SASE) option is introduced and characterized. We discuss new schemes for enhancing of the FEL performance. The theoretical considerations in the course are partially illustrated by the results of numerical simulations and experiments. The numerical algorithms are shortly discussed.

2 Learning objectives
The student should understand the basics of physics of free electron lasers.

3 Recommended prerequisites for participation
Maxwell’s equations, integral and differential calculus, vector analysis

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc iCE, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
The foils of the lecture will be available at: http://www.desy.de/zagor/lecturesFEL
• K. Wille, Physik der Teilchenbeschleuniger und Synchrotron- strahlungsquellen, Teuner Verlag, 1996.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2110-vl</td>
<td>X-Ray Free Electron Lasers</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, PD Dr. Igor Zagorodnov</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>18-dg-2110-ue</td>
<td>X-Ray Free Electron Lasers</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, PD Dr. Igor Zagorodnov</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Technical Electrodynamics for iCE

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2150</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content

2. Numerical solution of electromagnetic field problems - Space discretization with surface and volume meshes; Main numerical algorithms for discrete local approximation of Maxwell's equations; Finite Integration Technique; Time and frequency domain solution methods; Stability, convergence.
3. Practical aspects of electromagnetic simulation - Introduction to accuracy issues; Preprocessing: 3D geometry, computational domain, boundary conditions, electromagnetic field sources; Time vs frequency domain; Postprocessing; Network parameter extraction.
4. Application to typical high-frequency devices: Waveguide / resonator structures, planar structures

2 Learning objectives
Students will understand fundamental principles of wave propagation, guided waves and antennas. They will be able to model microwave components with simulation software tools. They will have experience with state of the art software tools for electromagnetic fields.

3 Recommended prerequisites for participation
Fundamentals of electrodynamics (Grundlagen der Elektrodynamik)

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
Course manuscript
Additional References:

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2150-vl</td>
<td>Technical Electrodynamics for iCE</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. Irina Munteanu, M.Sc. Armin Galetzka</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-dg-2150-ue</td>
<td>Technical Electrodynamics for iCE</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. Irina Munteanu, M.Sc. Armin Galetzka</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Simulation of Beam Dynamics and Electromagnetic Fields in Accelerators

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2170</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content
The lecture provides an overview of the numerical modeling of charged particles and electromagnetic fields in accelerators. The focus is on the simulation of collective effects caused by space charge interaction and/or by electromagnetic wake fields. The lecture is aimed at master's students specializing in various fields of electrical engineering and physics. These include electromagnetic field theory, computational engineering, and computational physics and accelerator physics. Contents of the lecture are:

- Particle tracking methods: types of particle methods, relationship to Vlasov model
- Integration of equations of motion: Boris pusher, numerical stability, symplecticity
- Electrostatic PIC: Green functions, FFT and FD methods, charge deposition, field interpolation, spline shape functions
- DC-gun simulation: space charge limited emission - Tracking in the Lorenz frame - Map based tracking methods
- Electromagnetic PIC: FDTD method, charge-conserving current deposition, Boris scheme, low dispersion methods
- Wakefields and impedances: simulation of ultra-relativistic beams - Plasma Wakefield Acceleration - Parallel computing

2 Learning objectives
Upon completion of the module, students will have gained an overview of the numerical modeling of charged particles and electromagnetic fields in accelerators. They have been given a solid foundation in the field of modern simulation techniques in accelerator technology. The students have gained insight into the different simulation tools and know their advantages and disadvantages, as well as the corresponding areas of application.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Physik

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2170-vl</td>
<td>Simulation of beam dynamics and electromagnetic fields in accelerators</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. Oliver Boine-Frankenheim, Privatdozent Dr. rer. nat. Erion Gjonaj</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Virtual Prototyping of Electric Drives

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2190</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

Teaching content
- Basics of electric machine theory
- Classification of electric machine types
- Basic principles of electric machine modelling and simulation
- Embedding material models
- Geometry approximation and field modelling
- Field-circuit coupling and transient simulation
- Finite elements for multiphysics
- Optimization methods
- Simulation environments
- Laboratory measurements on electric machines

Learning objectives
The students get acquainted with modern techniques for modelling, simulating and optimizing electric machines. They know the strengths and weaknesses of available design tools and are able to critically assess simulation results. They consider electromagnetic fields and their coupling to structural, thermo- and fluid dynamics. They are able to specify the virtual prototyping problem, choose the appropriate simulation tools, set up the models, and eventually solve the problems, including application of modern optimization techniques.

Recommended prerequisites for participation
Basics of field and circuit simulation, electromagnetic field theory, basics of partial differential equations and linear algebra.

Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Default RS)
The grade consists of a report and a presentation followed by a question and answer session.

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

Usability of the module
MSc eit, BSc/Msc iST, MSc MEC, MSc CE

Grade bonus compliant to §25 (2)

References

183
- Lecture slides.

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2190-vl</td>
<td>Virtual Prototyping of Electric Drives - Lecture</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. Dr.h.c. Manfred Kaltenbacher, Prof. Dr. rer. nat. Sebastian Schöps, Prof. Dr. Annette Mütze</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-dg-2190-pr</td>
<td>Virtual Prototyping of Electric Drives - Laboratory</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. Dr.h.c. Manfred Kaltenbacher, Prof. Dr. rer. nat. Sebastian Schöps, Prof. Dr. Annette Mütze</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Optimal control approaches, like model predictive control, are one of the most versatile, flexible and most often used modern control approaches by now. Fields of applications span from robotics, autonomous driving, aerospace systems, energy systems, chemical processes, biotechnology, up to biomedicine. The lecture provides an introduction to fundamentals of optimal control, focusing on the method and theoretical base. It furthermore provides an outreach towards efficient numerical solution strategies and model predictive control.

The following topics are covered during the lecture:

- Application examples from various fields such as mechatronics, robotics, electrical systems, chemical processes, economics, as well as aeronautics
- Review of nonlinear programming
- Dynamic programming, the principle of optimality, Hamilton-Jacobi-Bellman equation
- Pontryagin maximum principle
- Infinite and finite-horizon optimal control, LQ optimal control
- Numerical solution approaches for optimal control problems
- Introduction to model predictive control (MPC)

Learning objectives
The students learn how to formulate, analyze, and solve optimal control problems. The course focuses on key ideas and concepts of optimal control. The students learn standard methods for computing and implementing optimal control strategies.

Recommended prerequisites for participation
Basic lecture of control engineering and system theory with a focus on state space formulations

Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
MSc etit
MSc MEC
MSc Wi-etit
Open for other departments and Study Programmes

Grade bonus compliant to §25 (2)

References
Lecture notes and slides will be provided in the elearning system.

Further recommended literature:

Optimal Control

Optimization

Model Predictive Control

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2010-vl</td>
<td>Optimal and Predictive Control</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-fi-2010-ue</td>
<td>Optimal and Predictive Control</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Control of Distributed Cyber-Physical Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content
Cyber-physical systems: Aspects and fundamentals of interconnected, and cyber-physical systems, basic control concepts (stabilizability, controllability, observability, detectability, reachability, resilience, control & estimation of multivariable systems...), systems and graphs, networked control systems (control & estimation over communication networks, control subject to delays/to information loss, security, safety, and privacy), control of interconnected/multi-agent systems (centralized, decentralized & distributed control, consensus, synchronization), hierarchical control (fundamentals, optimization, time scale separation, hierarchical control concepts, optimization based control & real-time optimization)

2 Learning objectives
The students are familiar with the basic analysis and control methods for networked control systems, and interconnected systems, and their applications. They are able to model and analyse interconnected systems, and networked control systems subject to delays, communication loss. Furthermore, they are able to design basic centralized, decentralized, distributed, hierarchical controllers and estimators, as well as controllers to achieve consensus and synchronization control. They are familiar with the concept of time-scale separation for control and estimation.

3 Recommended prerequisites for participation
Basic concepts of control theory. Fundamentals of linear algebra, differential and difference equations.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
The examination takes place in form of a written exam (duration: 90 minutes). If less than 25 students register, the examination will be an oral examination (duration: 25 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit, MSc iCE, BSc/MSc iST, MSc MEC, MSc WI-etit

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2020-vl</td>
<td>Control of Distributed Cyber-Physical Systems</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-fi-2020-ue</td>
<td>Control of Distributed Cyber-Physical Systems</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Model Predictive Control and Machine Learning

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2040</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content
Lecture:
Introduction and basics of optimal control, Linear Quadratic Regulator (LQR) in discrete and continuous time, basics of model predictive control (cost functions, constraints, receding horizon), nominal model predictive control for linear systems, robust and stochastic model predictive control, model predictive control of nonlinear systems, combination of machine learning and model predictive control.

Group work:
In a group project, the students will apply the learned. The group project evolves a review of state of the art for the selected task, the selection of suitable model predictive control approach, and the implementation using python/Matlab. It includes a project report and is concluded by a project presentation.

2 Learning objectives
The students will understand the basics concepts of model predictive control. Furthermore, they are familiarized with machine learning approaches that can support model predictive controllers and possibly enhance the controller performance. This entails knowledge about theoretical questions such as stability in the nominal case, as well as extensions to the case of uncertain and disturbed systems. The students are enabled to design and implement model predictive controllers based on first principle/physical or data-based/machine learning based models. This entails the setup and design of the control structure as well as the tuning and identification of suitable parameters and cost functions of the controller.

3 Recommended prerequisites for participation
Basic concepts of control theory. Fundamentals of linear algebra, differential, and difference equations. Knowledge in Python and/or Matlab.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 25 students register, the examination will be an oral examination (duration: 25 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ett, BSc/MSc iST, MSc MEC, MSc WI-etit

8 Grade bonus compliant to §25 (2)
Yes. Possibility to improve the grade by a group work/exercise.

9 References

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2040-vl</td>
<td>Model Predictive Control and Machine Learning</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-fi-2040-ue</td>
<td>Model Predictive Control and Machine Learning</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Identification of Dynamic Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2090</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content

- Introduction into the determination of mathematical process models based on measured data
- Theoretical and experimental modeling of dynamic systems
- System identification using continuous time signals:
 - Aperiodic signals
 - Fourier analysis
 - Evaluation of characteristic values (stepresponses)
 - Periodic signals
 - Frequency response analysis
 - Correlation analysis
- System identification using discrete time signals:
 - Deterministic and stochastic signals
 - Basics in estimation theory
 - Correlation analysis
- Parameter estimation techniques:
 - Least-squares estimation
 - Model structure determination
 - Recursive estimation algorithms
- Kalman Filter and Extended Kalman Filter
- Numerical Methods
- Implementation under MatLab Numerous examples with real experimental data

2 Learning objectives
The students are taught the fundamental methods in signal and system analysis. Furthermore, the students master methods such as Fourier analysis, correlation analysis and parameter estimation methods. Based on this foundation, the students are able to assess and to apply the individual methods and can derive non-parametric as well as parametric models from measured data.

3 Recommended prerequisites for participation
Basics in the field of control engineering (e.g. lecture System Dynamics and Automatic Control Systems I)

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit, MSc MEC

8 Grade bonus compliant to §25 (2)
References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2090-vl</td>
<td>Identification of Dynamic Systems</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Findeisen, Dr. Ing. Eric Lenz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2090-ue</td>
<td>Identification of Dynamic Systems</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Rolf Findeisen, Dr. Ing. Eric Lenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module name</td>
<td>Basics of Biophotonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-fr-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>75 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German/English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. habil. Torsten Frosch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Teaching content</td>
<td>Review of the fundamentals of optics, laser technology, light-matter interaction, and spectroscopic systems, covering medical applications such as photodynamic therapy and optical heart rate measurement etc.; spectroscopy and imaging with linear optical processes: IR absorption, Raman spectroscopy, with applications e.g. in breath analysis, drug quality control, as well as detection of biomarkers; laser microscopy, e.g. wide-field microscopy, Raman microscopy and chemical imaging, fluorescence microscopy, with applications e.g. in neurostimulation research; spectroscopy and imaging with nonlinear optical processes: fundamentals of nonlinear optics, multiphoton fluorescence, e.g., with application for in vivo imaging of the brain, coherent nonlinear optical processes such as SHG and CARS, multimodal imaging, e.g. with potential application in intra-operative tumor imaging.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Learning objectives</td>
<td>Students get to know established and state of the art biophotonic systems in medical technology and understand the underlying concepts. They are familiar with linear and nonlinear optical processes of light-matter interaction and understand the principles of spectroscopy and microscopy based on them. With the help of the gained knowledge, the students will be able to evaluate and compare common biophotonic methods and instruments. Furthermore, they will be able to recommend appropriate techniques and methods for a particular application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Recommended prerequisites for participation</td>
<td>Physics for Electrical Engineering and Mathematics I (Electrical Engineering)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Form of examination</td>
<td>Module exam: • Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Prerequisite for the award of credit points</td>
<td>Passing the final module examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Grading</td>
<td>Module exam: • Module exam (Technical examination, Examination, Weighting: 100 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Usability of the module</td>
<td>MSc (WI-) etit, MSc MEC, MSc MedTec, BSc/MSc iST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Grade bonus compliant to §25 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 References</td>
<td>• Kramme, Medizintechnik - Chapter Biomedizinische Optik (Biophotonik), Springer • Gerd Keiser, Biophotonics: Concepts to Applications, Springer • Lorenzo Pavesi, Philippe M. Fauchet, Biophotonics, Springer • Jürgen Popp, Valery V. Tuchin, Arthur Chiou, Stefan H. Heinemann, Handbook of Biophotonics, Wiley-VCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fr-2010-vl</td>
<td>Basics of Biophotonics</td>
<td>Prof. Dr. habil. Torsten Frosch</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-fr-2010-ue</td>
<td>Basics of Biophotonics</td>
<td>Prof. Dr. habil. Torsten Frosch</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Fundamentals and Technology of Radiation Sources for Medical Applications

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gr-2010</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Christian Graeff

1 Teaching content
The course covers the following topics:
• Types of radiation
• Overview of radiation sources in medicine
• Basics of particle acceleration
• X-ray tubes
• Particle accelerators and applications in medicine
• Radionuclide production
• Irradiation devices and facilities in medicine

2 Learning objectives
The students know the types of radiation relevant to medicine, their properties and their generation. The simple X-ray tube as an introductory example is understood in its function. The basic principles of modern particle accelerators for direct or indirect irradiation are understood and the different types of accelerators for medicine can be distinguished. The generation processes of radionuclides and their application in facilities for irradiation are understood.

3 Recommended prerequisites for participation
18-kb-1040 Applications of Electrodynamics

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination is a written exam (duration: 120 min.). If it is foreseeable that fewer than 21 students will register, the examination will be oral (duration: 45 min.). The type of examination will be announced at the beginning of the course.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Medizintechnik

8 Grade bonus compliant to §25 (2)

9 References
• Strahlungsquellen für Technik und Medizin, Hanno Krieger, Springer (2014)

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gr-2010-vl</td>
<td>Fundamentals and technology of radiation sources for medical applications</td>
<td>Prof. Dr.-Ing. Christian Graeff</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-gr-2010-ue</td>
<td>Fundamentals and technology of radiation sources for medical applications</td>
<td>Prof. Dr.-Ing. Christian Graeff</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Ion Beam Therapy is a cutting edge tool to treat cancer. Ion beams offer unique properties to tailor the dose to deep-seated targets inside the human body, while sparing surrounding healthy tissue. Their finite range, sharp dose gradients and increase radiobiological efficacy offer the potential for improved treatment options, but also pose high demands on precision and further research to be optimally implemented in clinical practice.

This course addresses the following topics:

- Basics of physics and radiobiology of ion beams
- Typical ion beam therapy centers
- Production of ion beams for therapy
- Ion beam application: principles of beam scanning
- Ion beam monitors and detectors
- Dose calculation and treatment planning
- Image guidance
- Irradiation of moving organs
- Monitoring of beam application and range in the patient

This lectures handles both the user perspective as well as technical realization of real-time beam control and algorithms in treatment planning and application. Theoretical foundations will be accompanied by practical exercises, where students will learn to use public domain software for treatment planning for different applications in ion beam therapy and research.

Learning objectives

After successful completion of the module, students know the physical and radiobiological properties of ion beams that justify their use in cancer therapy. They can describe existing clinical facilities and understand their accelerators for ion beam production. The students learned methods to apply ion beams to patients, in particular beam scanning, including hardware and algorithms used in real-time therapy control. Using the program matrad, they can conduct basic treatment planning, evaluate treatment plans and judge their robustness in application. The students know advantages and challenges of ion beam therapy as well as strategies addressing relevant sources of uncertainty in their application.

Recommended prerequisites for participation

Radiation sources in Medicine

Form of examination

Module exam:

- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)

The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 20 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture

Prerequisite for the award of credit points

 Passing the final module examination

Grading

Module exam:

- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

Usability of the module

MSc MedTec
8 Grade bonus compliant to §25 (2)

9 References

- Schardt et al. ‘Heavy-ion tumor therapy: Physical and radiobiological benefits’, 2010; DOI: 10.1103/RevModPhys.82.383

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gr-2020-vl</td>
<td>Ion Beam Therapy</td>
<td>Prof. Dr.-Ing. Christian Graeff</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-gr-2020-ue</td>
<td>Ion Beam Therapy</td>
<td>Prof. Dr.-Ing. Christian Graeff</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Teaching content

Switch mode power supplies (insulating DC/DC-converters) Realistic behavior of power semiconductors: Basics of semiconductor physics; Behavior of diode, bipolar transistor, SCR, GTO, MOSFET and IGBT, Important circuits for switching real semiconductors with low losses Forced commutation of SCRs, Loss reducing snubbers, quasi- resonant circuits, resonant switching. Topologies and control strategies for multilevel converter Thermal design and thermo mechanical aging of power electronics systems

Learning objectives

After an active participation in the lecture, especially by asking all questions on topics which you did not fully understand as well by solving all exercises prior to the respective tutorial (i.e. not just shortly before the examination) you should be able to

1.) Explain und understand the cross sectional layers and the basic modes of operation for power semiconductors (diode, thyristor, GTO. Mosfet and IGBT). Describe the steady state and dynamic behavior of these devices.

2.) Identify the circuit diagrams for isolating DC/DC converters, especially for use in switched mode power supplies. Calculate the currents and voltages in these circuits using defined simplifications.

3.) Describe the functions of gate drive-circuits for ITGBTs.

4.) Calculate the thermal behavior and design the cooling equipment for a voltage source inverter equipped with IGBT modules.

5.) Describe the stress relieving circuits to reduce switching losses in IGBTs.

6.) Calculate the current and voltage characteristics in quasi-resonant and resonant circuits used in power electronics.

7.) Explain multilevel converters such as 3L-NPC and MMC

8.) Know the main concepts for cooling of power electronics incl. the ability to design a cooling concept and should know main aspects which influence lifetime

Recommended prerequisites for participation

BSc ETiT or equivalent, especially Power Electronics and Basics of Semiconductors

Form of examination

Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

Prerequisite for the award of credit points

Passing the final module examination

Grading

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module

MSc ETiT, MSc EPE, Wi-ETiT

Grade bonus compliant to §25 (2)

References
Script available in Moodle for download

Literature:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-2010-vl</td>
<td>Advanced Power Electronics</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-gt-2010-ue</td>
<td>Advanced Power Electronics</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Control of Drives

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-2020</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Gerd Griepentrog

1 Teaching content
- Control structures for drives; Design of controllers for drives; VSIs for drives; Space Vectors as basis of modelling AC-machines; Reference frames for description of AC-machines; Control oriented block diagram for DC-drive; Structure and design of the controllers;
- Control oriented block diagram for Permanent Magnet Synchronous Machine (PMSM); Control oriented block diagram for Induction machine (IM)
- Torque control for AC-machines using linear or switching controllers. Field Oriented Control and Direct Torque Control for PMSM and IM. Models and observers for rotor flux of IM
- Speed control, including oscillatory load. Resolver and Encoder. Problem of Motion control

2 Learning objectives
Upon successful completion of the module, students will be able to:

1. develop the control-oriented block diagrams for the DC-machine operating in base speed range as well as in field weakening range.
2. design the control loops for 1.) concerning the structure and the control parameters.
3. Understand and apply space vectors and master their application in different rotating frames of reference.
4. Develop the dynamic equations of the permanent exited synchronous machine and the induction machine and to simplify these equations by help of suitable rotating reference frames and represent these equations as non-linear control-oriented block diagram.
5. Design the control loops according to 4.) especially the field-oriented control concerning the structure of the control loops and the control parameters.
6. Understand the deduction of equations given in the literature for machine types, which are not discussed in this lecture, e.g. for the doubly fed induction machine.
7. Derive the models and the observers for the rotor flux for the induction machine in different frames of reference and to apprise the benefits and drawbacks of the different solutions.
8. Design the control loops for the super-imposed speed controls even for mechanically oscillating loads.

3 Recommended prerequisites for participation
BSc ETiT or equivalent, especially Control Theory and Electrical Machines / Drives

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc EPE, MSc MEC, Wi-ETiT

8 Grade bonus compliant to §25 (2)
References
Lecture notes, instructions for exercises are available in Moodle for download.

Literature:
- Mohan, Ned: “Electric Drives and Machines”
- De Doncker, Rik; et. al.: “Advanced Electrical Drives”
- Schröder, Dierk: “Elektrische Antriebe - Regelung von Antriebssystemen”
- Leonhard, W.: “Control of Electrical Drives”

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-2020-vl</td>
<td>Control of Drives</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-gt-2020-ue</td>
<td>Control of Drives</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog, M.Sc. Ivan Kliasheu</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Teaching content
Microcontroller and programmable logic devices are being used for a variety of control tasks for industrial and residential products and systems. For the control of drives and power electronics, those devices are used for the control of frequency converters or DC/DC converters.

In most of these applications, real time requirements have to be met. Simultaneously a communication interface has to be served.

The module will impart knowledge and expertise on how to realize successfully control task.

More in detail, the following content will be taught:

- Architecture of microcontroller
- Structure and function of FPGAs, tools and programming languages
- Typical peripheral components for microcontrollers
- Capture & Compare, PWM, A/D-converter
- I2C, SPI, CAN, Ethernet
- Programming of microcontrollers in C
- Software: real-time properties, interrupt handling, interrupt latency
- Control of inductive components
- Basic of circuit design for power electronics, Power-MOSFETS, IGBTs

Learning objectives
Students will be able to:

- Separate a digital control task into HW and SW parts
- Specify the HW-content in a HW description language and implement the SW by means of a microcontroller
- Evaluate the real-time capabilities of a program and to determine upper limits for the response time of the system
- Transfer the developed solution to the target system by means of a development kit and debug the software onto the target system.

Recommended prerequisites for participation
Basic knowledge in programming language C (syntax, operators, pointer)

Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
MSc MEC, MSc ETiT

Grade bonus compliant to §25 (2)

References
Script, Instruction for practical lab courses, ppt-Slides; either in hard-copy or for download; User Manuals of the used devices and development kits

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-gt-2040-vl</td>
</tr>
<tr>
<td>18-gt-2040-pr</td>
</tr>
</tbody>
</table>
Module name
Artificial Intelligence in Medicine

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christoph Hoog Antink

1 Teaching content
- Introduction, terms and delimitations
- Data acquisition and preprocessing
- Feature extraction and visualization methods
- Statistical fundamentals
- Classification methods
 - Linear Regression, Logistic Regression
 - Support Vector Machines
 - Decision Trees, Random Forest, XGBoost
 - Neural Networks
- Overfitting and underfitting with medical data
- Influence of unbalanced data sets
- Evaluation of algorithms
- "Explainable AI"
- Regulatory Requirements

2 Learning objectives
Students have a basic understanding of the terminology of Artificial Intelligence, especially in the medical context. They have learned how features can be extracted from medical data and visualized. The students have an overview of current procedures and know how they work. They are familiar with current application examples from various subfields of medical technology, e.g. signal processing, image processing, spectroscopy, gene sequencing, etc. Students understand the dangers of underfitting, overfitting, and imbalanced (e.g. related to gender ratio) data sets in a medical context. They are aware of the social and ethical responsibility of their future professional activities in relation to Fair AI. Students have an advanced understanding of algorithm evaluation, are familiar with the concept of "Explainable AI" and know the basic regulatory requirements for medical software. They are able to independently develop AI-based solutions to medical technology problems.

3 Recommended prerequisites for participation
18-zo-1030 Fundamentals of Signal Processing

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)

The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 21 students register, the examination will be an oral examination (duration: 20 min.).

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc MedTec, BSc/MSc iST, MSc MEC

8 Grade bonus compliant to §25 (2)
By participating in online tests, a bonus can be acquired for the exam. The following key applies "points achieved at the end of the semester" \(\rightarrow \) "grade improvement": 60\% \(\rightarrow \) 0.1; 65\% \(\rightarrow \) 0.2; 70\% \(\rightarrow \) 0.3; 75\% \(\rightarrow \) 0.4; \(\geq \) 80\% \(\rightarrow \) 0.5. The bonus is converted into raw points, i.e. a bonus of 0.5 corresponds to half the points of a whole grade step (e.g. 3.0 to 2.0). Exam B must be passed without a bonus to receive the bonus. The total score is the points achieved + bonus points and is rounded.

9 References

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-ha-2020-vl</td>
</tr>
<tr>
<td>18-ha-2020-ue</td>
</tr>
</tbody>
</table>
1 **Teaching content**
The module deals with synthesis steps on all abstraction layers below the register transfer level focusing on approaches suitable for FPGAs. At the logic level different types of minimization are explained (exact and heuristic two level minimizations, exact and heuristic multi level logic minimizations). The transition to the technology level is achieved by different decomposition and structural mapping techniques (FlowMap). Place&Route add geometric information to the technology mapped circuit. Analytical and heuristic placers are discussed (Simulated Annealing, Genetic Placers) and routing is illustrated through the PathFinder algorithm.

2 **Learning objectives**
After completion of the module, students are enabled to investigate synthesis approaches for low level synthesis tasks. They can evaluate these approaches regarding their time and space complexity, as well as regarding their applicability to specific implementation technologies. Students can apply these approaches to new architectures and technologies.

3 **Recommended prerequisites for participation**
Knowledge of hardware synthesis on the basis of at least one hardware description language is required (e.g. Reese/Thornton: Introduction to Logic Synthesis Using Verilog Hdl oder Brown/Vranesic: Fundamentals of Digital Logic with VHDL Design). The student should have basic knowledge of at least one object oriented programming language, preferably Java.

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 **Usability of the module**
MSc ETiT, MSc iCE, MSc iST

8 **Grade bonus compliant to §25 (2)**

9 **References**
A script of the lecture (in German) and English foils can be obtained from here: http://www.rs.tu-darmstadt.de/

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2010-vl</td>
<td>Low-Level Synthesis</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Module name
Low-Level Synthesis

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Christian Hochberger
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2010-ue</td>
<td>Low-Level Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Module name</td>
<td>High-Level Synthesis</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
</tr>
</tbody>
</table>

1 **Teaching content**
- Mapping of behavioral descriptions (e.g. in the form of program fragments) on FPGA and CGRA structures
- Sub-tasks allocation, scheduling, binding
- Exact or heuristic solutions
- Design principles of heuristic solutions

2 **Learning objectives**
Students that have completed this module know alternative approaches for all of the tasks of the high level synthesis and can select appropriate ones for specific applications. They can evaluate the memory and time complexity of the given algorithms. They are enabled to adapt the algorithms for new constraints and new target technologies.

3 **Recommended prerequisites for participation**
Knowledge of hardware synthesis on the basis of at least one hardware description language is required (e.g. Reese/Thornton: Introduction to Logic Synthesis Using Verilog Hdl oder Brown/Vranesic: Fundamentals of Digital Logic with VHDL Design). The student should have basic knowledge of at least one object oriented programming language, preferably Java.

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 **Usability of the module**
MSc ETiT, BSc/MSc iST, MSc iCE

8 **Grade bonus compliant to §25 (2)**

9 **References**
English slides can be obtained through Moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2020-vl</td>
<td>High-Level Synthesis</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>18-hb-2020-ue</td>
<td>High-Level Synthesis</td>
</tr>
</tbody>
</table>
Module name
Computer Systems II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2030</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christian Hochberger

1 Teaching content
- Configurable Technologies
- FPGA architectures and properties
- System-On-Chip, HW components, SW toolchain, support SW
- Coarse grained reconfigurable architectures, PE architecture, Modulo scheduling

2 Learning objectives
After completion of the module, students know reconfigurable technologies as well as chip architecture that employ them (e.g. FPGAs and CGRAs). They can select an appropriate technology for a given specific application. They know the components a system-on-chip (SoC) consists of. Students can configure and program an application specific SoC. They can map simple applications to a CGRA and know the limitations and pitfalls of this mapping.

3 Recommended prerequisites for participation
Thorough basic knowledge of digital circuits and computer architecture. as can be obtained in the lectures “Logischer Entwurf” and “Rechnersysteme I”. Additionally, students should be able to write simple programs in the programming language C.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc iCE, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
The slides (in German) of the lecture can be obtained through moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2030-vl</td>
<td>Computer Systems II</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Ramon Wirsch, Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2030-ue</td>
<td>Computer Systems II</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Ramon Wirsch, Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Advanced Digital Integrated Circuit Design

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
<td>English</td>
</tr>
</tbody>
</table>

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content
MOS Transistor Models, CMOS Logic Gates, Chip Layout and Design Rules, Static and Dynamic Behavior of CMOS Circuits, Synchronous CMOS Circuits, Performance and Power Characterisation, Design Techniques and CAD Tools, FPGA and Gate Array Technologies, Memory Technologies, Chip Test.

2 Learning objectives
A student is, after successful completion of this module, able to
- understand the short-channel effects of modern CMOS transistors,
- derive and analyse the most important circuit concepts for digital logic gates,
- understand the design flow of digital ASICs based on standard cells (design, layout, simulation/verification),
- knows the pros and cons of synchronous vs. asynchronous logic, multicycle systems,
- understands the differential design methods of integrated circuits (ASIC, ASIP, Full-custom/Semicustom, PLA, PLD, FPGA),
- understands basic circuitry of logic and arithmetic units (adders, multipliers, PLL/DLL),
- knows the design principles and properties of integrated semiconductor memory (DRAM, SRAM, Flash, MRAM, FeRAM).

3 Recommended prerequisites for participation
Lecture "Electronics"

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2010-vl</td>
<td>Advanced Digital Integrated Circuit Design</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2010-ue</td>
<td>Advanced Digital Integrated Circuit Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Module name</td>
<td>Microprocessor Systems</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-ho-2040</td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>75 h</td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content
Microprocessor Architectures, DSP Architectures and Hardware related Programming

2 Learning objectives
Upon successful completion of the module, students will be able to:

1. gain the overview on the fundamentals of computer architecture and the different processor classes (RISC, CISC, Mikrocontroller, CPU, DSP),
2. understand the central building blocks of a CPU
3. understand the major properties of the required semiconductor memories, I/O blocks and data busses (USB, PCI, RS232),
4. understand the most commonly used Interrupt- and Trap-handling algorithms,
5. know the common software development methodologies for microcontrollers (assembler, pseudooperations, makros, subprograms and subroutines),
6. understand the most important fundamentals of hardware oriented programming using C.

3 Recommended prerequisites for participation
Basics of Computer Architectures

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

8 Grade bonus compliant to §25 (2)

9 References
Slide Copies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2040-vl</td>
<td>Microprocessor Systems</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Dominik Großkurth, Dr.-Ing. Matthias Rychetsky</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

214
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2040-ue</td>
<td>Microprocessor Systems</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Dominik Großkurth, Dr.-Ing. Matthias Rychetsky</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Computer Aided Design for SoCs

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2200</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language: English

Module owner: Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content
CAD-Concepts for the design and simulation of integrated system-on-chips

2 Learning objectives
A student is, after successful completion of this module, able to understand

1. The most important design and verification abstractions as well as the design flow for the design of integrated electronic systems,
2. Selected algorithms for optimization, simulation and solving of design tasks,
3. Advanced methods for the design and simulation of analog integrated circuits in modern CMOS technologies,
4. Advanced concepts of hardware description languages and their concepts (Verilog, VHDL, Verilog-A, Verilog-AMS, System-Verilog)

3 Recommended prerequisites for participation
Lecture "Advanced Digital Integrated Circuit Design" (can be attended in parallel) and "Analog Integrated Circuit Design" and "Logic Design"

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc MEC, MSc Wi-ETiT, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
Slide Copies

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2200-vl</td>
<td>Computer Aided Design for SoCs</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-ho-2200-ue</td>
<td>Computer Aided Design for SoCs</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-ho-2200-pr</td>
<td>Computer Aided Design for SoCs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Industrial Electronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2210</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content

2 Learning objectives
After successful completion of the module, students are able to: 1. understand the use of electronic components in typical industrial environments, 2. understand the function of the building blocks of typical IE components, 3. deeply understand the functioning of analog building blocks, 4. understand relevant field bus systems, 5. understand the regulatory and technical standards of industrial electronics components.

3 Recommended prerequisites for participation
Lecture “Elektronik” and “Analog IC Design”

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, M.Sc. iCE, M.Sc. MEC

8 Grade bonus compliant to §25 (2)

9 References
- Gunter Wellenreuther, Dieter Zastrow; „Automatisieren mit SPS - Theorie und Praxis“; Springer Verlag, 6th Ed. 2015.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2210-vl</td>
<td></td>
</tr>
</tbody>
</table>

Instructor
Dr.-Ing. Roland Steck, Prof. Dr.-Ing. Klaus Hofmann

<table>
<thead>
<tr>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>18-ho-2210-ue</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.-Ing. Roland Steck, Prof. Dr.-Ing. Klaus Hofmann</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Regulation and Operation of Power Supply

<table>
<thead>
<tr>
<th>Module nr. 18-hs-2010</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jutta Hanson

1 Teaching content

- Basic introduction to the regulation of distribution systems operators. In this context, different tasks of the grids with regard to the energy supply as well as the „Energiewende“ will be addressed.
- Technical functions for the operation of grid supply. Functions here are asset management, system operations and metering.
- Excursion with on-site visit (grid control center, current project or power plants)
- Non-technical functions related to the operation of grid supply. These include regulatory functions such as connection management and billing, occupational safety and management of critical infrastructure.
- Incentive regulation as a regulatory framework for utility network operation
- Insights into entrepreneurial tasks and field reports

2 Learning objectives

After attending the module, students will be familiar with the basic technical and non-technical functions of distribution systems operators. After a basic introduction, the course first teaches the technical tasks for the operation of supply networks. Topics here are asset management, grid operation, and metering. In the second part, the non-technical functions are taught. Here, the connection management, the occupational safety, the environmental and health protection as well as the crisis management in distribution networks play a central role. The module also provides a basic understanding of the driving factors and developments in (German) power grids with regard to the “Energiewende”. In addition, students will also be familiar with the different levels of incentive regulation, from operating resources to grid charges. Last but not least, the module provides students with targeted insights into entrepreneurial tasks and field reports from practice.

3 Recommended prerequisites for participation

Good knowledge of content of the lecture "Energietechnik"

4 Form of examination

Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module

MSc ETiT, MSc EPE, MSc Wi-ETiT, MSc MEC, MSc iST, MSc iCE, MSc CE

8 Grade bonus compliant to §25 (2)

9 References
A lecture notes or slides can be downloaded:
- Moodle Platform

Additional literature:
- To be announced at the beginning of the lecture

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2010-vl</td>
<td>Regulation and Operation of Power Supply</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Power Systems II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2030</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
</tr>
</tbody>
</table>

1 **Teaching content**
This lecture covers the essential aspects of the operation and analysis of power systems. The following topics will be covered:
- Operation of synchronous generators (steady-state operation, power chart, steady-state stability, transient stability, transient behavior)
- Calculation of short-circuit currents (Decaying three-phase short-circuit currents)
- Neutral grounding in MV- and HV-Systems (Systems with isolated neutrals, resonant grounding and solidly grounded neutrals)
- Network Protection

2 **Learning objectives**
At the end of the lecture, the student should have a profound understanding of synchronous generator behavior, decaying short-circuit currents and their calculation and a basic understanding of neutral point treatment and network protection. The different types of power system stability are known.

3 **Recommended prerequisites for participation**
Knowledge comparable to "Energieversorgung I" or basic knowledge of power system equipment and calculations using symmetrical components.

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 **Usability of the module**
MSc ETiT, MSc EPE, MSc Wi-ETiT

8 **Grade bonus compliant to §25 (2)**

9 **References**
A script of the lecture, tutorials and past exams are available via Moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2030-vl</td>
<td>Power Systems II</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Anna Pfendler, M.Sc. Soham Choudhury, Prof. Dr.-Ing. Jutta Hanson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

222
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2030-ue</td>
<td>Power Systems II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Anna Pfendler, M.Sc. Soham Choudhury, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Power Systems III

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2080</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
</tr>
</tbody>
</table>

1 Teaching content
System behaviour of innovative equipment in the Transmission System

Fields of application:
- Power transmission and voltage stability
- Ancillary services
- Power quality

Technology of innovative equipment:
- Power Electronics theory
- Motivation, technical realisation and operation / control of HVDC systems (LCC and VSC)
- Motivation, technical realisation and operation / control of power electronic devices for reactive power compensation (SVC, STATCOM, SC)
- Practical examples and outlook

2 Learning objectives
After successful completion of the module, students know the drivers for the use of innovative grid resources (HVDC, compensation layers) and understand the system behavior and operational management of these resources. They have internalized the importance of models and simulations for safe and reliable design and operational management.

3 Recommended prerequisites for participation
Contents of "Power Systems I"

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)
Yes

9 References
Presentation slides

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2080-vl</td>
<td>Power Systems III</td>
<td>M.Sc. Achraf Kharrat, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Power Plants and Renewable Energies

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2090</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jutta Hanson

1 Teaching content
Forms of energy, Characteristics and figures of electricity industry, Importance of power generation - Energy Conversion in thermal processes (Carnot-Process), Categorization of power plants - Operation principle of steam power plants, gas power plants, water power plants, wind power plants, Use of solar energy (Photovoltaics, Solar thermal technology) and further regenerative energy sources (geothermal energy, biomass) - Technologies for Energy Converting and Storing (Power 2 X) - Electrical systems - Grid Connection for power plants

2 Learning objectives
Goals are:
- Overview of concepts of power generation by various energy sources
- Comprehension of physical processes
- Operation principle and design of conventional and renewable power plants and storage
- Comprehension of electrical devices and control concepts

3 Recommended prerequisites for participation
Basics in Electrical Engineering, Power Engineering

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc WI-ET, MSc EPE, MSc MEC, MSc CE, MSc MB, MSc WI-MB

8 Grade bonus compliant to §25 (2)

9 References
Script

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2090-vl</td>
<td>Power Plants and Renewable Energies</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2090-ue</td>
<td>Power Plants and Renewable Energies</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Benjamin Niersbach, M.Sc. Xiong Xiao, Prof. Dr.-Ing. Jutta Hanson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Power Cable Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2140</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Jutta Hanson

1 Teaching content
In the lecture, in addition to theoretical knowledge, also the practical side of high voltage cable technology will be treated. These are technical issues, e.g. water sensitivity of plastic cables, cable inspection, testing of already installed cables and the latest developments as in the field of superconductivity etc.
The contents of the lecture are:
- Cable construction: materials / requirements / design
- Cable Manufacturing: conductors / extrusion / shield / sheath (oil-paper insulation) / reinforcement
- Quality requirements and routine-/selection-/type- long term test / ISO 9001, standards, aging, endurance
- Cable junction technique: sockets / terminations / materials / field grading systems / cable connection
- Cable Systems: load / mech. requirements / ind. voltage / short circuit requirements / transient requirements / installation techniques
- Design and operation: route planning / laying / commissioning / monitoring / maintenance
- Trends: High-temperature superconductivity, Submarine cable, DC cable, forced cooling, GIL

2 Learning objectives
Students learn the basic structure of a cable. They know the technical requirements both for the material and the design of a high voltage cable. The basics of manufacturing technology and the necessary tests are learned. The students are also able to evaluate new trends in cable technology.

3 Recommended prerequisites for participation
BSc. ETiT Electrical Power Systems

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
In general, the examination takes place in form of a written exam (duration: 90 minutes). If up to 5 students register, there examination can be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture or in semesters without a lecture within one working week after the end of the examination registration phase.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT

8 Grade bonus compliant to §25 (2)

9 References
Slides, literature sources

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2140-vl</td>
<td>Power Cable Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ing. Johannes Kaumanns, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Electromagnetic Compatibility

<table>
<thead>
<tr>
<th>Module name</th>
<th>Electromagnetic Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-hs-2160</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>75 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Jutta Hanson</td>
</tr>
</tbody>
</table>

1 Teaching content
Fundamentals of Electromagnetic Compatibility, sources of emission, coupling mechanisms and countermeasures, components for noise suppression, electromagnetic shields, EMC measuring and test techniques, excursion to VDE Offenbach

2 Learning objectives
The students know that from every electromagnetic system an interaction is possible and that every electromagnetic (and also biological) system can be effected; they can differ between typical interference sources and sinks; they know the typical coupling paths and can identify and describe them mathematically; they know the basic methods to avoid interference at the source side and can derive their own actions against interference from this basic understanding; they know the basic actions to avoid interference at the sink side and can also derive actions to avoid interference; they have the ability to recognize coupling paths and can systematically influence or interrupt them completely; they know the situation of the EMC standardization and know basically which requirements have to be fulfilled and how to do this (also i.e. how to give a device a CE-label); they have learned the most important EMC testing and measurement techniques theoretically and practically know on the field trip.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 20 students register, the examination will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc Wi-ETiT, MSc ESE, MSc CE

8 Grade bonus compliant to §25 (2)

9 References
- All lecture slides (ca. 500 pcs.) available for download
- Adolf J. Schwab: Elektromagnetische Verträglichkeit, Springer-Verlag
- Clayton R. Paul: Introduction to Electromagnetic Compatibility, Wiley & Sons

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2160-vl</td>
<td>Electromagnetic Compatibility</td>
<td>Dr. Ing. Torsten Psotta, M.Sc. Peter Hock, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-hs-2160-ue</td>
<td>Electromagnetic Compatibility</td>
<td>Dr. Ing. Torsten Psotta, M.Sc. Peter Hock, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Gasinsulated Switchgear and Lines

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2180</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jutta Hanson

1 Teaching content

- Introduction, properties of the insulating gas sulfur hexafluoride (SF6) and gas mixture SF6/N2, SF6 handling
- Historical development of gasinsulated systems, life time, statistics on age of installed switchgear, space consumption
- Components and configuration of a GIS (3-phase, 1-phase; bushings, insulators, disconnectors, earthing switches, circuit breakers, instrument transformers, cable boxes, surge arresters, bus bars; particle traps; secondary equipment)
- Test requirements and specifications for GIS
- Insulation coordination and overvoltage protection, response to very fast transients (VFTO)
- Defects in GIS and diagnostic tools
- Gasinsulated medium voltage switchgear
- Gasinsulated lines (design, laying techniques, comparison with cables and overhead lines)
- Current carrying capability, thermo-mechanical stress
- Alternative insulating gases for application in “Eco”-GIS / - GIL (F-ketones, F-nitriles, “Clean Air” etc.)
- Gas-solid insulation systems under DC stress
- Special challenges of HVDC systems (impact factors, particle behavior, test requirements and specifications)

2 Learning objectives
The students know the properties of the insulating gas sulfur hexafluoride (SF6). They know the climate impact of SF6 and are familiar with adequate gas handling. They are well informed about the alternatives that are actually under discussion and investigated for application in eco-friendly GIS. The students know the pros and cons of gasinsulated systems (GIS) compared with air insulated systems (AIS) in power supply systems, and they have understood, for which applications GIS might be favorable. They know the basic design and configuration of MV and HV GIS and can explain the functionality of each component in such systems. The students have learnt to know the test requirements and are able to distinguish routine-, type and on-site commissioning tests. They know why VFTO have to be especially regarded in the process of insulation coordination and which measures can and have to be taken for overvoltage protection in GIS. The students know the defects typical for GIS and how they can be monitored. They know the laying methods of gasinsulated lines (GIL) and can compare GIL to other transmission options in the power system. Furthermore, they can calculate the current carrying capacity of simple gasinsulated lines and estimate the resulting thermo-mechanical stress. The students have understood the basic differences in the requirements on insulation systems under DC and under AC stress, and what are the consequences on design and testing of DC-GIS and DC-GIL.

3 Recommended prerequisites for participation
HST I and HST II

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
Lecture slides and other information material supporting the lecture can be downloaded from the HST-Homepage: http://www.hst.tu-darmstadt.de. IEC test standards can be leant out for use during the lecturer time.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2180-vl</td>
<td>Gasinsulated Switchgear and Lines</td>
<td>Dr.-Ing. Maria Kosse, Prof. Dr.-Ing. Jutta Hanson</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Antennas and Adaptive Beamforming

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Rolf Jakoby

1 Teaching content
Overview of most important antenna parameters types as well as their applications. Fundamental theories: Fourier transform for far-field pattern calculations, antenna modeling techniques, antenna synthesis methods, image theory, determination of field regions of line sources, of the average radiated power density and power, directivity and gain. Antennas as key elements in power budgets of radio links, introducing the effective aperture of an antenna, deriving the relation between gain and effective aperture. Array antennas are a key hardware for beamforming and smart antenna systems: fundamentals of phased-scanning arrays, non-uniformly excited, equally spaced linear arrays, multi-dimensional planar arrays and mutual coupling effects. Wire antennas: still the most prevalent of all antenna forms, relatively simple in concept, easy to construct, very inexpensive. Antenna radiation fields and antenna parameters for different types of antennas are derived from Maxwell’s equations, applied for aperture antennas (horns, lenses or reflector antennas) and printed antennas (microstrip-patch and coplanar-slot antennas) Some basic numerical calculation methods: integral equation methods in the time and frequency domain, physical optics and uniform theory of diffraction are briefly summarized and compared for antennas and scattering problems. Smart antennas in communication and radar systems, with focus on beam steering and adaptive beamforming.

2 Learning objectives
Students will know basic antenna parameters: pattern, gain, directivity, half-power beamwidth, side-lobe-level, efficiency and input impedance to compare, assess and evaluate different antennas for various applications and operating frequencies. The antenna field regions, reactive near-field, near-field and far-field, can be differentiated and the far-field pattern of an antenna can be determined from given current distributions along the antenna by using Fourier transformation or integral solutions with distributed ideal dipoles as basic elements (antenna analysis). To assess in general physical requirements, constrains and limitations of antennas, students can use fundamental antenna theory: impedance matching techniques, antenna modeling and far-field pattern analysis, antenna synthesis, image theory and fundamental limits of electrically small antennas. After being incorporated into the different adaptive beamforming techniques, the array theory enables the student to design antenna systems that are assembled of a certain number of separate elements, feeding network, beamforming network etc. for phased-scanning or smart antennas in communications and sensing. Moreover, students are able to determine, analyze and evaluate the most important classes of antennas in wireless technology for many applications, operating frequencies, desired requirements or practical constrains: (1.) wire-dipole antennas, (2.) planar antennas (microstrip, dipole and slot antennas), (3.) aperture antennas (horn antennas, parabolic reflector antennas, lens antennas, Cassegrain and Gregorian double-reflector configurations), (4.) broadband and frequency-independent antennas (V antennas, biconical antennas, helical antennas, spiral and log-periodic antennas).

3 Recommended prerequisites for participation
Fundamentals of Communications, Microwave Engineering 1

4 Form of examination
Module exam:
• Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
BSc ETiT, MSc ETiT, MSc iCE, Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Jakoby, Skriptum Antennas and Adaptive Beamforming, wird am Beginn der Vorlesung verkauft und kann danach im FG-Sekretariat erworben werden

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2020-ue</td>
<td>Antennas and Adaptive Beamforming</td>
<td>M.Sc. Matthias Nickel, Prof. Dr.-Ing. Rolf Jakoby</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Module name</td>
<td>Radar Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-jk-2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>3 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content
First, there will be an introduction of different radar techniques, describing their concepts and principles, their applications and the operating frequency ranges. In a historical survey, the radar ranges and propagation effects will be dealt with. In the second part, various primary and secondary radar techniques will be investigated in detail, including specific techniques of radar signal processing and -analysis.

2 Learning objectives
Students will know about concepts and principles to detect objects as well as to determine the angular position and range of objects. They learn about the functional principles of various radar systems, including signal processing. They will understand the major physical propagation effects.

3 Recommended prerequisites for participation
Fundamentals of Communications, Microwave Engineering I

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iCE, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Slides, Latest Publications and Books

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2040-vl</td>
<td>Radar Techniques</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Jakoby, PD Dr. habil. Holger Maune
Module name
Microwave Engineering II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2130</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language

| English |

| Module owner |
| Prof. Dr.-Ing. Rolf Jakoby |

1. **Teaching content**

Part 1 Passive microwave components:
- Calculation of the properties of simple passive components (microstrip line, filter, resonator, capacitor, inductance) for MMICs

Part 2 Active microwave components:
- * Semiconductor material systems: properties, fabrication and requirements
- * Contacts to semiconductor devices: properties and characteristics
- * Charge carrier transport: characteristics and scattering processes
- * Field Effect Transistor (FET) and heterostructure transistors (HEMTs)

Part 3 Active microwave circuits (main part):
- * Wave parameter and S-parameter
- * FET amplifier: operation, equivalent circuit, gain, matching circuit, stability and circuit implementation
- * Oscillator design
- * Mixer design

Applications of these circuits range from communication systems such as cell phones to satellite transceivers as well as high-frequency sources up to Terahertz.

2. **Learning objectives**

Students will gain knowledge on the physics of microwave waveguides, resonators, microwave components (passive and active) as well as microwave circuits.

3. **Recommended prerequisites for participation**

Desirable: Introduction to Electrodynamics, Microwave Engineering I

4. **Form of examination**

Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5. **Prerequisite for the award of credit points**

Passing the final module examination

6. **Grading**

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**

MSc ETiT, MSc iCE, MSc IST, Wi-ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**

Script and slides will be handed out. Literature will be recommended in the lecture.
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2130-vl</td>
<td>Microwave Engineering II</td>
<td>Prof. Dr.-Ing. Rolf Jakoby, PD Dr.-Ing. Oktay Yilmazoglu</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-jk-2130-ue</td>
<td>Microwave Engineering II</td>
<td>Prof. Dr.-Ing. Rolf Jakoby, PD Dr.-Ing. Oktay Yilmazoglu</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
High Voltage Technology II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Myriam Koch

1 Teaching content
Layered Dielectrics, Methods of Field Control and Potential Control, Breakdown in Gases (air and SF6), Breakdown in Vacuum, Surface Discharges, Lightnings and Lightning Protection, Travelling Waves on Conductors; Excursion to a substation

2 Learning objectives
After successful completion of the module, the students are able to optimize insulation systems by choice of the dielectrics, by capacitive, refractive or resistive internal grading systems or by external geometrical/capacitive grading elements; they have understood why equipment is designed as it is and how and where it can or has to be optimized if requirements from service are changing; they have understood the physical phenomena behind the dielectric breakdown of gases and do know which are the main influencing parameters; they know the effect of strongly inhomogeneous electrode configurations and of extremely large gaps; they know the time dependencies of a dielectric breakdown and their impact on dielectric strength under impulse voltage stress; they are able to identify critical surface discharge configurations, know about the problems under severe external pollution of insulators and how to solve them; they are thus qualified to predict the dielectric strength of any electrode configuration under any kind of voltage stress and to design a particular required dielectric strength of equipment; they are particularly enabled to realize the demands of emerging UHV systems and to manage them; they have understood the mechanism of thunderstorms and lightning flashes and are able to derive protective measures for buildings, substations and overhead lines; they are skilled to calculate travelling wave effects and their effect on fast-front overvoltages and to develop adequate countermeasures.

3 Recommended prerequisites for participation
High Voltage Technology I

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References
- all lecture slides (ca. 460 pcs.) available for download
- Kind, Feser: High-voltage test techniques, SBA publications
- Kind, Kärner: High-voltage insulation technology, Vieweg

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2010-vl</td>
<td>High Voltage Technology II</td>
<td>Prof. Dr. Myriam Koch</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kc-2010-ue</td>
<td>High Voltage Technology II</td>
<td>Prof. Dr. Myriam Koch</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
High Voltage Switchgear and Substations

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2020</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Claus Neumann</td>
</tr>
</tbody>
</table>

1 Teaching content
This lecture covers the basic designs of high voltage substations as well as the design and working principles of high voltage switchgear:
- Switching processes and stresses induced by switching
- Arc behaviour in air, SF6 and vacuum
- Types of switchgear: earthing switches, disconnectors and circuit breakers
- Design and working principles of earthing switches and disconnectors in air and SF6
- Design and working principles of circuit breakers: vacuum breakers, pressured air and SF6 breakers (thermal blast and self-blast chambers)
- Stresses on earthing switches and disconnectors in the event of short circuit
- Testing of switchgear
- Reliability of switchgear
- Future developments: Intelligent control of switchgear, static switches, superconducting switchgear

2 Learning objectives
The student should understand the purpose and working principles of high voltage switchgear as well as their usage in high voltage substations.

3 Recommended prerequisites for participation
Prior attendance of the lectures High Voltage Technology I and II is recommended.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 45 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc etit, BSc/MSc iST, MSc Wi-etit, MSc ESE

8 Grade bonus compliant to §25 (2)

9 References
A script of the lecture (in German) and the lecture slides will be provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2020-vl</td>
<td>High Voltage Switchgear and Substations</td>
<td>M.Sc. Manuel Philipp, Prof. Dr. Claus Neumann</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Lightning Physics and Lightning Protection

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Myriam Koch</td>
</tr>
</tbody>
</table>

1 Teaching content
- Thunderstorms and Cloud classification, formation and electrification
- Lightning, terminology, types, charge transfer, typical parameters
- Streamer-leader process, inception and development in large gaps
- Electric and magnetic fields in vicinity of lightning discharge
- Return stroke models, charge distributions and neutralization
- The Finite-Difference Time Domain Method for solving Maxwell's equations
- Lightning location, the technical use of field information
- Lightning effects in the middle and upper atmosphere
- Lightning hazard and deleterious effects
- Lightning protection and related threats, historical overview, standards and present lightning protection concepts
- Outer lightning protection, Lightning rods, down conductors, grounding systems, potential bonding and separation distances
- Inner lightning protection, surge protection devices, installation, test standards
- Lightning protection on transmission lines, faults and effects, calculation of outage rates and opportunities of improvement
- Lightning and surge protection for wind turbines

2 Learning objectives
After successful completion of the module, the students know the inception, development and effects of natural lightning. They are able to differentiate between types of lightning and know all typical parameters, related to different surges and types of lightning. They know that the parameters may differ in different places over the earth and know the reason for this deviation. The students learn about all relevant components of a lightning strike as well as their technical relevance in lightning protection, surge protection and lightning location. The theory and most relevant models of lightning attachment and also its successive return stroke are known. All relevant lightning threats in terms of lightning protection are known and can be calculated. The students know how a standardized lightning protection system has to look like. They know about lightning protection levels, lightning protection zones and are able to apply measures on building, transmission lines and wind mills. The students know about simulation methodologies used in lightning research, taking into account the full retarded Maxwell equations. The students are aware of the uncertainties in lightning protection and lightning research. They know about open questions in the field of research related to the inception, discharge and effects of lightning. The students learn about unconventional lightning protection, which cannot be found in the standard, and also get to know why they are not found there. The students are sensitized about research results in general.

3 Recommended prerequisites for participation
Recommended: BSc etit, BSc Wi-etit

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 10 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points

240
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**
MSc etit, MSc Wi-etit

8 **Grade bonus compliant to §25 (2)**

9 **References**
Lecture slides and other information material supporting the lecture will be provided. IEC test standards can be learnt out for use during the lecturer time.
- Blitz und Blitzschutz, F. Heidler, K. Stimper, ISBN 978-3-8007-2974-6

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2030-vl</td>
<td></td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. Myriam Koch, Dr.-Ing. Martin Hannig
Module name
Acceleration of Charged Particles in Electromagnetic Fields (only for information)

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-2010</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every 2. Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Harald Klingbeil

1 Teaching content
IMPORTANT NOTE:
The lecture 18-kb-2010-vl und 18-kb-2010-ue „Beschleunigung geladener Teilchen im elektromagnetischen Feld“ will expire and is not available from SoSe2020 any more. From WiSe20/21 there will be a follow-up lecture called „Relativistische Elektrodynamik“. This lecture can be taken as a replacement. Whenever this may cause problems in your study plan, please contact the Servicezentrum immediately. Please note that exams can still be arranged, you should contact the docent to do so.

2 Learning objectives

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-2010-vl</td>
<td>Acceleration of Charged Particles in Electromagnetic Fields</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-2010-ue</td>
<td>Acceleration of Charged Particles in Electromagnetic Fields</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Relativistic Electrodynamics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-2020</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Harald Klingbeil

1 Teaching content
Basics of tensor analysis (tensor fields, transformation behavior, invariance, Ricci calculus, covariant derivative, differential operators), Lorentz transform, fundamental relativistic effects (time dilation, length contraction, Doppler effect), covariant form of Maxwell's equations, induction law from relativistic point of view, relation to relativistic mechanics, four-vectors and four-tensors, electromagnetic energy-momentum tensor and Maxwell's stress tensor, applications of relativistic electrodynamics

2 Learning objectives
The students understand the basic ideas of Special Relativity and are familiar with the scientific vocabulary. They are able to derive and interpret fundamental formulas, and they are familiar with the mathematical tools. The students understand the concept of covariance and a coordinate-free description of physical theories. They are able to quantitatively compute electromagnetic phenomena in the context of Special Relativity.

3 Recommended prerequisites for participation
"Grundlagen der Elektrodynamik" (18-dg-1010)

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
Lecture slides are offered for download. Further references are given in the lecture.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-2020-vl</td>
<td>Relativistic Electrodynamics</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kb-2020-ue</td>
<td>Relativistic Electrodynamics</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Lighting Technology I

Module nr. Credit points Workload Self-study Module duration Module cycle
18-kh-2010 5 CP 150 h 90 h 1 Term Winter term

Language
German

Module owner
Prof. Dr.-Ing. Tran Quoc Khanh

Teaching content
Structure and functionality of the human eye, terms and unit in lighting technology, photometry, radiometric and photometric properties of materials, filters, physiology of vision, colour theory, lighting, light sources. Measurement of luminous flux, luminous intensity, illuminance, luminance, determination of the spectral responsivity function of the human eye, colorimetry colour rendering, colour as traffic signals, measuring of optical material characteristics, LED properties.

Learning objectives
To list and connect terms, units and radiometric and photometric properties of materials in lighting technology, to describe and understand structure and functionality of the human eye and the physiology of vision, to illustrate basics of lighting, measuring methods and application. Being able to measure base items in lighting technology, applying knowlegde of lighting and enhance them with experiments. Developing a better understanding for light and color.

Recommended prerequisites for participation
MSc ETiT, MSc Wi-ETiT, MSc MEC

Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc MEC

Grade bonus compliant to §25 (2)

References
Script for lecture: Lighting Technology I
Excersisebook: laboratory: lighting technology I

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2010-vl</td>
<td>Lighting Technology I</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Babak Zandi, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2010-pr</td>
<td>Lighting Technology I</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Babak Zandi, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Module name</td>
<td>Advanced Lighting Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-kh-2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>5 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Teaching content**

2. **Learning objectives**
 To know current developments and applications, list and connect terms, to illustrate special topics of lighting, measuring methods and application. Be able to measure base items in lighting technology, applying knowledge of lighting and dedicated applications and further to enhance them with experiments. Developing a better understanding for light, color, perception and lighting situations.

3. **Recommended prerequisites for participation**
 Lighting Technology I

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Oral examination, Weighting: 100 %)

7. **Usability of the module**
 MSc ETiT, MSc Wi-ETiT, MSc MEC

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Exercisebook: laboratory: lighting technology II

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr. 18-kh-2020-vl</td>
</tr>
<tr>
<td>Instructor Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
<tr>
<td>Type Lecture SWS 2</td>
</tr>
</tbody>
</table>

| Course Nr. 18-kh-2020-pr |
| Instructor Prof. Dr.-Ing. Tran Quoc Khanh |
| Type Internship SWS 2 |
Module name
Optical Technologies in Car Lighting

Module nr.
18-kh-2041

Credit points
4 CP

Workload
120 h

Self-study
75 h

Module duration
1 Term

Module cycle
Summer term

Language
German

Module owner
Prof. Dr.-Ing. Tran Quoc Khanh

1 Teaching content
History and standardisation of car lighting. Description of the used lighting sources and the function of these (lowbeam, highbeam, bending light, stop lamp, daytime running light . . .), visual perception, glare, detection, traffic infrastructure, traffic elements, interior lighting, driver assistance systems (GPS, Radar, Lidar . . .), methods of psychophysics, lighting application concepts in future automated vehicles. Voluntary trip planned to an automobile manufacturer.

2 Learning objectives
Upon completion of the module, students will have learned to describe the basics and deepening knowledge of car lighting, to understand the light distribution of head and rear lamps, to learn the basics of standardisation, enlarge glare and detection skills, know the traffic elements, as well as the driver assistance systems.

3 Recommended prerequisites for participation
Lighting technology 1

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc WI-ETiT, MSc iST, MSc MEC, MSc MPE, MSc Physik

8 Grade bonus compliant to §25 (2)

9 References
Lecture slides, Automotive Lighting and Human Vision, Handbuch Fahrassistenzsysteme

Courses

Course Nr.
18-kh-2041-vl

Course name
Optical Technologies in Car Lighting

Instructor
Prof. Dr.-Ing. Tran Quoc Khanh

Type
Lecture

SWS
2

Course Nr.
18-kh-2041-pr

Course name

Instructor
Prof. Dr.-Ing. Tran Quoc Khanh

Type
Internship

SWS
1
Module name
Solid State Lighting

<table>
<thead>
<tr>
<th>Module nr. 18-kh-2060</th>
<th>Credit points</th>
<th>5 CP</th>
<th>Workload</th>
<th>150 h</th>
<th>Self-study</th>
<th>90 h</th>
<th>Module duration</th>
<th>1 Term</th>
<th>Module cycle</th>
<th>Winter term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content
Basics of light and colour perception; basics of solid state light sources; LEDs: material systems, structural shape, optics, phosphors; phosphor mixtures; colour and white LEDs; temperature, current and optical behaviour of LEDs; LED models; lifetime and defect mechanisms of LEDs; OLEDs and semiconductor lasers in lighting engineering; optical sensors; semiconductor based cameras; colour sensors; colour quality of solid state light sources; choice and combination of LEDs in practical LED luminaires; flicker; grouping (binning) of LEDs according to their technological parameters; lighting quality metrics; intelligent indoor lighting with LEDs: colour recognition, spectral reconstruction; intelligent automotive and outdoor lighting with LEDs; practical training: thermic, electric and lighting engineering related measurement of LED light sources.

2 Learning objectives
Principles and applications of the technology of solid state light sources in lighting engineering; LED technology and the optimisation of visual perception under LED light in modern lighting engineering.

3 Recommended prerequisites for participation
Lichttechnik I, II

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc etit

8 Grade bonus compliant to §25 (2)

9 References
Introduction to Solid State Lighting (Zukauskas et al., Wiley, 2002)
Light Emitting Diodes (Schubert; Cambridge Univ. Press, 2003)

Courses

<table>
<thead>
<tr>
<th>Course Nr. 18-kh-2060-vl</th>
<th>Course name</th>
<th>Solid State Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Alexander Herzog, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Lecture</td>
<td>SWS 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr. 18-kh-2060-pr</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Alexander Herzog, Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
<tr>
<td>Type</td>
<td>Internship</td>
</tr>
</tbody>
</table>
Module name
Communication Technology II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
</tr>
</tbody>
</table>

1 Teaching content
- linear and nonlinear digital modulation schemes, optimum receivers for AWGN channels, error probability, channel capacity, channel models, channel estimation and data detection for multipath channels, multicarrier schemes, OFDM

2 Learning objectives
- After completion of the lecture, students possess:
 - the ability of comparing, evaluating, classifying an analyzing linear and nonlinear modulation schemes by means of signal space representations;
 - the ability to understand, describe and analyze the influence of AWGN on the signal;
 - the ability to understand and derive optimum receivers in case of AWGN channels;
 - the ability to understand, describe and analyze the influence of multipath propagation on the signal;
 - the ability to describe the influence of a multipath channel mathematically (channel model) and estimate the multipath channel at the receiver;
 - the knowledge of equalizing the received signal in order to undo the influence of multipath propagation, as well as the ability to derive and design several equalizer structures;
 - the ability to analyze and evaluate the properties and application areas of multicarrier transmission systems, e.g. OFDM-systems;
 - the ability to design and evaluate the system parameters of multicarrier schemes for the application in realistic mobile radio scenarios;

3 Recommended prerequisites for participation
- Electrical Engineering I and II, Deterministische Signale und Systeme, Stochastische Signale und Systeme, Communication Technology I, Basics of Telecommunication, Mathematics I to IV

4 Form of examination
- Module exam:
 - Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
- Passing the final module examination

6 Grading
- Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
- MSc ETTT, MSc Wi-ETIT, MSc CE, MSc iCE, MSc iST, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
- will be announced in the lecture
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2010-vl</td>
<td>Communication Technology II</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kl-2010-ue</td>
<td>Communication Technology II</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Mobile Communications

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Anja Klein

1 Teaching content
The lecture covers aspects of mobile communication systems with particular focus on the physical layer.
- Mobile radio systems, services, market, standardization
- Duplex and multiple access techniques, cellular concept
- Mobile radio channel, deterministic and stochastic description
- Modulation schemes
- Code division multiple access (CDMA)
- Orthogonal frequency division multiplexing (OFDM)
- Optimum and suboptimum receiver techniques
- Cellular radio capacity and spectrum efficiency
- Diversity methods
- Multiple input multiple output (MIMO) systems
- Power control and handover
- Architecture of mobile radio systems

2 Learning objectives
After completion of the lecture, students possess
- A profound understanding of physical layer aspects, e.g., transmission schemes, multiple access schemes of mobile communication systems, duplex schemes, multi carrier schemes, receiver techniques, multi antenna schemes
- A profound understanding of signal propagation in mobile radio systems (mobile radio channel)
- The ability to understand and solve problems of the field of the physical layer
- The ability to compare, analyse and evaluate different system concepts
- Knowledge on modelling of the transmission properties of the mobile radio channel

3 Recommended prerequisites for participation
Deterministic Signals and Systems, Communication Technology I, Mathematics I to IV

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETIT, MSc Wi-ETiT, MSc CE, MSc iCE, MSc iST, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be announced in the lecture

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2020-vl</td>
<td>Mobile Communications</td>
<td>Dr.-Ing. Lin Xiang, Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-kl-2020-ue</td>
<td>Mobile Communications</td>
<td>Dr.-Ing. Lin Xiang, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Fundamentals of Reinforcement Learning

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2070</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Anja Klein</td>
</tr>
</tbody>
</table>

1 **Teaching content**

- Review of Probability Theory
- Markov Property and Markov Decision Processes
- The Multi-Armed Bandit Problem vs. the Full Reinforcement Learning Problem
- Taxonomy of Multi-Armed Bandit Problems (e.g., Stochastic vs. Adversarial Rewards, Contextual MAB)
- Algorithms for Multi-Armed Bandit Problems (e.g., Upper Confidence Interval (UCB), Epsilon-Greedy, SoftMax, LinUCB) and their Application to Cyber-Physical Networking
- Fundamentals of Dynamic Programming and Bellman Equations
- Taxonomy of Approaches for the Full Reinforcement Learning Problem (e.g., Temporal-Difference Learning, Policy Gradient and Actor-Critic)
- Algorithms for the Full Reinforcement Learning Problem (e.g., Q-Learning, SARSA, Policy Gradient, Actor-Critic) and their Application to Cyber-Physical Networking
- Linear Function Approximation
- Non-linear Function Approximation

2 **Learning objectives**
The students are able to

- define the Markov property and identify the elements that constitute a Markov decision process. They will be able to use these concepts to model decision-making problems in Cyber-Physical Networking.
- determine the characteristics of the Multi-Armed Bandit (MAB) Problem and compare them to the characteristics of the Full Reinforcement Learning (RL) Problem.
- determine under which conditions the MAB or the full RL formulation should be used to solve decision-making problems.
- differentiate the main MAB strategies, e.g., Upper Confidence Interval (UCB), Epsilon-Greedy and Softmax.
- choose appropriate MAB strategies for the solution of MAB problems.
- formulate and solve Contextual-MAB problems.
- determine under which conditions Dynamic Programming can be used to solve decision-making problems.
- explain the difference between Dynamic Programming and RL methods.
- differentiate between Temporal-Difference, Policy Gradient and Actor-Critic RL techniques.
- identify the limitations of MAB and full RL problems.
- explain the need for generalization in MAB and full RL problems.
- choose appropriate approximation techniques and use them in combination with MAB and full RL strategies.
- apply algorithmic techniques to solve MAB and full RL problems and obtain valid solutions.
- judge the reasonableness and consistency of the obtained solutions.

3 **Recommended prerequisites for participation**

- Python or Matlab: basic knowledge
- Engineering mathematics and probability theory

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 60 Min., Default RS)

The examination takes place in form of a written exam (duration: 60 minutes). If one can estimate that less than 21 students register, the examination will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc (Wi-) etit, BSc/MSc iST, MSc iCE, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2070-vl</td>
<td>Fundamentals of Reinforcement Learning</td>
<td>Dr.-Ing. Andrea Jimenez, Dr. rer. nat. Sabrina Klos, Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kl-2070-ue</td>
<td>Fundamentals of Reinforcement Learning</td>
<td>Dr.-Ing. Andrea Jimenez, Dr. rer. nat. Sabrina Klos, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Sensor Technique

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-2120</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Mario Kupnik

1 Teaching content

2 Learning objectives
The Students acquire knowledge of the different measuring methods and their advantages and disadvantages. They can understand error in data sheets and descriptions interpret in relation to the application and are thus able to select a suitable sensor for applications in electronics and information, as well process technology and to apply them correctly.

3 Recommended prerequisites for participation
Measuring Technique

4 Form of examination
Module exam:
 • Module exam (Technical examination, Examination, Duration: 90 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc WI-ETiT, MSc MEC, MSc Medizintechnik

8 Grade bonus compliant to §25 (2)

9 References
 • Slide set of lecture
 • Script of lecture
 • Textbook Tränkler „Sensortechnik“, Springer
 • Exercise script

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-2120-vl</td>
<td>Sensor Technique</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-2120-ue</td>
<td>Sensor Technique</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Machine Learning in Information and Communication Technology (ICT)

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2110</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Heinz Köppl

1 Teaching content
The module provides an introduction to the emerging field of machine learning from an engineering perspective. Important models and learning methods are presented and exemplified through problems from information and communication technology.

- Fundamentals of probability theory and multivariate statistics
- Taxonomy of machine learning problems and models (supervised, unsupervised, generative, discriminative)
- Regression and classification: theory, methods and ICT applications
- Dimensionality reduction, clustering and big data analytics: methods and application in communications and signal processing
- Probabilistic graphical models: categories, inference and parameter estimation
- Fundamentals of Bayesian inference, Monte Carlo methods, Bayesian non-parametrics
- Fundamentals of convex optimization: Solution methods and application in communications
- Approximate algorithms for scalable Bayesian inference; application in signal processing and information theory (e.g. decoding of LDPC codes)
- Hidden Markov models (HMM): Theory, Algorithms and ICT applications (e.g. Viterbi decoding of convolutional codes)
- High-dimensional statistics (“large p small n” setting), learning dependency structure in high-dimensional data, learning causality relations from observational data.
- Sparse estimation, random projections, compressive sensing: Theory and applications in signal processing
- Deep neural networks (deep learning): Models, learning algorithms, libraries and ICT applications

2 Learning objectives
Students are able to interpret and categorize specific engineering problems from the ICT domain in terms of machine learning problems.

They are able to reduce such problems to standard machine learning problems and are able to determine suitable solution methods for them.

They are able to implement all necessary algorithms from scratch, but they are also familiar with the state-of-the-art libraries in machine learning.

They are able to determine the involved computational complexity of a method and choose an appropriate solution algorithms based on application constraints.

They are able to apply the acquired methods to other domains, such as data analysis in biomedical engineering, analysis of social network data, etc.

3 Recommended prerequisites for participation
Good command of Matlab (for instance knowledge from course 18-st-2030 Matlab Grundkurs) and engineering mathematics

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc etit, BSc/MSc iST, MSc iCE, MSc CE

8 Grade bonus compliant to §25 (2)

9 References
• Peter Bühlmann und Sara van de Geer. Statistics of high-dimensional data - Methods, theory and applications, Springer, 2011

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2110-vl</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kp-2110-ue</td>
<td>Machine Learning in Information and Communication Technology (ICT)</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-kp-2110-pr</td>
<td>Machine Learning in Information and Communication Technology (ICT) Lab</td>
<td>Prof. Dr. techn. Heinz Köppl, Prof. Dr.-Ing. Anja Klein</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Bioinformatics II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2120</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Heinz Köppl

1 Teaching content
- Elementary methods of machine learning: Regression, classification, clustering (probabilistic graphical models)
- Analysis and visualization of high-dimensional data (multi-dimensional scaling, principal component analysis, embedding methods with deep neural networks, tSNE, UMAP)
- Data-driven reconstruction of molecular interaction networks (Bayes nets, solution to Gaussian graphical models, Causality analysis)
- Analysis of interaction networks (modularity, graph partitioning, spanning trees, differential networks, network motifs, STRING database, PathBLAST)
- Dynamical models of molecular interaction networks (stochastic Markov-modes, differential equations, Reaction rate equation)
- Elementary algorithms for structure determination of proteins and RNAs (Secondary structure prediction of RNAs, molecular dynamics, common simulators and force fields)

2 Learning objectives
After successful completion of this module, students will be familiar with current statistical methods for analyzing high-throughput data in molecular biology. They know how to analyze high-dimensional data by reduction, visualization and clustering and how to find dependencies in these data. They know methods for dynamic description of molecular interactions. They are aware of common methods for structure prediction of biomolecules. Upon completion, students will be able to independently implement the presented algorithms in programming languages, such as Python, R or Matlab. In the area of communicative competence, students have learned to exchange information, ideas, problems and solutions in the field of bioinformatics with experts and with laypersons.

3 Recommended prerequisites for participation
Bioinformatics I

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 11 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2120-vl</td>
<td>Bioinformatics II</td>
<td>Prof. Dr. techn. Heinz Köppl</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Introduction to Spintronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Markus Meinert

1 Teaching content
The lecture covers the following subjects:
• Basics of atomic physics (structure of the atoms, electron shell)
• Basics of solid state physics (crystalline materials)
• Introduction to electron transport in solids (classical treatment, band structures)
• Basic notions and simple models of magnetism
• Magnetism in thin films
• Spin-dependent electronic transport
• Magnetoresistive effects, anisotropic magnetoresistance
• Giant magnetoresistance (GMR)
• Tunneling magnetoresistance (TMR)
• Spin-Transfer Torque
• Magnetic microwave oscillators
• Spin-Hall effect and other spin-orbit effects
• Materials for spintronics (ferromagnets, antiferromagnets)
• Magnetic data storage
• Spintronic devices as sensors
• Magnetic random-access memory (MRAM)

2 Learning objectives
The students learn fundamental concepts of spintronics, from properties of magnetic materials to the design and application of spintronic devices in data storage and magnetic sensing. The students acquire the competence to make use of spintronic devices in applications. They further acquire the competence to understand current scientific literature and to dive deeper into the field.

3 Recommended prerequisites for participation
Module 11-01-6419 Materials of Electrical Engineering

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 16 students register, the examination will be an oral examination (duration: 45 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)
Yes

9 References
A script will be made available electronically
Coey, Magnetism and Magnetic Materials, 2009, Cambridge University Press
Skomski, Simple Models of Magnetism, 2008, Oxford University Press
Felser, Fecher, Spintronics: From Materials to Devices, 2013, Springer
Blachowicz, Ehrmann, Spintronics, 2019, de Gruyter
Xu, Awschalom, Nitta, Handbook of Spintronics, 2016, Springer

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-me-2020-vl</td>
</tr>
<tr>
<td>Instructor</td>
</tr>
</tbody>
</table>

Course Nr.	Course name	Type	SWS
18-me-2020-ue	Introduction to Spintronics	Practice	1
Instructor	Prof. Dr. rer. nat. Markus Meinert		
Module name
Robust Data Science With Biomedical Applications

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mu-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Michael Muma

Teaching content

Robust Data Science for Signal Processing
- Basics on robust statistical learning
- Robust regression models
- Robust clustering and classification
- Robust time-series and spectral analysis
- High-dimensional robust data science

Biomedical Applications
- Body-worn and radar-based sensing of vital signs
- Electrocardiogram (ECG) and Photoplethysmogram (PPG)
- Biomarker selection
- Eye research
- Genomics
- Intracranial Pressure (ICP)

The lecture covers fundamental topics and recent developments in robust data science. Unlike classical statistical learning and signal processing, which relies strongly on the normal (Gaussian) distribution, robust methods can tolerate impulsive noise, outliers and artifacts that are frequently encountered in biomedical applications. Robust data science and biomedical application lectures alternate. Exercises revise the theory and apply robust machine learning and signal processing algorithms to real world data. Software toolboxes in Python, Matlab and R that implement the lecture contents are available to the students.

Learning objectives

Students understand the basics of robust signal processing and data science and are able to apply them to a variety of problems. They are familiar with various biomedical applications and know the causes of artifacts, outliers and impulsive noise. They can apply algorithms for robust regression, cluster analysis, classification and spectral analysis.

Recommended prerequisites for participation
Fundamental knowledge of statistical signal processing

Form of examination

Module exam:
- Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

Prerequisite for the award of credit points
Pass module final exam

Grading

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
MSc etit, MSc Wi-etit, MSc iCE, MSc iST

Grade bonus compliant to §25 (2)

References
A manuscript and lecture slides can be downloaded via Moodle. Further reading

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mu-2010-vl</td>
<td>Robust Signal Processing With Biomedical Applications</td>
<td>Prof. Dr.-Ing. Michael Muma</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-mu-2010-ue</td>
<td>Robust Data Science With Biomedical Applications</td>
<td>Prof. Dr.-Ing. Michael Muma</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Information Theory II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Teaching content
This lecture course is devoted to advances of network information theory. Outline: overview of Shannon capacity, outage and ergodic capacity, capacity of channels with state, capacity of Gaussian vector channels, capacity regions of multi-user channels, capacity regions of multiple-access and broadcast fading channels, interference channel, relay channel, multiuser bounds, multi-user diversity., wiretap channel, secrecy rate and physical layer security.

2 Learning objectives
Students will understand advanced concepts and strategies in network information theory.

3 Recommended prerequisites for participation
Knowledge of basic communication theory

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, BSc iST, MSc Wi-ETiT, MSc iCE, BSc/MSc CE

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010-vl</td>
<td>Information Theory II</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2010-ue</td>
<td>Information Theory II</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Convex Optimization in Signal Processing and Communications

Module nr.
18-pe-2020

Credit points
6 CP

Workload
180 h

Self-study
120 h

Module duration
1 Term

Module cycle
Summer term

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1. **Teaching content**
This graduate course introduces the basic theory of convex optimization and illustrates its use with many recent applications in communication systems and signal processing.

Outline: Introduction, convex sets and convex functions, convex problems and classes of convex problems (LP, QP, SOCP, SDP, GP), Lagrange duality and KKT conditions, basics of numerical algorithms and interior point methods, optimization tools, convex inner and outer approximations for non convex problems, sparse optimization, distributed optimization, mixed integer linear and non-linear programming, applications.

2. **Learning objectives**
Students will learn the basic theory of convex optimization and its applications.

3. **Recommended prerequisites for participation**
Knowledge in linear algebra and the basic concepts of signal processing and communications.

4. **Form of examination**
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)

The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 14 students register, the examination will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7. **Usability of the module**
MSc ETIT

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2020-vl</td>
<td>Convex Optimization in Signal Processing and Communications</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

264
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2020-ue</td>
<td>Convex Optimization in Signal Processing and Communications</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-pe-2020-pr</td>
<td>Convex Optimization in Signal Processing and Communications Lab</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
MIMO - Communication and Space-Time-Coding

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ja-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Vahid Kooshkghazi

1 Teaching content
This lecture course introduces the principles of space-time and multiple-input multiple-output (MIMO) communications.
Outline: Motivation and background; overview of space-time and MIMO communications; fading MIMO channel models, MIMO information theory, receive and transmit diversity; channel estimation, MIMO detectors, Alamouti space-time block code, orthogonal space-time block codes; linear dispersion codes; coherent and non-coherent decoders, differential space-time block coding; MIMO with limited feedback, Multiantenna- and multiuser diversity, BER performance analysis, MIMO in modern wireless communication networks, multicell and multiuser MIMO (coordinated multipoint).

2 Learning objectives
Students will understand modern MIMO communications and existing space-time coding techniques.

3 Recommended prerequisites for participation
Knowledge of basic communication theory and basic information theory.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 10 students register, the examination will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT

8 Grade bonus compliant to §25 (2)

9 References
- E.G.Larsson and P.Stoica, Space-Time Block Coding for Wireless Communications, Cambridge University Press, 2003;

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ja-2010-vl</td>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>Prof. Dr.-Ing. Vahid Kooshkghazi</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-ja-2010-ue</td>
<td>MIMO - Communication and Space-Time-Coding</td>
<td>Prof. Dr.-Ing. Vahid Kooshkghazi</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Sensor Array Processing and Adaptive Beamforming

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2060</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

Teaching content
This lecture course introduces the principles of modern sensor array processing and adaptive beamforming.

Outline: Motivation and background; applications, narrowband and wideband signal model

Direction-of-arrival estimation (DoA):
traditional methods based on beamforming, super resolution methods, Maximum-Likelihood methods, Subspace based methods, MUSIC, ESPRIT, MODE, root-MUSIC, multidimensional source localization, beamspace processing, array interpolation, partly calibrated arrays, wideband DOA estimation, spatial smoothing, forward-backward averaging, redundancy averaging, correlated sources, minimum redundancy arrays, compressed sensing and sparse reconstruction based DoA estimation, performance bounds

Adaptive beamforming:

Learning objectives
Students will standard and modern sensor array processing techniques for source localization and transmit/receive beamforming

Recommended prerequisites for participation
Knowledge in linear algebra.

Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

Usability of the module
BSc / MSc etit, BSc / MSc WI-etit, MSc MEC, MSc iST, MSc iCE

Grade bonus compliant to §25 (2)

References
 a) Chapter 12 - Adaptive and Robust Beamforming, Sergiy A. Vorobyov, Pages 503-552
 b) Chapter 14 - DOA Estimation Methods and Algorithms, Pei-Jung Chung, Mats Viberg, Jia Yu, Pages 599-650
 c) Chapter 15 - Subspace Methods and Exploitation of Special Array Structures, Martin Haardt, Marius Pesavento, Florian Roemer, Mohammed Nabil El Korso, Pages 651-717
2. Spectral Analysis of Signals, Petre Stoica, Randolph Moses, Prentice Hall, April 2005

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2060-vl</td>
<td>Sensor Array Processing and Adaptive Beamforming</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-pe-2060-ue</td>
<td>Sensor Array Processing and Adaptive Beamforming</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Matrix Analysis and Computations

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2070</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Teaching content
This graduate course is a foundation class on matrix analysis and computations, which are widely used in many different fields, e.g., machine learning, computer vision, systems and control, signal and image processing, communications, networks, optimization, and many more…
Apart from the theory this course will also cover the design of efficient algorithm and it considers many different examples from the aforementioned fields including examples from social media and big data analysis, image processing and medical imaging, communication network optimization, and written text classification.
Specific topics: (i) basic matrix concepts, subspace, norms, (ii) linear least squares (iii) eigendecomposition, singular value decomposition, positive semidenite matrices, (iv) linear system of equations, LU decomposition, Cholesky decomposition (v) pseudo-inverse, QR decomposition (vi) advanced tensor decomposition, advanced matrix calculus, compressive sensing, structured matrix factorization

2 Learning objectives
Students will learn matrix analysis and computations at an advanced or research level.

3 Recommended prerequisites for participation
Basic knowledge in linear algebra.

4 Form of examination
Module exam:
 • Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Pass module final exam.

6 Grading
Module exam:
 • Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
ECE 712 Course Notes by Prof. Jim Reilly, McMaster University, Canada (friendly notes for engineers)
http://www.ece.mcmaster.ca/faculty/reilly/ece712/course_notes.htm

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2070-vl</td>
<td>Matrix Analysis and Computations</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-pe-2070-ue</td>
<td>Matrix Analysis and Computations</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Graph Signal Processing, Learning and Optimization

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2080</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
</tr>
</tbody>
</table>

Teaching content
The course covers the following topics:

- Motivation, Applications
- Fundamentals
 - definition of graphs, classes of graphs, properties of graphs, signals defined over graphs
 - Adjacency matrix, Graph Laplacian, Graph shift operator
 - Covariance matrix, conditional dependence, precision matrix
- Graph signal processing
 - Consensus, Diffusion
 - Graph spectral analysis, Graph Fourier Transform
 - Total variational norm, Graph Frequencies
 - Bandlimited graph signals, smoothness
 - Graph filters, Graph sampling theorem
 - Applications
- Network topology inference
 - Link prediction
 - Association network inference
 - Tomographic network topology inference
 - Pearson product-moment correlation
 - Causality, Partial correlation
 - Conditional independence graph
 - Gaussian Markov Random Fields
 - Graphical LASSO, Graphical LASSO with Laplacian constraint
 - Applications
- Graph analysis
 - Subgraph identification
 - Cliques identification
- Optimization over graphs
 - Average consensus, diffusion, exact diffusion
 - Gradient tracking, push-sum algorithm, etc.
 - Applications
- Graph neuronal (convolutional) network

Learning objectives
Graph signal processing (i.e., the processing of signals defined over graphs) and network analysis form an interdisciplinary research field with numerous and diverse applications. Upon completion of the module, students will have gained systematic knowledge in graph signal processing theory, graph network analysis, graph topology learning, optimization in graph networks, and learning using graph neuronal networks. They have learned essential concepts, algorithms and application areas of graph signal processing.

Recommended prerequisites for participation
Basic knowledge in linear algebra and matrix analysis.

Form of examination
Module exam:
 • Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
In general, the examination takes place in form of a written exam (duration: 120 minutes). If up to 20 students register in semesters in which the lecture does not take place, there will will be an oral examination (duration: 20 min.). The type of examination will be announced within one working weeks after the end of the examination registration phase.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc (WI-) etit, BSc/MSc iST, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
 • Lecture notes and slides can be downloaded here:
 – www.nts.tu-darmstadt.de
 – moodle
 • Further reading:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2080-vl</td>
<td>Graph signal processing, learning and optimization</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-pe-2080-ue</td>
<td>Graph signal processing, learning and optimization</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Terahertz Systems and Applications

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
</tr>
</tbody>
</table>

1 Teaching content
The lecture will give an overview of Terahertz applications, sources and detectors with the focus on semiconductor-based devices and Terahertz systems. Terahertz detection and generation will be discussed in detail for two types of highly important devices: Schottky diodes (mixers, multipliers and rectifiers) and photomixers (photo-diode based and photoconductive). The exercise, where performance parameters of the discussed devices will be derived for experimentally relevant cases, will help to deepen the understanding. The last day will be used for a lab tour showing our measurements facilities and hands-on experiments.

2 Learning objectives
After attending this lecture, the student has gained basic knowledge in the fields of THz generation, detection, systems, and applications of THz radiation, with deepened knowledge in:

- Working principle, spectra and limits of continuous-wave photomixers
- Working principle of Schottky diode mixers/multipliers and rectifiers in the THz range
- THz Applications

3 Recommended prerequisites for participation
Recommended: Bachelor in Electrical engineering, Physics, or Material Science
Helpful: Basic knowledge in semiconductor physics, High frequency

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)
- Oral exam (mandatory)

5 Prerequisite for the award of credit points
- Pass module final exam

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc etit-KTS, MSc etit-IMNT, MSc etit, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2010-vl</td>
<td>Terahertz Systems and Applications</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>18-pr-2010-ue</td>
<td>Terahertz Systems and Applications</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td>Practice</td>
</tr>
</tbody>
</table>
Module name
Modelling and Simulation of Circuits

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-2010</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

1 Teaching content
The content of this course is the following:
- Circuit interpretation as directed graphs
- Modified nodal and loop analysis
- Flux and charge oriented formulations
- Differential algebraic equations
- Linear system solver
- Numerical solution of nonlinear systems
- Time-domain methods
- Frequency-domain solution
- Implementation of the numerical methods

2 Learning objectives
Students understand the theoretical and numerical fundamentals of circuit simulation and how the equations can be derived from Maxwell’s equations. Circuit properties can be expressed in terms of graph theory. The sparse systems of equations such as the flux/charge oriented modified nodal analysis can be assembled. In order to solve the obtained systems, different numerical methods for the simulation of circuits are relevant. This includes methods for the solution of linear systems (direct and iterative solvers), root-finding algorithms for nonlinear systems and implicit time integration methods. Mathematical concepts such as stability, convergence order or complexity are known and can be employed to judge the advantages and disadvantages of the various methods. Eventually, the students are able to program their own circuit simulator, that can return both frequency as well as time domain solutions of electric networks.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 20 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
BSc/MSc etit, BSc/MSc iST, BSc MEC, MSc iCE, MSc WI-etit

8 Grade bonus compliant to §25 (2)
Grade bonus of 0,4 if correctly implemented programs are submitted

9 References

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-sc-2010-vl</td>
</tr>
<tr>
<td>18-sc-2010-ue</td>
</tr>
</tbody>
</table>
Module name
Fast Boundary Element Methods for Engineers

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-2040</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Sebastian Schöps

1 Teaching content
How to solve field problems numerically on the computer? The Boundary Element Method (BEM) has developed into an important alternative to domain-oriented approaches (like Finite Elements), ever since fast implementations are available. The BEM reduces the dimensionality of the problem and can easily take into account unbounded domains. Starting from the representation formulas of Kirchhoff and Stratton-Chu boundary integral equations are derived. Next, their discretization by collocation and Galerkin methods is discussed. The resulting fully populated matrices have to be compressed for practical applications, by Fast Multipole or Adaptive Cross Approximation methods. Practical examples for application of the BEM are considered, for instance acoustic and electromagnetic scattering problems, and thermal analysis. Programming homework will be assigned, to deepen the students' understanding of the contents.

2 Learning objectives
Students will acquire a detailed understanding of Modeling and Simulation with BEM.
- Derivation: convert certain types of partial differential equations to boundary integral equations
- Discretization: obtain boundary element methods from boundary integral equations
- Compression: efficiently store and solve the resulting linear systems of equations
- Application: solve practical field problems in engineering, in the acoustic, electromagnetic and thermal domains

3 Recommended prerequisites for participation
Basic knowledge about numerical methods for the solution of partial differential equations (e.g., Finite Elements). Basic knowledge about modelling and simulation in an application domain (e.g., acoustic domain: wave equation; electromagnetic domain: Maxwell's equations; thermal domain: heat equation).

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 30 students register, the examination will be an oral examination (duration: 25 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Will be handed out during the lecture and is provided via Moodle.
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-2040-vl</td>
<td>Fast Boundary Element Methods for Engineers</td>
<td>Prof. Dr. rer. nat. Sebastian Schöps, Dr. Felix Wolf</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-sc-2040-ue</td>
<td>Fast Boundary Element Methods for Engineers</td>
<td>Prof. Dr. rer. nat. Sebastian Schöps, Dr. Felix Wolf</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Communication Networks II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Teaching content
The course Communication Networks II covers the principles and practice of computer networking and telecommunications with emphasis on the Internet. Starting with the history, the course discusses past, current and future aspects of communication networks. In addition to the basics including well known protocols and technologies, recent developments in the area of multimedia communication (e.g., Video Streaming, P2P, IP-Telephony, Cloud Computing and Service-oriented Architectures) will be examined thoroughly. The course is designed as follow-up to Communication Networks I.

Topics are:
- Basics and History of Communication Networks (Telegraphy vs. Telephony, Reference Models, ...)
- Transport Layer (Addressing, Flow Control, Connection Management, Error Detection, Congestion Control, ...)
- Transport Protocols (TCP, SCTP)
- Interactive Protocols (Telnet, SSH, FTP, ...)
- Electronic Mail (SMTP, POP3, IMAP, MIME, ...)
- World Wide Web (HTML, URL, HTTP, DNS, ...)
- Distributed Programming (RPC, Web Services, Event-based Communication)
- SOA (WSDL, SOAP, REST, UDDI, ...)
- Cloud Computing (SaaS, PaaS, IaaS, Virtualization, ...)
- Overlay Networks (Unstructured P2P, DHT Systems, Application Layer Multicast, ...)
- Video Streaming (HTTP Streaming, Flash Streaming, RTP/RTSP, P2P Streaming, ...)
- VoIP and Instant Messaging (SIP, H.323)

2 Learning objectives
The course Communication Networks II covers the principles and practice of computer networking and telecommunications with emphasis on the Internet. Starting with the history, the course discusses past, current and future aspects of communication networks. In addition to the basics including well known protocols and technologies, recent developments in the area of multimedia communication (e.g., Video Streaming, P2P, IP-Telephony, Cloud Computing and Service-oriented Architectures) will be examined thoroughly. The course is designed as follow-up to Communication Networks I.

3 Recommended prerequisites for participation
Basic courses of first 4 semesters are required. Knowledge in the topics covered by the course Communication Networks I is recommended. Theoretical knowledge obtained in the course Communication Networks II will be strengthened in practical programming exercises. So, basic programming skills are beneficial.

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
Grade bonus compliant to §25 (2)

References
Selected chapters from following books:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2010-ue</td>
<td>Communication Networks II</td>
<td>Dr.-Ing. Tobias Meuser, M.Sc. Christoph Gärtner, Prof. Dr.-Ing. Ralf Steinmetz, M.Sc. Pratyush Agnihotri</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Multimedia Communications Project II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2130</td>
<td>9 CP</td>
<td>270 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Teaching content
The course deals with cutting edge scientific and development topics in the area of multimedia communication systems. Besides a general overview it provides a deep insight into a special scientific topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and scientific competences in one or more of the following topics:

- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia / e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Resource-based Learning

2 Learning objectives
The ability to solve and evaluate technical and scientific problems in the area of design and development of future multimedia communication networks and applications using state of the art scientific methods shall be acquired. Acquired competences are:

- Searching and reading of project relevant literature
- Design of complex communication applications and protocols
- Implementing and testing of software components for distributed systems
- Application of object-oriented analysis and design techniques
- Acquisition of project management techniques for small development teams
- Systematic evaluation and analyzing of technical and scientific experiments
- Writing of software documentation and project reports
- Presentation of project advances and outcomes

3 Recommended prerequisites for participation
Keen interest to develop and explore challenging solutions and applications in cutting edge multimedia communications systems using scientific methods. Further we expect:

- Solid experience in programming Java and/or C# (C/C++).
- Solid knowledge in object oriented analysis and design.
- Basic knowledge of design patterns, refactoring and project management.
- Solid knowledge in computer communication networks is recommended.
- Lectures in “Communication Networks I” and “Communication Networks II” are recommended

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc Wi-ETiT, BSc/MSc CS, MSc Wi-CS, MSc ETiT, MSc iST

8 Grade bonus compliant to §25 (2)

9 References
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:
- Erich Gamma, Richard Helm, Ralph E. Johnson: "Design Patterns: Objects of Reusable Object Oriented Software" (ISBN 0-201-63361-2)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>
Module name
Software Defined Networking

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2280</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Teaching content
The course deals with topics in the area of software defined networking:
- SDN Data Plane
- SDN Control Plane
- SDN Application Plane
- Network Function Virtualization
- Network Virtualization and Slicing
- QoS and QoE in Software Defined Networks

2 Learning objectives
Students will get a deep insight into Software Defined Networking as well as underlying technologies and applications.

3 Recommended prerequisites for participation
Basic courses of the first 4 semesters are required. Knowledge of lectures Communication Networks I and II are recommended.

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, BSc/MSc iST, MSc Wi-ETiT, CS, Wi-CS

8 Grade bonus compliant to §25 (2)

9 References
Textbooks as indicated.
Slides and paper copies as necessary.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2280-vl</td>
<td>Software Defined Networking</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. Boris Koldehofe, Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz, M.Ed. Benjamin Becker, M.Sc. Ralf Kundel
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2280-ue</td>
<td>Software Defined Networking</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Boris Koldehoe, Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz, M.Ed. Benjamin Becker, M.Sc. Ralf Kundel</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Transport Protocols and their Design

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2320</td>
<td>6 CP</td>
<td>180 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Irregular</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Björn Scheuermann

1 Teaching content
This module covers in-depth knowledge about transport protocols and related aspects. We will consider robustness, ease of implementation, efficiency, performance and reliability. Of particular interest will be how to model the protocol behavior and the interplay of transport protocols with other layers of the Internet protocol stack. The focus will be on the Transmission Control Protocol (TCP) and its variants.

2 Learning objectives
After taking this module, students understand the protocol mechanisms of the transport layer in detail, including their interplay within the layer and with other protocol layers. They can use this knowledge to predict and evaluate the effects of protocol modifications. To this end, they are able to analyze the behavior of transport protocols and to assess the impact of key parameters including latency, bandwidth and buffer size on the suitability of different design variants.

3 Recommended prerequisites for participation
Basic knowledge in the field of communication networks, as covered for instance in the module „Kommunikationsnetze 1“.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 30 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit, BSc/MSc iST, MSc WI-etit

8 Grade bonus compliant to §25 (2)
Yes

9 References
Technical literature will be mentioned in the lecture.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2320-vl</td>
<td>Transport Protocols and their Design</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. nat. Björn Scheuermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2320-ue</td>
<td>Transport Protocols and their Design</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. nat. Björn Scheuermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Application-Layer Protocols on the Internet

1 Teaching content
The module covers in-depth knowledge on application architectures and application-layer protocols used on the Internet. This includes widely used client-server protocols like HTTP as well as distributed architectures (peer-to-peer systems, blockchains, etc.). The focus is on tradeoffs between design alternatives and the acquisition of the skills to design and implement efficient and effective protocols on the application layer.

2 Learning objectives
After taking this module, students understand the key questions that the design of an application-layer protocols poses. They understand the design space and are able to recognize and avoid common problems and mistakes. They can apply this knowledge to design and analyze protocol designs, and they are able to design suitable protocol mechanisms for practically relevant design problems.

3 Recommended prerequisites for participation
Basic knowledge in the field of communication networks, as covered for instance in the module „Communication Networks I“.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of an oral examination (duration: 30 minutes). If one can estimate that more than 30 students register, the examination will be a written exam (duration: 120 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit, MSc WI-etit, BSc/MSc iST

8 Grade bonus compliant to §25 (2)
Announcements will be made at the beginning of the semester as to whether there will be homework assignments to accompany the lecture that will improve grades.

9 References
Technical literature will be mentioned in the course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2330-vl</td>
<td>Application-Layer Protocols on the Internet</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-sm-2330-ue</td>
<td>Application-Layer Protocols on the Internet</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Energy Management and Optimization

Module nr. 18-st-2010
Credit points 6 CP
Workload 180 h
Self-study 120 h
Module duration 1 Term
Module cycle Summer term

Language German/English
Module owner Prof. Dr. rer. nat. Florian Steinke

1 Teaching content
The lecture reviews the different levels of energy management. It then focuses on economic dispatch and discusses its different use cases like optimization of self-consumption, virtual power plants, electric vehicle load management or multi-modal neighborhood optimization. Relevant knowledge about the components to be controlled as well as the markets to be addressed is explained. After this introduction to economic dispatch's application environment, the lecture focuses on the methods employed. The underlying mathematical formulations as different types of optimization problems (LP, MILP, QP, stochastic optimization) are reviewed. In parallel, a practical introduction to numerical optimization is given (descent algorithms, convergence, convexity, programming languages for the formulation of optimization problems). Moreover, an introduction into simple methods for the prognosis of future values (linear regression) is provided. All methodological learning is accompanied by hands-on exercises using the Matlab/Octave and the GAMS/AMPL software environments.

2 Learning objectives
Students know the different use cases and formulations of economic dispatch. They have a basic understanding of the typically employed optimization methods and are able to judge the quality of the achieved results. Moreover, students are independently able to formulate (energy) optimization problems and solve them with the tool GAMS/AMPL.

3 Recommended prerequisites for participation
Standard knowledge of linear algebra and multivariate analysis as well as basic knowledge in the use of Matlab/Octave is required. Knowledge of the modules „Kraftwerke & EE“ or „Energiewirtschaft“ is helpful but not necessary.

4 Form of examination
Module exam:
• Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc Wi-ETiT, MSc CE

8 Grade bonus compliant to §25 (2)
Improvement of grades up to 0.4 compliant to APB 25(2) through bonus system for regular attention of exercises and practical courses

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2010-vl</td>
<td>Energy Management and Optimization</td>
<td>Prof. Dr. rer. nat. Florian Steinke</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-st-2010-ue</td>
<td>Energy Management and Optimization</td>
<td>Prof. Dr. rer. nat. Florian Steinke</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-st-2010-pr</td>
<td>Energy Management and Optimization Lab</td>
<td>Prof. Dr. rer. nat. Florian Steinke</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Machine Learning & Energy

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2020</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Florian Steinke

1 Teaching content
The analysis and interpretation of data becomes ever more important, also for engineers. Digitalization and Smart Grids are terms to describe a host of novel data-based services in the field of generation, distribution, consumption, and marketing of (renewable) energy. The lecture presents the recent developments and their underlying machine learning methods.

For a start we describe the different problem settings of machine learning methods, review recent developments in the field, and evaluate the impact of machine learning on the energy sector. After such an introductory overview, we review the basics of linear algebra and numerical optimization. We then introduce supervised learning problems and study different model classes to solve such problems (linear models, trees, random forests, nearest neighbor, kernel methods, deep learning). We then turn to a probabilistic view and study unsupervised learning problems. Finally, we give an introduction to probabilistic graphical models. Throughout the semester we discuss exemplary applications of machine learning in the energy domain (e.g. renewable forecasting, predictive maintenance, state estimation, probabilistic load flow).

Practical exercises with Python deepen the understanding and support students' actively usable skills.

2 Learning objectives
Students understand important machine learning problem settings and some key methods for each task. They know common applications thereof in the energy domain. Moreover, the students are able to apply and adapt those methods independently to new applications (not only from the energy domain).

3 Recommended prerequisites for participation

- Good knowledge of linear algebra required
- Basic knowledge of statistics and numerical optimization will be helpful
- Using Python for programming the practical examples should pose no difficulty

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)

The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 8 students register, the examination will be an oral examination (duration: 25 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit, MSc iST, MSc Wi-etit, MSc CE

8 Grade bonus compliant to §25 (2)
Grade improvements up to 0.4 according to APB 25(2) through bonus for regularly attended practice/internship appointments and independent work on a case study.

9 References
- C.M. Bishop: Pattern Recognition & Machine Learning
- J. Friedman, T. Hastie, R. Tibshirani: The elements of statistical learning
- D. Koller, N. Friedmann: Probabilistic Graphical Models. Principles and Techniques

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2020-vl</td>
<td>Machine Learning & Energy</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
<td>M.Sc. Tim Janke, Prof. Dr. rer. nat. Florian Steinke, M.Sc. Allan Santos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-st-2020-ue</td>
<td>Machine Learning & Energy</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
<td>M.Sc. Tim Janke, Prof. Dr. rer. nat. Florian Steinke, M.Sc. Allan Santos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-st-2020-pr</td>
<td>Machine Learning & Energy Lab</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
<td>M.Sc. Tim Janke, Prof. Dr. rer. nat. Florian Steinke, M.Sc. Allan Santos</td>
<td></td>
</tr>
</tbody>
</table>
Module name
Technology and Economics of Multimodal Energy Systems

Module nr. 18-st-2060
Credit points 5 CP
Workload 150 h
Self-study 105 h
Module duration 1 Term
Module cycle Summer term

Language German/English
Module owner Prof. Dr.-Ing. Stefan Nießen

1 Teaching content
Energy economical framework, structures of multimodal energy systems, investment and costing, energy trading, sources for flexibility including storage, regulation, sustainability, social acceptance and stakeholder interests
Topics of good scientific practice, as well as societal or ethical aspects of product design, optimization, and algorithms are addressed in an accompanying manner, where technically appropriate.

2 Learning objectives
The students learn the structures of energy supply systems including electricity, primary energies, heating, cooling, transport and water desalination. They understand the underlying principles for the design of energy systems for buildings, sites, cities and countries and are able to assess their adequacy for different international locations considering costs, environmental impact and social acceptance.
The students learn to assess the economic viability of investments in energy assets using new present value and annuity. They learn the functioning of energy markets and different forms of trading and settlement for energy transactions.
Based on an analysis of the impact of an increasing share of renewables in the system, the students learn the technology of different sources for flexibility including demand-side-management, different technologies for storage and for the coupling of different modes of energy. Storage technologies include batteries, pumped hydro, hydrogen and inertia. Multimodal coupling technologies include power-heat, heat-cooling, power-heat-water and industrial processes.
Energy systems are subject to numerous laws and regulations. Therefore, the students learn different elements that define the regulatory framework such as feed-in tariffs, tax incentives, credit programs, quotas and certificates. The regulations are the result of societal processes. Therefore, the students analyze the different interest groups, origins and impact of public opinion and the perception of risk.

3 Recommended prerequisites for participation
A completed Bachelor in any of the following subjects: electrical engineering, mechanical engineering, mechatronics, environmental sciences, business administration/engineering (Wirtschaftsingenieurwesen)

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
In general, the module is examined by written examination (duration: 120 min.). If 20 students or less apply, the exam is oral (duration: 30 min.). The mode of examination will be communicated within one working week after the end of the exam application phase.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)
Grade improvement of 0.4 by successful presentation during the seminar

9 References
- Downloadable slides
- Book.energytransition.org/en
- https://www.agora-energiewende.de/fileadmin2/Projekte/2018/A_word_on/Agora_Energiewende_a-word-on_flexibility_WEB.pdf

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2060-vl</td>
<td>Technology and Economics of Multimodal Energy Systems</td>
<td>Prof. Dr.-Ing. Stefan Nießen</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-st-2060-se</td>
<td>Technology and Economics of Multimodal Energy Systems - simulation game</td>
<td>Prof. Dr.-Ing. Stefan Nießen</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Designing the Energiewende

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2080</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Stefan Nießen

1 Teaching content
Energy technological, economical and political frame of the Energiewende with a focus on electricity in Germany. The module consists of three elements:

- 6 double-lectures, two of them being taught by Prof. Michèle Knodt from Department of History and Social Sciences, by Prof. Florian Steinke and Prof. Stefan Niessen from Department of Electrical Engineering and Information Technology.
- A seminar consisting of 3 times 90 minutes, during which interdisciplinary teams of students from political and engineering sciences jointly analyse a recent study on the Energiewende and mutually present a short synthesis to each other.
- Two half-days practical training during which the interdisciplinary teams based on a computer simulation take their own decisions on the regulatory framework, the expansion of the energy system and its operation. They experience in accelerated mode the impact on CO2 emissions, costs and security of supply. In the practical part the students apply the learnings practically by means of a computer based serious game. They take the roles of electricity suppliers, industry, private homes and politicians, they take decisions on operation and expansion of the energy system. Through the computer simulation the students experience the consequences of their decisions on costs, CO2 emissions and security of supply in time-lapse for the period 2020 to 2050.

Topics of good scientific practice, as well as societal or ethical aspects of product design, optimization, and algorithms are addressed in an accompanying manner, where technically appropriate.

2 Learning objectives
The students know different methods for techno-economical analysis of energy systems and base parameters of energy systems. Furthermore they have an overview on main technologies for energy conversion and storage today and possible future evolutions. They also comprehend governance basics consisting in EU legal acts, German laws and directives and an overview on the institutions implementing these.

3 Recommended prerequisites for participation
A completed Bachelor in any of the following subjects: electrical engineering, mechanical engineering, mechatronics, environmental sciences, business administration/electrical engineering (Wirtschaftsingenieurwesen-Elektrotechnik und Informationstechnik), Political Sciences

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
The type of examination will be announced in the first lecture. Possible types include a presentation and a report of the parts of the module

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)
9 References

- Downloadable slides
- Book.energytransition.org/en
- https://www.agora-energiewende.de/fileadmin2/Projekte/2018/A_word_on/Agora_Energiewende_a-word-on_flexibility_WEB.pdf

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2080-vl</td>
<td>Designing the Energiewende - lecture</td>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. phil. Michèle Knodt, Prof. Dr.-Ing. Stefan Nießen, Prof. Dr. rer. nat. Florian Steinke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2080-pr</td>
<td>Designing the Energiewende - serious game</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. phil. Michèle Knodt, Prof. Dr.-Ing. Stefan Nießen, Prof. Dr. rer. nat. Florian Steinke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2080-se</td>
<td>Designing the Energiewende - seminar</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. phil. Michèle Knodt, Prof. Dr.-Ing. Stefan Nießen, Prof. Dr. rer. nat. Florian Steinke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 Teaching content
The lecture covers advanced topics in the software engineering field that deal with maintenance and quality assurance of software. Therefore, those areas of the software engineering body of knowledge which are not addressed by the preceding introductory lecture, are in focus. The main topics of interest are: software maintenance and reengineering, configuration management, static programme analysis and metrics, dynamic programme analysis and runtime testing as well as programme transformations (refactoring). During the exercises, a suitable Java open source project has been chosen as running example. The participants analyze, test and restructure the software in teams, each dealing with different subsystems.

2 Learning objectives
The lecture uses a single running example to teach basic software maintenance and quality assuring techniques in a practice-oriented style. After attendance of the lecture a student should be familiar with all activities needed to maintain and evolve a software system of considerable size. Main emphasis is laid on software configuration management and testing activities. Selection and usage of CASE tool as well as working in teams in conformance with predefined quality criteria play a major role.

3 Recommended prerequisites for participation
Introduction to Computer Science for Engineers as well as basic knowledge of Java

4 Form of examination
Module exam:
• Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc Wi-ETiT, Informatik

8 Grade bonus compliant to §25 (2)

9 References
www.es.tu-darmstadt.de/lehre/se_ii/

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2010-vl</td>
<td>Software-Engineering - Maintenance and Quality Assurance</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-su-2010-ue</td>
<td>Software-Engineering - Maintenance and Quality Assurance</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Real-Time Systems

<table>
<thead>
<tr>
<th>Module name</th>
<th>Module nr. 18-su-2020</th>
<th>Credit points</th>
<th>Workload 180 h</th>
<th>Self-study 120 h</th>
<th>Module duration 1 Term</th>
<th>Module cycle Summer term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content
The lecture basically covers a model-driven software engineering process which is specially customized for real-time systems. This process is more deeply explored in the exercise using an automotive example. A focus is laid on object-oriented techniques. In this context, a real-time specific state-of-the-art CASE tool is introduced and used. Furthermore, fundamental characteristics of real-time systems and system architectures are introduced. Scheduling algorithms are discussed to get insights into real-time operating systems. Finally, a comparison between the Java programming language and its expansion for real-time operating systems (RT Java) will conclude the lecture.

2 Learning objectives
Students, who have successfully attended this lecture have acquired skills needed for the model-driven and object-oriented development of embedded real-time systems. This includes a deeper understanding of the following topics:
- classification of real-time systems
- create and analyze executable models
- application of real-time scheduling algorithms
- evaluation and comparison of pros/cons of real-time programming languages as well as real-time operating systems

3 Recommended prerequisites for participation
Basic knowledge of software engineering techniques and excellent knowledge of at least one object-oriented programming language (preferably Java)

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, BSc iST, MSc Wi-ETiT, BSc Informatik

8 Grade bonus compliant to §25 (2)

9 References
www.es.tu-darmstadt.de/lehre/es/

Courses
<p>| Course Nr. 18-su-2020-vl | Course name Real-Time Systems | Instructor Prof. Dr. rer. nat. Andreas Schürr | Type Lecture | SWS 3 |</p>
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2020-ue</td>
<td>Real-Time Systems</td>
<td>M.Sc. Hendrik Göttmann, Prof. Dr. rer. nat. Andreas Schürr</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

298
Module name
Adaptive Filters

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
Theory:
1) Derivation of optimal filters for stochastic processes, e.g. Wiener filter or linear prediction filter based on suitable cost functions.
2) Elaboration of adaptive procedures, which allow to iteratively approach the optimal solution for non-stationary signals in non-stationary environments. Here, the adaptive procedures such as NLMS adaptation, affine projection, and the RLS algorithm are derived and extensively analysed.
3) Analysis of the adaptation behaviour and control procedures of adaptive filters based on the NLMS procedure.
4) Derivation and analysis of the Kalman filter as optimal filter for non-stationary input signals.
5) Procedures for the decomposition of signals into sub-bands for the realization of optimal filters in the frequency domain, e.g. noise reduction procedures.

Applications:
Parallel to the theory, practical applications are explained. As an example for the Weiner filter, the acoustic noise reduction procedures are explained. Acoustic echo cancellation and feedback cancellation are given as examples for adaptive filters. Furthermore beamforming approaches are introduced.

It is planned to offer an excursion to Siemens Audiology Engineering Group in Erlangen.
In the 4 to 5 exercises, some content of the lecture will be implemented in MATLAB which allows the students to get familiar with practical realizations of the theoretical procedures.

2 Learning objectives
During the lecture, basics of adaptive filters are taught. The necessary algorithms are derived, interpreted and applied to examples of speech, audio and video processing.
Based on the content of the lecture you are able to apply adaptive filters to real practical applications.
For the admission to the exam you give a talk about a topic in the domain of adaptive filters chosen by you. This will allow you to acquire the know-how to read and understand scientific literature, familiarize yourself with an unknown topic and present your knowledge, such as it will be certainly required from you in your professional life as an engineer.

3 Recommended prerequisites for participation
Digital Signal Processing

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETIT

8 Grade bonus compliant to §25 (2)
9 References

Slides of the lecture.

Literature:

- E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004 (Textbook of this course);

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2010-vl</td>
<td>Adaptive Filters</td>
<td>Prof. Dr.-Ing. Henning Puder, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-zo-2010-ue</td>
<td>Adaptive Filters</td>
<td>Prof. Dr.-Ing. Henning Puder, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Digital Signal Processing

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2060</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1 Teaching content
1) Discrete-Time Signals and Linear Systems - Sampling and Reconstruction of Analog Signals
2) Digital Filter Design - Filter Design Principles; Linear Phase Filters; Finite Impulse Response Filters; Infinite Impulse Response Filters; Implementations
3) Digital Spectral Analysis - Random Signals; Nonparametric Methods for Spectrum Estimation; Parametric Spectrum Estimation; Applications;
4) Kalman Filter

2 Learning objectives
Students will understand basic concepts of signal processing and analysis in time and frequency of deterministic and stochastic signals. They will have first experience with the standard software tool MATLAB.

3 Recommended prerequisites for participation
Deterministic signals and systems theory

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 180 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, Wi-ETiT, MSc Medizintechnik

8 Grade bonus compliant to §25 (2)

9 References
Course manuscript
Additional References:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2060-ue</td>
<td>Digital Signal Processing</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>18-zo-2060-vl</td>
<td>Digital Signal Processing</td>
<td>Lecture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Martin Gölz, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Lecture</td>
<td>3</td>
</tr>
<tr>
<td>M.Sc. Martin Gölz, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Speech and Audio Signal Processing

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2070</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
<td>German</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
</tr>
</tbody>
</table>

1 Teaching content
Algorithms of speech and audio signal processing: Introduction to the models of speech and audio signals and basic methods of audio signal processing. Procedures of codebook based processing and audio coding. Beamforming for spatial filtering and noise reduction for spectral filtering. Cepstral filtering and fundamental frequency estimation. Mel-filterind cepstral coefficients (MFCCs) as basis for speaker detection and speech recognition. Classification methods based on GMM (Gaussian mixture models) and speech recognition with HMM (Hidden markov models). Introduction to the methods of music signal processing, e.g. Shazam-App or beat detection.

2 Learning objectives
Based on the module you acquire an advanced knowledge of digital audio signal processing mainly with the help of the analysis of speech signals. You learn about different basic and advanced methods of audio signal processing, to range from the theory to practical applications. You will acquire knowledge about algorithms such as they are applied in mobile telephones, hearing aids, hands-free telephones, and man-machine-interfaces (MMI). The exercise will be organized as a talk given by each student with one self-selected topic of speech and audio processing. This will allow you to acquire the know-how to read and understand scientific literature, familiarize with an unknown topic and present your knowledge, such as it will be certainly required from you in your professional life as an engineer.

3 Recommended prerequisites for participation
Knowledge about satistical signal processing (lecture „Digital Signal Processing“). Desired - but not mandatory - is knowledge about adaptive filters.

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
Seminar presentation: Scientific talk about a topic in the field of “Speech and Audio Signal Processing”, single (duration 10-15 min) or in groups of two students (15-20 min) or in a group of 20 students and more a written exam (duration 90 min)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
Slides (for further details see homepage of the lecture)
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2070-vl</td>
<td>Speech and Audio Signal Processing</td>
<td>Prof. Dr.-Ing. Henning Puder, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-zo-2070-ue</td>
<td>Speech and Audio Signal Processing</td>
<td>Prof. Dr.-Ing. Henning Puder, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Practice</td>
<td>1</td>
</tr>
<tr>
<td>18-zo-2070-se</td>
<td></td>
<td>Prof. Dr.-Ing. Henning Puder, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Data Science I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2110</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1. Teaching content
 The course covers the following topics:
 - Python programming basics
 - Data science introduction
 - Data storage and formats
 - Data exploration and visualization
 - Statistical methods and inference
 - Descriptive statistics (uni & bivariate)
 - Inferential statistics
 - Feature extraction
 - Time Series Data
 - Image data
 - Audio data
 - Statistical learning
 - Cross-validation, overfitting, annotation
 - Regression
 - Classification

2. Learning objectives
 This module offers an introduction to the topic of Data Science with a strong practical orientation. Students gain knowledge about all parts of a Data Science processing: From storage/data acquisition over inferential statistics to visualization.

3. Recommended prerequisites for participation

4. Form of examination
 Module exam:
 - Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
 The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 16 students register, the examination will be an oral examination (duration: 45 min.). The type of examination will be announced in the beginning of the lecture.

5. Prerequisite for the award of credit points
 Passing the final module examination

6. Grading
 Module exam:
 - Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7. Usability of the module

8. Grade bonus compliant to §25 (2)
 Yes

9. References
• Lecture notes and slides can be downloaded here:
 – http://www.spg.tu-darmstadt.de
 – moodle
• Further reading:
 – Wes McKinney: Python for Data Analysis, O'Reilly, 2017
 – Christopher M. Bishop: Pattern Recognition and Machine Learning, 2011
 – James, Witten, Hastie and Tibshirani, Introduction to Statistical Learning, Springer, 2017

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2110-vl</td>
<td>Data Science I</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Christian Debes, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2110-ue</td>
<td>Data Science I</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Christian Debes, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Resilient Communication Networks

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2340</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Björn Scheuermann

1 Teaching content
The course covers the following topics:
- Resilience in the different disciplines
- Resilience in communication networks
- Importance of resilience for communication networks
- Requirements for current communication networks
- Methods to increase resilience in communication networks
 - Wireless networks (e.g., mobile communications)
 - Wired networks
- Resilient network management in software-defined networks
- Resilience through adaptivity in software-defined networks

2 Learning objectives
Students are familiar with the idea and necessity of resilience in various disciplines with a focus on adaptive communication networks. They are familiar with various methods for increasing resilience, such as redundancy and diversity, and can apply these methods to the design of communication networks.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)

The examination takes place in form of a written exam (duration: 90 min.). If one can estimate that less than 10 students register, the examination will be an oral examination (duration: 30 min.) The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc WI-etit, BSc/Msc iST, MSc iCE

8 Grade bonus compliant to §25 (2)
Grade improvements up to 0.4 according to APB 25(2) through bonus for regularly completed and submitted bonus exercises.

9 References
A lecture notes or slides can be downloaded:
- Moodle Platform

Advanced literature

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-sm-2340-vl</td>
<td>Resilient Communication Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Dr.-Ing. Tobias Meuser, Prof. Dr. rer. nat. Björn Scheuermann</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-sm-2340-ue</td>
<td>Resilient Communication Networks</td>
<td>Practice</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name

Hardware for Neural Networks

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zh-2010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Li Zhang</td>
</tr>
</tbody>
</table>

1 Teaching content

- Training and inference of neural networks
- Challenges in accelerating neural networks
- Computation cost reduction in neural networks
- Neural networks acceleration with logic design and FPGAs
- Neural networks acceleration with in-memory-computing platforms

2 Learning objectives

Students that have completed this module know the development of neural networks and the challenges in accelerating neural networks with CPUs and GPUs. They can evaluate the computation cost of neural networks and select the corresponding methods to reduce the computation cost. They are also enabled to evaluate the performance of the different hardware acceleration platforms for neural networks.

3 Recommended prerequisites for participation

Basic programming skills in Python.

4 Form of examination

Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module

MSc etit, MSc WI-etit, BSc/MSc iST, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References

Slides can be downloaded through Moodle platform.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zh-2010-vl</td>
<td>Hardware for Neural Networks</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Li Zhang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zh-2010-pr</td>
<td>Hardware for Neural Networks</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Li Zhang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Internships

<table>
<thead>
<tr>
<th>Module name</th>
<th>Laboratory Control Engineering II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-ad-2060</td>
</tr>
<tr>
<td>Credit points</td>
<td>5 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

1 Teaching content
During the laboratory course the following experiments will be conducted: Coupling control of a helicopter, Non-linear control of a gyroscope, Nonlinear multivariable control of an aircraft, Servo control systems, Control of an overhead crane system, Programmable logic control of a stirring process.

2 Learning objectives
After attending this laboratory course, a student is capable of:

1. recalling the basics of the conducted experiments,
2. organize and comprehend background information for experiments,
3. assemble experimental set-ups based on manuals,
4. judge the relevance of experimental results by comparing them with theoretically predicted outcomes,
5. present the results of the experiments.

3 Recommended prerequisites for participation
System Dynamics and Control Systems II, the attendance of the additional lecture “System Dynamics and Control Systems III” is recommended.

4 Form of examination
Module exam:
- Module exam (Study achievement, Examination, Duration: 180 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination.

6 Grading
Module exam:
- Module exam (Study achievement, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc iST, MSc Wi-ETiT, Biotechnik.

8 Grade bonus compliant to §25 (2)

9 References
Adamy: Instruction manuals for the experiments (available during the kick-off meeting).

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>18-ad-2060-pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name</td>
<td>Laboratory Control Engineering II</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Nikolas Hohmann, Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
<tr>
<td>Type</td>
<td>Internship</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Power Laboratory I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2091</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
Safety instructions for laboratory;
Topic of experiments:
• Electrical energy conversion
• Power electronics
• High voltage technology
• Electrical energy supply
• Renewable energies

2 Learning objectives
Practical knowledge is gained in measuring and operating electrical devices and apparatus of electrical power engineering in small groups of students.

3 Recommended prerequisites for participation
Power Engineering or similar

4 Form of examination
Module exam:
• Module exam (Study achievement, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Nasar, S.A.: Electric Power systems. Schaum's Outlines

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2091-pr</td>
<td>Power Laboratory I</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2090-tt</td>
<td>Laboratory Briefing</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td>Tutorial</td>
<td>0</td>
</tr>
</tbody>
</table>
Module name
Power Laboratory II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2092</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
Practical course on power engineering - Distribution and Application. About 50% of the units are devoted to power distribution and high voltage engineering; About 50% are dealing with application in drive systems, concerning “field-oriented control” of variable speed drives, encoder systems, linear permanent magnet and switched reluctance machines.

2 Learning objectives
Practical knowledge is gained in measuring and operating electrical devices and apparatus of electrical power engineering in small groups of students.

3 Recommended prerequisites for participation
Master program: Power Lab 1

4 Form of examination
Module exam:
- Module exam (Study achievement, Examination, Duration: 120 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Text book with detailed laboratory instructions

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2092-pr</td>
<td>Power Laboratory II</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2090-tt</td>
<td>Laboratory Briefing</td>
<td>Tutorial</td>
<td>0</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Practical Training with Drives

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2100</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
The purpose of this laboratory is gaining extented knowledge about realization and behaviour of drive systems. An introduction in measurement problems concerning drives is given. The contents of the laboratory is setting drives to work and investigating drive systems under laboratory conditions. Special attention is paid to inverter-fed AC drives. The laboratory experiments are individually coordinated with the previous knowledge of the respective courses (ETiT or MEC).

2 Learning objectives
The students get the ability of measurement for electrical motors, generators and transformers.

3 Recommended prerequisites for participation
Bachelor of Science in Electrical Engineering, Power Engineering or similar

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References
Textbook with lab instructions;
Leonhard, W.: Control of electric drives, Springer, 2000;
Textbook - Binder, A.: Motor Developement for Electrical Drive Systems; Lecture notes - Mutschler, P.: Control of Drives

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2100-pr</td>
<td>Practical Training with Drives</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2090-tt</td>
<td>Laboratory Briefing</td>
<td>Tutorial</td>
<td>0</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Laboratory Matlab/Simulink II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2100</td>
<td>4 CP</td>
<td>120 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
</tr>
</tbody>
</table>

1. **Teaching content**
The lab is split into the two parts Simulink and Control Engineering II. First the fundamentals of the simulation tool Simulink are introduced and their application to problems from different fields of application is trained. In the second part, the knowledge gained in the first part is applied to autonomously solve several control design problems as well as simulation tasks.

2. **Learning objectives**
The students will be able to work with the tool MatLab/Simulink on their own and can solve tasks from the areas of control engineering and numerical simulation. The students will know the different design methods of the control system toolbox and the fundamental concepts of the simulation tool Simulink. They can practically apply the knowledge gathered in the lectures “System Dynamics and Control Systems I and II” and “Modelling and Simulation”.

3. **Recommended prerequisites for participation**
The lab should be attended in parallel or after the lectures “System Dynamics and Control Systems II” and “Modelling and Simulation”.

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7. **Usability of the module**
MSc etit, MSc MEC

8. **Grade bonus compliant to §25 (2)**

9. **References**
Lecture notes for the lab tutorial can be obtained at the secretariat

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2100-pr</td>
<td>Laboratory Matlab/Simulink II</td>
<td>Internship</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Findeisen
Module name
Advanced Integrated Circuit Design Lab

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2120</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1. **Teaching content**
Practical Design Tasks in Full Custom Design of Digital or Analog Circuits using State-of-the-Art Commercial CAD Tools

2. **Learning objectives**
A student is, after successful completion of this module, able to 1. develop and verify transistor circuitry using Cadence 2. simulate logic and analog circuits (Pre- and Postlayout) 3. draw, verify and extract layout

3. **Recommended prerequisites for participation**
Lecture "Advanced Digital Integrated Circuit Design" or “Analog Integrated Circuit Design”

4. **Form of examination**
Module exam:
• Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
• Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC, MSc EPE

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2120-pr</td>
<td>Advanced Integrated Circuit Design Lab</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
<td></td>
</tr>
</tbody>
</table>
1 Teaching content
Modeling, simulating and planning electrical power networks with a wide range of nominal voltages under consideration of electrical equipment (overhead lines, cables, transformers, conventional power plants, renewable energy resources and reactive power compensation systems).

2 Learning objectives
The learning targets are the following:
- Modeling various electrical power systems using the appropriate techniques.
- Choice of static and dynamic simulation techniques after analysing the concrete simulation processes.
- Understanding the behaviour of various equipment in the electric power system, especially renewable energy resources. Interpretation of results based on the fundamental questions of modeling and simulating electrical power systems.

3 Recommended prerequisites for participation
Basics of electrical power systems

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc WI-ET, MSc CE

8 Grade bonus compliant to §25 (2)

9 References
Script, Presentation Slides, Description of tutorial and basic network data

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2100-pr</td>
<td>Simulation of Electrical Power Networks</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Lighting Technology I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2010</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Tran Quoc Khanh

1 Teaching content
Structure and functionality of the human eye, terms and unit in lighting technology, photometry, radiometric and photometric properties of materials, filters, physiology of vision, colour theory, lighting, light sources. Measurement of luminous flux, luminous intensity, illuminance, luminance, determination of the spectral responsivity function of the human eye, colorimetry colour rendering, colour as traffic signals, measuring of optical material characteristics, LED properties.

2 Learning objectives
To list and connect terms, units and radiometric and photometric properties of materials in lighting technology, to describe and understand structure and functionality of the human eye and the physiology of vision, to illustrate basics of lighting, measuring methods and application. Being able to measure base items in lighting technology, applying knowlegde of lighting and enhance them with experiments. Developing a better understanding for light and color.

3 Recommended prerequisites for participation
MSc ETiT, MSc Wi-ETiT, MSc MEC

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Script for lecture: Lighting Technology I
Excercisebook: laboratory: lighting technology I

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2010-vl</td>
<td>Lighting Technology I</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Babak Zandi, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2010-pr</td>
<td>Lighting Technology I</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Babak Zandi, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Advanced Lighting Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2020</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Tran Quoc Khanh

1 Teaching content

2 Learning objectives
To know current developments and applications, list and connect terms, to illustrate special topics of lighting, measuring methods and application.
Being able to measure base items in lighting technology, applying knowlegde of lighting and dedicated applications and further to enhance them with experiments. Developing a better understanding for light, color, perception and lighting situations.

3 Recommended prerequisites for participation
Lighting Technology I

4 Form of examination
Module exam:
 • Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Exercisebook: laboratory: lighting technology II

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2020-vl</td>
<td>Advanced Lighting Technology</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2020-pr</td>
<td>Advanced Lighting Technology</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Solid State Lighting

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2060</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Tran Quoc Khanh

1 Teaching content
Basics of light and colour perception; basics of solid state light sources; LEDs: material systems, structural shape, optics, phosphors; phosphor mixtures; colour and white LEDs; temperature, current and optical behaviour of LEDs; LED models; lifetime and defect mechanisms of LEDs; OLEDs and semiconductor lasers in lighting engineering; optical sensors; semiconductor based cameras; colour sensors; colour quality of solid state light sources; choice and combination of LEDs in practical LED luminaires; flicker; grouping (binning) of LEDs according to their technological parameters; lighting quality metrics; intelligent indoor lighting with LEDs: colour recognition, spectral reconstruction; intelligent automotive and outdoor lighting with LEDs; practical training: thermic, electric and lighting engineering related measurement of LED light sources.

2 Learning objectives
Principles and applications of the technology of solid state light sources in lighting engineering; LED technology and the optimisation of visual perception under LED light in modern lighting engineering.

3 Recommended prerequisites for participation
Lichttechnik I, II

4 Form of examination
Module exam:
- Module exam (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module
MSc etit

8 Grade bonus compliant to §25 (2)

9 References
Introduction to Solid State Lighting (Zukauskas et al., Wiley, 2002)
Light Emitting Diodes (Schubert; Cambridge Univ. Press, 2003)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2060-vl</td>
<td>Solid State Lighting</td>
<td>Dr.-Ing. Alexander Herzog, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>18-kh-2060-pr</td>
<td></td>
<td>Dr.-Ing. Alexander Herzog, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Multimedia Communications Lab II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2070</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Teaching content
The course deals with cutting edge development topics in the area of multimedia communication systems. Besides a general overview it provides a deep insight into a special development topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and basic scientific competences in one or more of the following topics:
- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia / e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Applications for distributed workflows

2 Learning objectives
The ability to solve and evaluate problems in the area of design and development of future multimedia communication networks and applications shall be acquired. Acquired competences are:
- Design of complex communication applications and protocols
- Implementing and testing of software components for distributed systems
- Application of object-oriented analysis and design techniques
- Acquisition of project management techniques for small development teams
- Writing of software documentation and project reports
- Presentation of project advances and outcomes

3 Recommended prerequisites for participation
Keen interest to explore challenging topics which are cutting edge in technology and research. Further we expect:
- Solid experience in programming Java and/or C# (C/C++)
- Solid knowledge in object oriented analysis and design
- Solid knowledge in computer communication networks are recommended
- Lectures in Communication Networks I (II, III, or IV) are an additional plus

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

Usability of the module
MSc ETiT, MSc iCE, BSc/MSc iST, Wi-ETiT, BSc/MSc CS, Wi-CS,

Grade bonus compliant to §25 (2)

References
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:
- Erich Gamma, Richard Helm, Ralph E. Johnson: "Design Patterns: Objects of Reusable Object Oriented Software" (ISBN 0-201-63361-2)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>

321
Module name
Introduction to Scientific Computing with Python

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2070</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Florian Steinke

1 Teaching content
Scientific computing is introduced via six case studies. Exemplary engineering problems that are known from basic engineering courses are solved on a computer using fundamental methods from numerical mathematics. Opportunities and limitations of this approach are highlighted.

The required material on numerical mathematics is taught via preparatory scripts for each case study. During the practical exercises the methods are implemented in the current computing environment Python under the guidance of suitable teaching personnel.

The case studies cover the following numerical topics:
- Formulation and solution of systems of linear equations, sparse methods
- Integration of ordinary differential equations (ODE) and their analysis based on eigenvalues
- Mathematical optimization and automated differentiation
- Linear regression and approximation, first Machine Learning algorithms
- Discretization of simple partial differential equations (PDE)

2 Learning objectives
After completing the module, the students have learned to work on engineering problems with modern computer tools and to use important basic technologies of scientific computing in a targeted manner. In doing so, the students have been taught an algorithmic way of thinking and are able to assess the possibilities and limitations of computer-based computational methods.

3 Recommended prerequisites for participation
Etit 1 & 2, Mathe for etit 1-3

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

The exact form of the examination will be announced at the beginning of the first course. Either a report of experimental descriptions and/or a presentation of experimental results will be prepared.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
Etit B.A./M.Sc. with all options, as well as CE, ICE, IST

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2070-pr</td>
<td>Introduction to Scientific Computing with Python</td>
<td>Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. rer. nat. Markus Meinert, Prof. Dr. rer. nat. Sebastian Schöps, Prof. Dr. techn. Heinz Köppl, Prof. Dr. rer. nat. Florian Steinke</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Digital Signal Processing Lab

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2030</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content

1. Introduction to MATLAB
2. Discrete-Time Signals and Systems
3. Frequency-Domain Analysis using the DFT
4. Digital FIR Filter Design
5. IIR Filter Design using Analog Prototypes
6. Nonparametric Spectrum Estimation

2 Learning objectives

The students are able to apply skills acquired in the course Digital Signal Processing. These include the design of digital FIR and IIR filters as well as non-parametric and parametric spectrum estimation. Students learn how MATLAB is used to apply theoretical concepts and to demonstrate signal processing techniques by using hands-on application examples.

3 Recommended prerequisites for participation

Fundamentals of Signal Processing

4 Form of examination

Module exam:
- Module exam (Study achievement, Written examination, Duration: 120 Min., Default RS)
Exam (Duration: 120 min) and a Report (Lab Reports), Details will be announced at the beginning of the lecture.

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Study achievement, Written examination, Weighting: 100 %)

7 Usability of the module

MSc ETiT, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References

Lab manual

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2030-pr</td>
<td>Digital Signal Processing Lab</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Abdelhak Zoubir

Type
Internship

| SWS |
|-----|-----|
| 3 | |
2.3 Seminars

Module name
Design of Electrical Machines and Actuators with Numerical Field Calculation

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2110</td>
<td>5 CP</td>
<td>150 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
</tr>
</tbody>
</table>

1 Teaching content
Introduction to Finite Element Method (FEM), Basic examples of electromagnetic devices designed in 2D with FEM, 2D electromagnetic Design of transformers, AC machines, permanent magnet devices; eddy current applications such as squirrel-cage machines (Example: Wind generator); Cooling systems and thermal design: Calculation of temperature distribution within power devices

2 Learning objectives
A good knowledge in applying FEMAG and ANSYS software package to basic field problems is gained.

3 Recommended prerequisites for participation
Strongly recommended is the attendance of lecture and active co-operation in the tutorial "Energy Converters - CAD and System Dynamics"

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc EPE, MSc ETiT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr. 18-bi-2110-se</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design of Electrical Machines and Actuators with Numerical Field Calculation</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder, Dr.-Ing. Bogdan Funieru</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Planning and Application of Electrical Drives (Drives for Electric Vehicles)

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2120</td>
<td>5 CP</td>
<td>150 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1. **Teaching content**
Mono- and hybrid drive concepts, motor technology, DC and AC machines, drive systems, car dynamic, energy storage;
Seminary work: simulation of car with electric drive train, presentation of seminary work

2. **Learning objectives**
Knowledge on design procedures for electric modulation systems for electric and hybrid cars

3. **Recommended prerequisites for participation**
Bachelor in Electrical Engineering or Mechatronics, "Electrical Drives and Machines" and "Power electronics" recommended

4. **Form of examination**
Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
MSc ETiT, MSc MEC, MSc EPE, MSc WI-ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
Textbook; Binder, A.: Electric machines and drives I, Darmstadt Univ. of Technology
Mitschke, M.: Dynamik der Kraftfahrzeuge, Springer Verlag Berlin

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2120-se</td>
<td>Planning and application of electrical drives (Drives for electric vehicles)</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder
Module name
KeySkills With a Focus on Language

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-2112</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Katharina Dehn

1. **Teaching content**

1. **Seminar "Speaking and writing scientifically"**:
In the seminar, students are trained in competences that are expected of students in the Mechatronics degree programme in the area of oral and written communication. Own texts are worked out in scientific language so that they can be used in the subject studies.

The aim of the seminar is, on the one hand, to expand the students' general linguistic competence (above all vocabulary problems in the narrower sense) and, on the other hand, to make them transparent and aware of the culture-specific social expression typology (text type conventions, etc.) by making them aware of the intercultural change in the narrower sense (i.e. scientific habitus, speaker role, language style, etc.) in order to be able to comply with these, but also to avoid over-generalising inappropriate functionally imitative behaviour. The seminar is structured in a learner-centred way, as far as this is interculturally feasible. Authentic material is requested or produced.

Main topics:
- Punctuation (e.g. the hyphen in technical fields)
- Phonetics
- lexis/morphology (e.g. compound nouns)
- Semantics/grammar (e.g. passive and passive-verb tense)
- Text types and style levels
- Difference between oral and written expression

Speech, CV, application, e-mails

2. **Block seminar "Key Qualifications"**:
In the block seminar "Key Qualifications", students receive intercultural orientation training in five workshops, which on the one hand help them to find their way in everyday life in Germany and on the other hand give them support in making their stay here successful. The students are supported in structuring themselves and finding explanations as to why Germans are the way they are, which values are important in Germany and why different ideas can lead to misunderstandings. By working together, problems in living together are addressed and solution strategies are developed. Seminar blocks are

- Living and studying in Germany (1-day workshop)
- Working successfully in a team (1-day workshop)
- Effective learning and time management (1-day workshop)
- Expectations in the university context (1-day workshop)
- Phonetics (1-day workshop/consultation)

The intercultural trainer is in close contact with the coordinators of the Mechatronics Department in order to incorporate current topics into the workshops. If necessary, it is possible to involve staff and tutors of the department in the workshops at any time. Subject-related, organisational and, if necessary, social topics can be clarified effectively in this way.

2. **Learning objectives**
After successfully attending this module the students will be capable of
- structuring their written and oral communication,
- using techniques for lecturing and presenting,
- designing handouts,
- framing statements and reports scientifically,
- understanding and analyzing Germany’s cultural standards and habits,
- coping with misunderstandings appearing in private and university contexts using strategies of de-escalation,
- developing understanding for expectations within the university context and act accordingly,
- defining strategies for successful teamwork and act accordingly,
- employing methods of effective learning,
- carrying out effective time management,
- identifying their own potential and to cope with special challenges.

3 Recommended prerequisities for participation

4 Form of examination

Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module

MSc MEC, MSc ETiT, MSc MPE

8 Grade bonus compliant to §25 (2)

9 References
To 1.:

To 2.:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-2112-se</td>
<td>Speaking and Writing in Academic Contexts</td>
<td>Katharina Dehn</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>18-de-2113-se</td>
<td>Seminar Key Skills</td>
<td>Katharina Dehn</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Accelerator Physics and Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2070</td>
<td>2 CP</td>
<td>60 h</td>
<td>45 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content
Learn and understand the theoretical contexts in the field of accelerator physics; application of the theoretical background to practical examples related to current projects in the field.

2 Learning objectives
The seminar addresses various topics relevant to accelerator physics and technology which in detail depend on the guest lecturers. So, insight into the current developments as well as into the different projects in the area is given. Moreover, the focus is put on the practical challenges arising during the design, construction and commissioning phase of the particular accelerator projects.

3 Recommended prerequisites for participation
Basic knowledge in the field of accelerator physics and technology is useful, though not mandatory.

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2070-se</td>
<td>Accelerator Physics and Technology</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Herbert De Gersem, Prof. Dr. rer. nat. Norbert Pietralla
Module name
Application, Simulation and Control of Power Electronic Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-2030</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Gerd Griepentrog

Teaching content

In an introductory meeting topics according to power electronics and control of drives are given to the students. During the seminary problems can be treated concerning the following topics:
- Simulation of power electronic systems plus analysis and evaluation of the models
- Implementing and startup of power electronic systems, test stand development plus measurement of characteristic parameters
- Modeling and simulation in the field of control of electrical drives
- Implementing and startup of controlled drive systems
- Suggested topics from the students are welcome

The students are working autonomous on the chosen problem. The results are documented in a written report and at the end of the module, a presentation about the problem must be held.

Learning objectives

The Competences are:
- Autonomous familiarization with a given problem
- Selection and evaluation of appropriate development tools
- Familiarization with the used development tools
- Practical experience in power electronics and control of drives
- Logical presentation of the results in a report
- Presentation skills

Recommended prerequisites for participation

Lecture „Leistungselektronik 1“ or „Einführung Energietechnik“ and ggf. „Regelungstechnik I“ or similar

Form of examination

Module exam:
- Module exam (Study achievement, Optional, Default RS)

Prerequisite for the award of credit points

Passing the final module examination

Grading

Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

Usability of the module

MSc ETiT, MSc Wi-ETiT, MSc MEC

Grade bonus compliant to §25 (2)

References

Definition of project task

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-2030-se</td>
<td>Application, Simulation and Control of Power Electronic Systems</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog, M.Sc. Pavel Makin</td>
</tr>
<tr>
<td>Type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Seminar Integrated Electronic Systems Design A

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2160</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Klaus Hofmann

1 Teaching content
Research oriented Formulation of a Topic within the area of Microelectronics System Design; Creation of a written Documentation and Presentation; Team Work

2 Learning objectives
A student is, after successful completion of this module, able to

1. gain a deep understanding of the chosen research subject in the field of integrated electronic systems,
2. write an essay on the chosen subject in a comprehesive form and present the outcome to an audience

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 45 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Topic-oriented Materials will be provided

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2160-se</td>
<td>Seminar Integrated Electronic Systems Design A</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann
Module name
Seminar: Integrated Electronic Systems Design B

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2161</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1 Teaching content
Research oriented Formulation of a Topic within the area of Microelectronics System Design; Creation of a written Documentation and Presentation; Team Work

2 Learning objectives
A student is, after successful completion of this module, able to

1. gain a deep understanding of the chosen research subject in the field of integrated electronic systems,
2. write an essay on the chosen subject in a comprehesive form and present the outcome to an audience

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral examination, Duration: 45 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iST, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Topic-oriented Materials will be provided

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-2161-se</td>
<td>Seminar: Integrated Electronic Systems Design B</td>
<td>Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Klaus Hofmann
Module name
Computational Modeling for the IGEM Competition

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2100</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Heinz Köppl

1 **Teaching content**
The International Genetically Engineered Machine (IGEM) competition is a yearly international student competition in the domain of synthetic biology, initiated and hosted by the Massachusetts Institute of Technology (MIT), USA since 2004. In the past years teams from TU Darmstadt participated and were very successfully in the competition. This seminar provides training for students and prospective IGEM team members in the domain of computational modeling of biomolecular circuits. The seminar aims at computationally inclined students from all background, but in particular from electrical engineering, computer science, physics and mathematics. Seminar participants that are interested to become IGEM team members could later team up with biologists and biochemists for the 2017 IGEM project of TU Darmstadt and be responsible for the computational modeling part of the project.

The seminar will cover basic modeling approaches but will focus on discussing and presenting recent high-impact synthetic biology research results and past IGEM projects in the domain of computational modeling.

2 **Learning objectives**
Students that successfully passed that seminar should be able to perform practical modeling of biomolecular circuits that are based on transcriptional and translational control mechanism of gene expression as used in synthetic biology. This relies on the understanding of the following topics:

- Differential equation models of biomolecular processes
- Markov chain models of biomolecular processes
- Use of computational tools for the composition of genetic parts into circuits
- Calibration methods of computational models from experimental measurement
- Use of bioinformatics and database tools to select well-characterized genetic parts

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc etit, MSc etit

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-2100-se</td>
<td>Computational Modeling for the IGEM Competition</td>
<td>Prof. Dr. techn. Heinz Köppl</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
International Summer School 'Microwaves and Lightwaves'

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
</tr>
</tbody>
</table>

1 Teaching content
This summer school covers the fundamentals and the latest developments of microwave electronics, THz technology, and optical communication systems with particular focus on the physical concepts involved.

2 Learning objectives
- Students understand the presented research topics, e.g.
 - topics of microwave engineering, THz engineering, and optical communications
 - of related electronics
 - the influence of the relevant properties of materials and of waveguides on signal processing.
- They gain inside into the latest developments in these fields.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
BSc ETiT, MSc ETiT

8 Grade bonus compliant to §25 (2)

9 References
A script (English) will be distributed or slides can be downloaded.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2020-se</td>
<td>International Summer School "Microwaves and Lightwaves"</td>
<td>Prof. Dr.-Ing. Rolf Jakoby, Prof. Dr. rer. nat. Sascha Preu</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
One World Signal Processing Seminar Series

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2090</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Teaching content
This seminar series covers addresses latest trends in Signal processing with focus on mobile communications, machine learning and optimization.

2 Learning objectives
Students understand the presented research topics, e.g., the latest trends in
- Signal processing
- Communications
- Graph signal processing
- Machine learning for communications and data analysis
- Coexistence of radar and communications
- Compressed sensing and sampling theory
- Convex Optimization

Students learn to prepare themselves for the participation in a scientific seminar based on reference to the scientific literature.
Students learn to participate in scientific seminars, to contribute with thoughtful comment and appropriate questions and to initiate a fruitful scientific discussion.
Students learn to summarize the main scientific findings and statements of the talk in a short written report.
Students learn to summarize the main scientific findings of the talk in a scientific discussion and to defend the main statements.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

Report and/or Presentation and/or Colloquium. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit, BSc/MSc iST, MSc WI-etit

8 Grade bonus compliant to §25 (2)

9 References
Slides can be downloaded.
URL for One World Signal Processing Seminar Series: https://www1.se.cuhk.edu.hk/htwai/ oneworld

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2090-se</td>
<td>One World Signal Processing Seminar Series</td>
</tr>
<tr>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Marius Pesavento</td>
<td>Seminar</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Multimedia Communications Seminar II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2090</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

Teaching content
This seminar deals with current and upcoming trends relevant to the future development of multimedia communication systems. The educational objective of this seminar is to gain knowledge about future research trends in different areas. To this aim, an extensive literature research will be performed, as well as the writing-up of a report and the presentation of selected, high-quality research topics from current leading magazines, newspapers and conferences in the web technologies research area.

Some potential topics are:
- Knowledge & Educational Technologies
- Self organizing Systems & Overlay Communication
- Mobile Systems & Sensor Networking
- Service-oriented Computing
- Multimedia Technologies & Serious Games

Learning objectives
Students shall acquire profound knowledge from current scientific publications, standards and literature on multimedia communication systems and applications which will build the future Internet. In so doing, the students will develop the following competencies:

- Search for and review relevant scientific literature.
- Analyse and evaluate complex technical and scientific information.
- Write technical and scientific abstracts and summary reports.
- Present technical and scientific information.

Recommended prerequisites for participation
Solid knowledge in computer communication networks. Lectures in Communication Networks I and II are recommended.

Form of examination
Course related exam:

Prerequisite for the award of credit points
Passing the final module examination

Grading
Course related exam:

Usability of the module
CS, Wi-CS, ETiT, Wi-ETiT, MSc CS, MSc ETiT, MSc iST

Grade bonus compliant to §25 (2)

References
Depending on specific topic (selected articles of journals, magazines, and conferences).

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>
Module name
Multimedia Communications Seminar I

Module nr.
18-sm-2300

Credit points
4 CP

Workload
120 h

Self-study
75 h

Module duration
1 Term

Module cycle
Every Semester

Language
German/English

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Teaching content
The seminar investigates current and upcoming topics in multimedia communication systems, which are expected to be of utmost importance for the future evolution of the Internet and information technology in goal. The goal is to learn more about multimedia communication systems by studying, summarizing, and presenting top quality papers from recent high quality networking research journals, magazines, or conferences. The selection of topics corresponds to the research area of participating researchers.
Possible topics are:
• Knowledge & Educational Technologies
• Self organizing Systems & Overlay Communication
• Mobile Systems & Sensor Networking
• Service-oriented Computing
• Multimedia Technologies & Serious Games

2 Learning objectives
The students are actively studying cutting edge scientific articles, standards, and books about multimedia communication systems and applications, which are expected to be of utmost important for the future of the Internet.
Students acquire competences in the following areas:
• Searching and reviewing of relevant scientific literature
• Analysis and evaluation of complex technical and scientific information
• Writing of technical and scientific summaries and short papers
• Presentation of complex technical and scientific information

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral/written examination, Default RS)
Report and/or Presentation and/or Colloquium. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
CS, WiCS, ETiT, Wi-ETiT, BSc/MSc iST

8 Grade bonus compliant to §25 (2)

9 References
Depending on specific topic (selected articles of journals, magazines, and conferences).

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2300-se</td>
<td>Multimedia Communications Seminar I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
</table>

Module name
Seminar Software System Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2080</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Andreas Schürr

1 Teaching content
In this course, the students produce scientific reports from changing subject areas. Each student has to explore a subject related to IT system development and produce a written report as well as a final talk with a presentation. A list of the subjects of the current semester is available at https://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/sst-s.

2 Learning objectives
After a successful participation, the students will be able to explore an unknown topic under scientific aspects. The students learn to support the exploration by a literature research and to analyze the subject critically. They achieve the skills to present a definite subject in a written report as well as in an oral presentation.

3 Recommended prerequisites for participation
Basic knowledge in software engineering and programming languages

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
BSc iST, BSc Informatik, MSc ETIT

8 Grade bonus compliant to §25 (2)

9 References
https://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/sst-s

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2080-se</td>
<td>Seminar Software System Technology</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Andreas Schürr
Module name
Advanced Topics in Statistical Signal Processing

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2040</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
This course extends the signal processing fundamentals taught in DSP towards advanced topics that are the subject of current research. It is aimed at those with an interest in signal processing and a desire to extend their knowledge of signal processing theory in preparation for future project work (e.g. Diplomarbeit) and their working careers. This course consists of a series of five lectures followed by a supervised research seminar during two months approximately. The final evaluation includes students seminar presentations and a final exam.

The main topics of the Seminar are:
- Estimation Theory
- Detection Theory
- Robust Estimation Theory
- Seminar projects: e.g. Microphone array beamforming, Geolocation and Tracking, Radar Imaging, Ultrasound Imaging, Acoustic source localization, Number of sources detection.

2 Learning objectives
Students obtain advanced knowledge in signal processing based on the fundamentals taught in DSP and ETiT 4. They will study advanced topics in statistical signal processing that are subject to current research. The acquired skills will be useful for their future research projects and professional careers.

3 Recommended prerequisites for participation
DSP, general interest in signal processing is desirable.

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, BSc/MSc iST, MSc iCE, Wi-ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2040-se</td>
<td>Advanced Topics in Statistical Signal Processing</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Signal Detection and Parameter Estimation

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2050</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

Teaching content
Signal detection and parameter estimation are fundamental signal processing tasks. In fact, they appear in many common engineering operations under a variety of names. In this course, the theory behind detection and estimation will be presented, allowing a better understanding of how (and why) to design “good” detection and estimation schemes.

These lectures will cover:
- Fundamentals
- Detection Theory
- Hypothesis Testing
- Bayesian Tests
- Ideal Observer Tests
- Neyman-Pearson Tests
- Receiver Operating Characteristics
- Uniformly Most Powerful Tests
- The Matched Filter
- Estimation Theory
- Types of Estimators
- Maximum Likelihood Estimators
- Sufficiency and the Fisher-Neyman/Factorisation Criterion
- Unbiasedness and Minimum variance
- Fisher Information and the CRB
- Asymptotic properties of the MLE

Learning objectives
Students gain deeper knowledge in signal processing based on the fundamentals taught in DSP and EtiT 4. They will study advanced topics of statistical signal processing in the area of detection and estimation. In a sequence of 4 lectures, the basics and important concepts of detection and estimation theory will be taught. These will be studied in dept by implementation of the methods in MATLAB for practical examples. In sequel, students will perform an independent literature research, i.e. choosing an original work in detection and estimation theory which they will illustrate in a final presentation. This will support the students with the ability to work themselves into a topic based on literature research and to adequately present their knowledge. This is especially expected in the scope of the students' future research projects or in their professional career.

Recommended prerequisites for participation
DSP, general interest in signal processing

Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grade bonus compliant to §25 (2)
MSc ETiT, MSc iST, MSc iCE, Wi-ETiT
9 References

- Lecture slides

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2050-se</td>
<td>Signal Detection and Parameter Estimation</td>
<td>Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Robust and Biomedical Signal Processing

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2100</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
A series of 3 lectures provides the necessary background on robust signal processing and machine learning:

1. Background on robust signal processing
2. Robust regression and robust filters for artifact cancellation
3. Robust location and covariance estimation and classification

They are followed by two lectures on selected biomedical applications, such as:
- Body-worn sensing of physiological parameters
- Optical heart rate sensing (PPG)
- Signal processing for the electrocardiogram (ECG)
- Biomedical image processing

Students then work in groups to apply robust signal processing algorithms to real-world biomedical data. Depending on the application, the data is either recorded by the students, or provided to them. The group results are presented during a 20-minute presentation. The final assessment is based on the presentation and an oral examination.

2 Learning objectives

3 Recommended prerequisites for participation
Fundamental knowledge of statistical signal processing

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Pass module final exam

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE, MSc iSt

8 Grade bonus compliant to §25 (2)

9 References
• Slides can be downloaded via Moodle.

Further reading:

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-zo-2100-se</td>
<td>Robust and Biomedical Signal Processing</td>
<td>Seminar</td>
<td>4</td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Michael Muma, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Data Science II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2120</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Abdelhak Zoubir

1 Teaching content
The course covers the following topics:
• Data Science Advanced Methods
• Data Management + Big data frameworks
• Statistical Learning
 – Recommender Systems
 – Deep Learning
 – Unsupervised Learning
 – Text data analysis
• Final application project. Flexibility to choose from list of projects or come up with own project. Examples:
 – Sound classification
 – Heart rate analysis
 – Activity recognition with acceleration data
 – Hyperspectral data
 – Image classification
 – Health survey

2 Learning objectives
This seminar provides an advanced understanding of data science with an emphasis on hands-on projects. Students will get to know latest data science technologies - from big data to advanced machine learning and apply them in a real-world project.

3 Recommended prerequisites for participation
Data Science I (Lecture)

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral/written examination, Duration: 90 Min., Default RS)
In general, the examination takes place in form of a written exam (duration: 90 minutes). If up to 14 students register, there will be an oral examination (duration: 45 min.). The type of examination will be announced in the first lecture. Possible types include a project presentation, etc.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
Lecture notes and slides can be downloaded here:

- http://www.spg.tu-darmstadt.de
- Moodle platform

Further reading:

- Wes McKinney: Python for Data Analysis, O'Reilly, 2017
- Christopher M. Bishop: Pattern Recognition and Machine Learning, 2011
- James, Witten, Hastie and Tibshirani, Introduction to Statistical Learning, Springer, 2017

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-zo-2120-se</td>
<td>Data Science II</td>
<td>Dr.-Ing. Christian Debes, Prof. Dr.-Ing. Abdelhak Zoubir</td>
<td>Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
2.4 Project Seminars

<table>
<thead>
<tr>
<th>Module name</th>
<th>Project Seminar Robotics and Computational Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-ad-2070</td>
</tr>
<tr>
<td>Credit points</td>
<td>8 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>240 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>180 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>German</th>
</tr>
</thead>
</table>

| Module owner | Prof. Dr.-Ing. Jürgen Adamy |

1 Teaching content
The following topics are taught in the lecture:

Industrial robots
1. Types and applications
2. Geometry and kinematics
3. Dynamic model
4. Control of industrial robots

Mobile robots
1. Types and applications
2. Sensors
3. Environmental maps and map building
4. Trajectory planning

Group projects are arranged in parallel to the lectures in order to apply the taught material in practical exercises.

2 Learning objectives
After attending the lecture, a student is capable of: 1. recalling the basic elements of industrial robots, 2. recalling the dynamic equations of industrial robots and be able to apply them to describe the dynamics of a given robot, 3. stating model problems and solutions to standard problems in mobile robotics, 4. planning a small project, 5. organizing the work load in a project team, 6. searching for additional background information on a given project, 7. creating ideas on how to solve problems arising in the project, 8. writing a scientific report about the outcome of the project 8. presenting the results of the project.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc iST, MSc WI-ETiT, MSc iCE, MSc EPE, MSc CE, MSc Informatik

8 Grade bonus compliant to §25 (2)

9 References
Adamy: Lecture notes (available for purchase at the FG office)
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2070-pj</td>
<td>Project Seminar Robotics and Computational Intelligence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name

Project Seminar Automatic Control Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2080</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Jürgen Adamy</td>
</tr>
</tbody>
</table>

1 Teaching content

The students work in small groups, supervised by a scientific staff member, on individual problems taken from the field of automatic control. A compulsory training course is part of the project course and will cover the topics:

1. team work and project management,
2. professional presentation skills, and
3. scientific writing skills.

2 Learning objectives

After attending the project course, a student is capable of:

1. planning a small project,
2. organizing the work within a project team,
3. searching for scientific background information on a given project,
4. creating ideas on how to solve problems arising in the project,
5. presenting the results in a scientific report, and
6. giving a talk on the results of the project.

3 Recommended prerequisites for participation

4 Form of examination

Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module

MSc ETiT, MSc MEC, MSc iST, MSc WI-ETiT, MSc ICE, MSc EPE, MSc CE, MSc Informatik

8 Grade bonus compliant to §25 (2)

9 References

Training course material

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ad-2080-pj</td>
<td>Project Seminar Automatic Control Systems</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor

Prof. Dr.-Ing. Jürgen Adamy
Module name
Energy Converters and Electric Drives

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2130</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. techn. Dr.h.c. Andreas Binder

1 Teaching content
From the topics of proposed scientific theses, subtasks are derived. Groups of two to four students will work on these subtasks under supervision of a tutor. The focus of the work can be either theoretical or experimental and contains scientific problems in the field of electric energy conversion and electric drives. For study program Mechatronics this corresponds to the Advanced Design Project. Independent from the individual topics, the topic "Design and testing of a small 3-phase induction machine" can always be chosen.

2 Learning objectives
Upon completion of the module, students will have acquired knowledge of: Energy Converters, Electric Drives, Control of Electric Drives, Teamwork, Writing Scientific Reports, Presentation

3 Recommended prerequisites for participation
Fundamentals on Electrical Engineering, Three-phase Systems, Mechanics; Lecture „Electrical Machines and Drives“

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc MEC, MSc ETiT, MSc EPE

8 Grade bonus compliant to §25 (2)

9 References
Depending on the project task; manuscripts from the lectures „Electrical Machines and Drives“, „Motor development for electric Drive Systems“, „Regelungstechnik 1“

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2130-pj</td>
<td>Energy Converters and Electric Drives</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder
Module name
Science in Practice I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2130</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1. **Teaching content**
Acquiring basic scientific skills based on concrete examples from the literature.

2. **Learning objectives**
The students possess basic scientific skills. They are able to discover important literature for a given topic and to judge critically the corresponding content. They are familiar with numerical techniques, especially convergence studies relevant for praxis. The students are capable of analyzing errors within simulations and of judging accuracy requirements, e.g., with respect to errors in input data.

3. **Recommended prerequisites for participation**
Good understanding of electromagnetic fields, knowledge about numerical simulation methods.

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 20 Min., Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7. **Usability of the module**
MSc ETIT

8. **Grade bonus compliant to §25 (2)**

9. **References**
Material related to the topic is provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2130-pj</td>
<td>Science in Practice I</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Herbert De Gersem
Module name
Science in Practice II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2140</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content
Working on different scientific topics based on techniques acquired in Science in Practice I.

2 Learning objectives
The students are capable of successfully working on new scientific topics from the numerical field simulation in a reasonable time. They are able to understand new methods, to implement them if necessary and to carry out simulations. Thereby methodologies discussed in Science in Practice I, especially concerning the solution of systems of equations, as well as convergence and error analysis are employed.

3 Recommended prerequisites for participation
Good understanding of electromagnetic fields, knowledge about numerical simulation methods.

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 20 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT

8 Grade bonus compliant to §25 (2)

9 References
Material related to the topic is provided.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-2140-pj</td>
<td>Science in Practice II</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Herbert De Gersem
Module name
Project Course Practical Application of Mechatronics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2110</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content

Teams of 2-4 students work on different mechatronic projects under the guidance of a project coordinator from the institute. The projects mainly cover the following subject areas:

- Modeling, analysis, and design of mechatronic systems
- Robust control design
- System analysis, supervision, and fault diagnosis
- Modeling and identification

Application areas are mechatronic actuators, machine tools, production lines, test benches, automobiles, quadrocopters.

2 Learning objectives

After completing the project, the students will be familiar with the individual steps of investigating a mechatronic project. This includes in particular the compilation of a system specification as well as critical discussions and systematic selection of appropriate mechatronic solutions and their real technical implementation. Doing so, the students learn the practical application of mechatronic methods taught in the lectures to real world problems. Additionally, in this project course, the students are supposed to improve their professional skills. These skills include e.g. teamwork, presentation techniques, and systematic information retrieval.

3 Recommended prerequisites for participation

4 Form of examination

Module exam:

- Module exam (Study achievement, Oral/written examination, Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:

- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module

MSc ett, MSc MEC, MSc iST

8 Grade bonus compliant to §25 (2)

9 References

Handouts will be distributed at start of the project (e.g. hints for writing project documentation, etc.)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2110-pj</td>
<td>Project Course Practical Application of Mechatronics</td>
<td>Prof. Dr.-Ing. Rolf Findeisen, M.Sc. Julian Zeiß</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Project Course Control Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2120</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Rolf Findeisen

1 Teaching content
Teams of 2 - 4 students work on different control engineering projects under the guidance of a project coordinator from the institute. The projects mainly cover the following subject areas:
- Modelling, analysis and design of multivariable control systems
- Modelling, analysis and design of distributed parameter systems
- Robust control design
- System analysis, supervision and fault diagnosis
- Modelling and identification

Application areas are machine tools, production lines, test benches, process control, automobiles.

2 Learning objectives
After completing the project the students will be familiar with the individual steps of investigating a control engineering project. This includes in particular the compilation of a system specification as well as critical discussions and systematic selection of appropriate control engineering solutions and their real technical implementation. Doing so the students learn the practical application of control engineering methods taught in the lecture “System Dynamics and Control Systems I” to real world problems. Additionally, in this project course the students are supposed to improve their professional skills. These skills include e.g. teamwork, presentation techniques and systematic information retrieval.

3 Recommended prerequisites for participation
Lecture “System Dynamics and Control Systems I”

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETIT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
Handouts will be distributed at start of the project (e.g. Hints for writing a project documentation, etc.)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-2120-pj</td>
<td>Project Course Control Engineering</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Rolf Findeisen
Module name
Artificial Intelligence in Medicine Challenge

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2010</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Christoph Hoog Antink</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Within this module, students will work independently in small groups on a given problem from the realm of artificial intelligence (AI) in medicine. The nature of the problem can be the automatic classification or prediction of a disease from medical signals or data, the extraction of a physiological parameter, etc. All groups will be given the same problem but will have to develop their own algorithms, which will be evaluated on a hidden dataset. In the end, a ranking of the best-performing algorithms is provided.

2. **Learning objectives**
 Students can independently apply current AI / machine learning methods to solve medical problems. They have successfully independently developed, optimized and tested code that has withstood external evaluation. Graduates are enabled to apply methodological competencies, such as teamwork, in everyday professional life.

3. **Recommended prerequisites for participation**
 - Basic programming skills in Python
 - 18-zo-1030 Fundamentals of Signal Processing

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Oral/written examination, Default RS)
 Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7. **Usability of the module**
 MSc (WI-) etit, BSc/MSc iST, MSc iCE, MSc MEC, MSc MedTec

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2010-pj</td>
<td>Artificial Intelligence in Medicine Challenge</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Christoph Hoog Antink
Module name
Project Seminar Reconfigurable Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2040</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Christian Hochberger

1 Teaching content
Students will work in small groups in this course. Topics and application context will be defined individually for each group. All projects will follow the same approach. At first, the given problem will be described in a programmatic way. Following, it will be implemented by a reconfigurable system. Depending on the nature of the application, either predefined architectures will be used, parameterizable architectures will be adapted to the needs of the application or new architectures may be designed. The programmatic description will now be mapped (semi-)automatically to the chosen architecture with the help of the supporting tools. Usually, this requires to rewrite the programmatic description to better suit the tools. Finally, the solution will be evaluated using some benchmark data sets.

2 Learning objectives
Successful students will know how to use reconfigurable systems within a given application context. They can use tools to program these systems and know how to map an application onto a given reconfigurable architecture. They are capable to evaluate the performance critical parts of an application. They understand the implications of different coding styles for a particular task.

3 Recommended prerequisites for participation
- Knowledge of reconfigurable devices (cf. course computer systems II)
- Knowledge of computer architecture (cf. course computer systems I)
- Solid programming skills (either in C or Java depending on the application scenario).

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc Informatik, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
Will be made available through the Moodle page for this course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-2040-pj</td>
<td>Projektseminar Rekonfigurable Systems</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Christian Hochberger
Module name
Project Seminar Systems of Biomedical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2030</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr.-Ing. Christoph Hoog Antink

1 Teaching content
Within this module, students work independently in small project teams on individual tasks from the field of systems of biomedical engineering. The focus is on the development of systems consisting of hardware and software, e.g. for automated diagnosis or therapy.

2 Learning objectives
After completing the module, students will be able to independently abstract the technical requirements for a system in the area of biomedical engineering (e.g. for measuring and evaluating or simulating a physiological process). They can independently derive sub-projects from these requirements and create time schedules. They have successfully developed, optimized and tested a system comprising e.g. hardware and software. Graduates are enabled to apply methodological competencies, such as teamwork, in their everyday professional life.

3 Recommended prerequisites for participation
Interest in working independently on hardware and software

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)

Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc MedTec, BSc/MSc iST

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ha-2030-pj</td>
<td>Project Seminar Systems of Biomedical Engineering</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Christoph Hoog Antink
Module name
Project Seminar Network calculation

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2110</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Jutta Hanson

Teaching content
As an introduction, the principles of modeling electrical networks will be presented. Subsequently, a simulation program applicable for network calculation is presented and applied by the participants in computer exercises. The participants then work independently on a given problem from the field of modeling and simulation in the electrical power supply system.

Learning objectives
Upon successful completion of the module, students were taught:
• Knowledge of a simulation program used for network calculation
• Elaboration of a given technical problem from the field of network planning or calculation
• Independent elaboration of the necessary investigations and conception of corresponding simulations
• Logical and concise presentation of the results in a report in the format of a scientific paper

Recommended prerequisites for participation
Lectures „Power Systems“ I und II

Form of examination
Module exam:
• Module exam (Study achievement, Oral/written examination, Default RS)
Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
• Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

Usability of the module
MSc (WI-) etit

Grade bonus compliant to §25 (2)

References
Script, program description, exercise task, project task topic.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-2110-pj</td>
<td>Project Seminar Network calculation</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
M.Sc. Rafael Steppan, M.Sc. Achraf Kharrat, Prof. Dr.-Ing. Jutta Hanson
Module name
Project Seminar Advanced μWave Components & Antennas

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2060</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
</tr>
</tbody>
</table>

Teaching content

Groups of 2-3 students per project. Students work out a well defined fundamental or actual research-related problem. The projects will be actualized in each cycle being offered and introduced at the beginning. Each group will be supervised individually. The projects comprises modern antennas for multitudinous applications, electronically-steerable antennas, RFIDs, RF sensors, adaptive tunable components such as matching networks, filter, passive mixer and modulator for next-generation mobile terminals and sensor systems.

Learning objectives

Research-oriented Project Seminar in groups of 2-3 students per project with individual supervision. Students will learn

- how to solve scientific hardware-oriented problems
- working out concepts
- how to design, realize and characterize RF devices
- how to use commercial software and characterization tools
- to evaluate and discuss their work in the context of the state-of-art in this field
- to write a brief scientific report about their work
- to present and discuss their results at the end of the Project Seminar

Recommended prerequisites for participation

Fundamentals of Microwave Engineering I and Antennas and Adaptive Beamforming

Form of examination

Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

Prerequisite for the award of credit points

Passing the final module examination

Grading

Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

Usability of the module

MSc ETiT, MSc iCE, Wi-ETiT

Grade bonus compliant to §25 (2)

References

Publications will be hand out to them. Software and characterization tools as well as tools to realize RF devices are available.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-2060-pj</td>
<td>Project Seminar Advanced μWave Components & Antennas</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor:
Prof. Dr.-Ing. Rolf Jakoby, Dr.-Ing. Martin Schüßler
Module name
Project Seminar Application in High-Voltage Technology

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2040</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Myriam Koch</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 - Realization of a Project from the Design to the Implementation of High Voltage Setups

2. **Learning objectives**
 - The students can apply the methodology of design and development from the very first customer requirements specification up to design and type tests and documentation of equipment in high-voltage technology. They have successfully experienced team work and self-independently developed, built and tested a real device from the beginning.

3. **Recommended prerequisites for participation**
 - High-voltage technology I and II, Power Laboratory I or II

4. **Form of examination**
 - Module exam:
 - Module exam (Study achievement, Oral/written examination, Default RS)
 - Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5. **Prerequisite for the award of credit points**
 - Passing the final module examination

6. **Grading**
 - Module exam:
 - Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7. **Usability of the module**
 - MSc etit, MSc Wi-etit

8. **Grade bonus compliant to §25 (2)**

9. **References**
 - depending on actual project

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kc-2040-pj</td>
<td>Project Seminar Application in High-Voltage Technology</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Myriam Koch</td>
</tr>
</tbody>
</table>
Module name
Project seminar Applications of Lighting Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2051</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>

1. **Teaching content**
The project seminar deals with the following subjects: automotive lighting, interior lighting, exterior lighting; generation, perception and cognition of the visual stimulus (luminaires, displays, projection); LED/OLED technology; physical and psychophysical light measurement; illuminating engineering, color perception.

2. **Learning objectives**
The objective of this project seminar is the practice oriented implementation of the material learned during the lectures in form of a project work. Via communication of the interdisciplinary way of thinking of the lighting engineer, students should carry out autonomous project work on their own or in a team.

3. **Recommended prerequisites for participation**
Lighting Technology I-II (desireable)

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
MSc ETiT, MSc iST, MSc WI-ETiT, MSc MEC, MSc MPE, MSc Phys

8. **Grade bonus compliant to §25 (2)**

9. **References**
Lecture notes of Lighting Technology I (Khanh); Lecture slides of our Laboratory; Book “LED Lighting: Technology and Perception” (Khanh et al., Wiley); Book „Farbwiedergabe“ (Khanh et al., Pflaum-Verlag); specific literature depending on the topic, publications.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2051-pj</td>
<td>Project seminar Applications of Lighting Engineering</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Project seminar Advanced Applications of Lighting Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2052</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Tran Quoc Khanh

1 Teaching content
For the project seminar a question from the following topics can be worked on: automotive lighting, light for the autonomous car, interior lighting, exterior lighting; smart lighting, human centric lighting (hcl); horticultural lighting; generation, perception and cognition of the visual stimulus (luminaires, displays, projection); LED/OLED technology; physical and psychophysical light measurement; illuminating engineering, color perception, virtual reality tests for light-simulation.

2 Learning objectives
The objective of this project seminar is the practical implementation of the knowledge acquired during the study in the form of a project work. Students participate on their own or in a team. In this project seminar, students learn to plan, implement and validate lighting issues. The basics of the lecture and the project seminar 'Applications of Lighting Engineering' are applied and deepened. This usually includes the selection of suitable illuminants, the development of electronic hardware as well as the use of photometric measuring instruments. In addition, the students learn how to abstract questions, communicate project-dependent information as well as present and discuss results.

3 Recommended prerequisites for participation
Lighting Technology I-II (desirable), Project seminar Applications of Lighting Engineering

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
To conclude the project, every student has to hold a presentation with a short round of questions and answers and also to deliver a written report about the work and the results.
The presentation with exam and the report will be graded according to the fixed guidelines of our Laboratory.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References
Lecture notes of Lighting Technology I (Khanh); Lecture slides of our Laboratory; Book "LED Lighting: Technology and Perception" (Khanh et al., Wiley); Book „Farbwiedergabe“ (Khanh et al., Pflaum-Verlag); specific literature depending on the topic, publications.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2052-pj</td>
<td>Project seminar Advanced Applications of Lighting Engineering</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Project seminar Special Applications of Lighting Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2053</td>
<td>8 CP</td>
<td>240 h</td>
<td>195 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>

1 **Teaching content**
For the project seminar a question from the following subject areas can be worked on: Automotive lighting, light for autonomous cars, interior lighting, exterior lighting; smart lighting; human centric lighting (HCL); horticulture lighting; generation, perception and cognition of visual stimuli (luminaires, displays, projection); LED/OLED technology; physical and psychophysical light measurement; illuminating engineering, color perception, virtual reality tests for light-simulation.

2 **Learning objectives**
The objective of this project seminar is the practical implementation of the knowledge acquired during the study in the form of research or project work in an interdisciplinary context, which also takes up topics beyond the lectures. Students participate on their own or in a team. In this project seminar, the students learn the approach, implementation and validation or investigation of inter-disciplinary lighting issues. This requires an introduction into topics that go beyond the subject area of the lectures.
Usually, this includes the selection of suitable illuminants, the development of electronic hardware, the use of photometric measuring instruments as well as the conception, execution and evaluation of studies. In addition, students learn to abstract questions, to develop research questions, to communicate information depending on the project, and to present and discuss results.

3 **Recommended prerequisites for participation**
Lighting Technology I-II (desirable), Project seminar Applications of Lighting Engineering (recommended)

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
At the beginning of the project, a short introductory presentation has to be held followed by a technical discussion. Each student involved in the project has to conclude the project with a presentation followed by a short question and answer session. Every student has to deliver a written report about the work and the results.
The final presentation with exam and the report will be graded according to the fixed guidelines of the institute.

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**

8 **Grade bonus compliant to §25 (2)**

9 **References**
Lecture notes of Lighting Technology I (Khanh); Lecture slides of our Laboratory; Book "LED Lighting: Technology and Perception" (Khanh et al., Wiley); Book „Farbwiedergabe“ (Khanh et al., Pflaum-Verlag); specific literature depending on the topic, publications.

Courses

369
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kh-2053-pj</td>
<td>Project seminar Special Applications of Lighting Engineering</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>
1 **Teaching content**
Solving special Problems concerning mobile communications (problems concerning signal transmission and processing as well as problems concerning the network are possible, topics will be defined out of the current research topics of the lab),
working on the project in teams together (2-3 students)
organizing and structuring of a project
dealing with scientific publications, reading up the theoretical background of the task
practical work on a complex task
scientific presentation of the results (report/presentation)
defending the work in an oral discussion including an audience

2 **Learning objectives**
After completion of the course, students possess

1. the ability to classify and analyze special problems concerning mobile communications,
2. the knowledge to plan and organize projects with temporal limitation,
3. the capability to setup and test methodologies for analysis and simulation- environments,
4. skills to evaluate and present achieved results and achieved conclusions.

3 **Recommended prerequisites for participation**
Previous knowledge in digital communications, signal processing, mobile radio

4 **Form of examination**
Module exam:
• Module exam (Study achievement, Oral examination, Duration: 20 Min., Default RS)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
• Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 **Usability of the module**
MSc ETiT, MSc Wi-ETiT, MSc CE, MSc iCE, MSc iST, MSc MEC

8 **Grade bonus compliant to §25 (2)**

9 **References**
Lecture documentation will be provided and specific literature will be announced during the course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-2040-pj</td>
<td>Project Seminar Wireless Communications</td>
<td>Project seminar</td>
<td>4</td>
</tr>
<tr>
<td>Instructor</td>
<td>M.Sc. Sumedh Dongare, Prof. Dr.-Ing. Anja Klein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 **Teaching content**
In the project seminar, students have the opportunity to deal with various aspects of spintronic devices. These range from the development of measurement systems for the characterization of spintronic devices, to the fabrication and characterization of functional thin film systems, to the lithographic preparation of spintronic sensor devices or memory cell (MRAM) prototypes. Students gain valuable insights into the entire chain of device fabrication from the deposition of atomically thin film systems to their basic characterization and lithography under clean room conditions.

2 **Learning objectives**
Students learn the basics of fabrication and application of spintronic devices as sensors or magnetic memory cells. Individual projects are carried out in small groups. The students deepen the material learned in the lectures in the form of a project work and learn and deepen their knowledge in the application of electronic measurement technology to answer concrete questions from research and development.

3 **Recommended prerequisites for participation**
 - Introduction to Spintronics (desirable)
 - Materials of Electrical Engineering (desirable)

4 **Form of examination**
Module exam:
 - Module exam (Study achievement, Oral/written examination, Default RS)
Report and/or Presentation. The type of examination will be announced in the beginning of the lecture.

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
 - Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**
MSc etit, MSc iCE, BSc/MSc iST, MSc MEC

8 **Grade bonus compliant to §25 (2)**

9 **References**
Lecture notes Introduction to Spintronics (Meinert), subject-specific literature and publications.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-me-2030-pj</td>
<td>Project seminar Spintronic Devices</td>
<td>Project seminar</td>
<td>3</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. rer. nat. Markus Meinert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Project Seminar Emerging Topics in Sensor Array and Multichannel Processing

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2040</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Teaching content
This project-seminar addresses new trends in sensor array and multichannel processing with multidimensional tensor data representations.
The specific thematic focus of the seminar will be adapted from year to year according to the latest trends in the research field. The topics will be announced on the course website well in advance.

2 Learning objectives
Students will understand theory, algorithms and applications of sensor array and multichannel system.

3 Recommended prerequisites for participation
Basic knowledge in linear algebra.

4 Form of examination
Module exam:
 • Module exam (Study achievement, Oral examination, Duration: 40 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
 • Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
References include the latest scientific publications, seminars and books.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2040-pj</td>
<td>Project Seminar Emerging Topics in Sensor Array and Multichannel Processing</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Marius Pesavento, M.Sc. David Schenck
Module name
Project Seminar Emerging topics in MIMO Communication Networks

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2050</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr.-Ing. Marius Pesavento

1 Teaching content
This project-seminar addresses new trends in MIMO communications for the next generation of wireless communication systems. The specific thematic focus of the seminar will be adapted from year to year according to the latest trends in wireless communications. The topics will be announced on the course website well in advance.

2 Learning objectives
Students will learn the fundamental concepts, procedures, theories, algorithms and applications of Massive MIMO systems and 5 G mobile communication networks by the latest scientific publications.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Duration: 40 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc Wi-ETiT, MSc iCE

8 Grade bonus compliant to §25 (2)

9 References
References include the latest scientific publications, seminars and books.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pe-2050-pj</td>
<td>Project Seminar Emerging Topics in MIMO Communication Networks</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Marius Pesavento
Module name
Multimedia Communications Project Seminar II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2080</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German/English</td>
<td>Prof. Dr.-Ing. Ralf Steinmetz</td>
</tr>
</tbody>
</table>

1 Teaching content
The course deals with cutting edge scientific and development topics in the area of multimedia communication systems. Besides a general overview it provides a deep insight into a special scientific topic. The topics are selected according to the specific working areas of the participating researchers and convey technical and scientific competences in one or more of the following topics:

- Network planning and traffic analysis
- Performance evaluation of network applications
- Discrete event simulation for network services
- Protocols for mobile ad hoc networks / sensor networks
- Infrastructure networks for mobile communication / mesh networks
- Context-aware communication and services
- Peer-to-peer systems and architectures
- Content distribution and management systems for multimedia / e-learning
- Multimedia authoring and re-authoring tools
- Web service technologies and service-oriented architectures
- Applications for distributed workflows

2 Learning objectives
The ability to solve and evaluate technical and scientific problems in the area of design and development of future multimedia communication networks and applications using state of the art scientific methods shall be acquired. Acquired competences are:

- Searching and reading of project relevant literature
- Design of complex communication applications and protocols
- Implementing and testing of software components for distributed systems
- Application of object-oriented analysis and design techniques
- Acquisition of project management techniques for small development teams
- Systematic evaluation and analyzing of technical and scientific experiments
- Writing of software documentation and project reports
- Presentation of project advances and outcomes

3 Recommended prerequisites for participation
Keen interest to develop and explore challenging solutions and applications in cutting edge multimedia communications systems using scientific methods. Further we expect:

- Solid experience in programming Java and/or C (C/C++)
- Solid knowledge in object oriented analysis and design
- Basic knowledge of design patterns, refactoring and project management
- Solid knowledge in computer communication networks are recommended
- Lectures in Communication Networks I (II, III, or IV) are an additional plus

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
Wi-CS, Wi-ETiT, BSc/MSc CS, MSc ETiT, MSc iST

8 Grade bonus compliant to §25 (2)

9 References
Each topic is covered by a selection of papers and articles. In addition we recommend reading of selected chapters from following books:
- Erich Gamma, Richard Helm, Ralph E. Johnson: "Design Patterns: Objects of Reusable Object Oriented Software" (ISBN 0-201-63361-2)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sm-2080-pj</td>
<td>Multimedia Communications Project Seminar II</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. rer. nat. Björn Scheuermann, Prof. Dr.-Ing. Ralf Steinmetz, M.Sc. Julian Zobel, M.Sc. Fridolin Siegmund
Module name
Advanced Project Seminar Energy Information Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2040</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Florian Steinke

1 **Teaching content**
Students elaborate on a research-oriented subject in the area of computer-systems in a self-responsible manner. They present a written documentation and/or a presentation of the acquired advanced knowledge. They provide a set of alternative solutions to a given problem.

2 **Learning objectives**
Students are able to systematically develop design alternatives to a given problem. They learn to acquire the necessary fundamental knowledge in terms of references and terminology. The found solutions are reflected critically and the students decide for a suitable solution which they are able to argue for and accomplish.

3 **Recommended prerequisites for participation**
no

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 **Prerequisite for the award of credit points**
- Pass module final exam

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
MSc ETIT

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-2040-pj</td>
<td>Advanced Project Seminar Energy Information Systems</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Autonomous Driving Lab I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2070</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. rer. nat. Andreas Schürr

1 Teaching content
During this module students gain practical experience in software development for embedded systems in the field of autonomous driving using a model car. In teamwork, they learn to cope with an extensive task. In order to solve this task they practice to use the theoretical knowledge available in the group (from other courses such as real-time systems, software engineering - introduction, C++ lab, digital control systems).

- Hands-on programming experience with C++ in the development of embedded software systems for autonomous driving based on a model car
- Application of control methods from the area of autonomous driving
- Application of software engineering techniques (design, documentation, test, ...) of a non-trivial embedded software system with hard real-time requirements and limited resources (memory, ...)
- Use of a given software framework and further libraries including a modular (real-time) operating system
- Hands-on experience using source code management systems, time management and other project management tools
- Presentations of the project results

2 Learning objectives
Students that have successfully participated in this module are able to organize and set-up a non-trivial software project in an interdisciplinary team according to a given problem independently. The participants acquire the following skills in detail:

- Independent familiarization with a given software framework and ready-made libraries
- Transfer of theoretic knowledge into a software system
- Extensive use of tools for version, configuration, and change management
- Realistic time and resource management (project management)
- Development of hardware/software systems with C++ considering important limitations of embedded systems
- Planning and implementation of extensive quality assurance measures
- Collaboration and communication in and between teams

3 Recommended prerequisites for participation

- ETIT/DT, iST, Informatik, WI-ET/DT: Basic software technology knowledge and advanced knowledge of object-oriented programming languages (especially C++)

Additionally desired:

- Basic knowledge of the development of real-time systems or image processing
- ETIT/AUT, MEC: Basic knowledge in control engineering including state space control design, some additional basic knowledge in digital control design may be helpful

4 Form of examination
Module exam:

- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

| 7 | Usability of the module |
| | MSc ETIT, BSc iST |

| 8 | Grade bonus compliant to §25 (2) |

| 9 | References |
| | https://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/ps-af-i and Moodle |

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2070-pj</td>
<td>Autonomous Driving Lab I</td>
<td>Prof. Dr. rer. nat. Andreas Schürr, Dr. Ing. Stefan Tomaszek, Dr. Ing. Eric Lenz</td>
<td>Project seminar</td>
<td>3</td>
</tr>
<tr>
<td>Module name</td>
<td>Autonomous Driving Lab II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module nr.</td>
<td>18-su-2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit points</td>
<td>6 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-study</td>
<td>135 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German/English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content

- Further development and optimization of a robust C++ framework for solving non-trivial problems in the field of autonomous driving based on realistic challenges from the Carolo Cup, an international student competition for autonomous model cars
- Development and implementation of different algorithms (e.g., for motion planning, image processing, control, and obstacle avoidance) in an embedded system with hard real-time requirements and limited resources (memory, ...)
- Application and further development of control methods in the field of autonomous driving
- Application of software engineering techniques (design, documentation, testing, ...) for solving the problem
- Using source code management systems, time management and other project management tools
- Presentations of the project results

2 Learning objectives

Students learn to independently develop, implement and present new concepts and algorithms in the field of autonomous driving. Realistic problems from the Carolo Cup are solved with existing knowledge and skills practically and the implementation is ensured by quality assurance measures.

Students who have successfully participated in this project seminar are able to independently analyze and solve a complex and realistic task in the field of autonomous driving. The participants acquire the following skills in detail:

- Further development and optimization of an existing software system and the used algorithms independently
- Solving and implementation of non-trivial, realistic control engineering challenges
- Extensive use of tools for version, configuration, change, and quality assurance management
- Realistic time planning and resource allocation (project management)
- Further development and optimization of complex hardware/software systems under realistic environmental conditions
- Planning and implementation of extensive quality assurance measures
- Collaboration, communication and organization within the team

3 Recommended prerequisites for participation

Previous participation in the project seminar "Autonomous Driving I" or course with similar content.

4 Form of examination

Module exam:

- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:

- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module

380
<table>
<thead>
<tr>
<th>8</th>
<th>Grade bonus compliant to §25 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>https://www.es.tu-darmstadt.de/lehre/aktuelle-veranstaltungen/ps-af-ii und Moodle</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-2100-pj</td>
<td>Autonomous Driving Lab II</td>
<td>Prof. Dr. rer. nat. Andreas Schürr, Dr. Ing. Stefan Tomaszek, Dr. Ing. Eric Lenz</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>
Module name
Project Seminar Terahertz Technology, Communication and Sensors

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2030</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. rer. nat. Sascha Preu

1 Teaching content
Investigating and solving specific problems concerning the development of Terahertz devices, of applications of THz technology as well as topics of the area of Optics and communication technology. The specific task will be defined based on current research topics. The project seminar includes working on a given task by one's own, organizing and structuring of a seminar task, searching and analyzing of scientific reference publications, summarizing achieved results and conclusions by means of a written report, presenting achieved results and conclusions and defending them in an oral discussion including audience. Topics include, e.g.:

- Terahertz Optics
- Optics/photonics
- Spectroscopy
- Semiconductor devices
- Light-matter interaction

2 Learning objectives
After completion of the course, students possess:

- the ability to apply theoretical models to practical problems
- deep and special knowledge in a particular field related to THz science, optics or semiconductor physics
- the skills to find, analyze and evaluate scientific reference papers for a particular topic
- the capability to summarize the achieved scientific findings in the form of a concise report, and to present and discuss achieved results in the form of a presentation in front of an audience

3 Recommended prerequisites for participation
Previous knowledge in at least one of the following disciplines: Optics, semiconductor physics, or THz technology

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
Report and/or Presentation. The type of examination will be announced in the beginning of the project.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc etit

8 Grade bonus compliant to §25 (2)

9 References
Will be announced once the topic is defined.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-pr-2030-pj</td>
<td>Project Seminar Terahertz Technology, Communication and Sensors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Sascha Preu</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Product Development Methodology III

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-2010</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Ph.D. Thomas Burg</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Practical experiences by using methodical procedures in the development of technical products. In addition teamwork, verbal and written representation of results and the organisation of development. Work in a project team and organize the development process independently.

2. **Learning objectives**
 Applying the development methodology to a specific development project in a team. To do this, students can create a schedule, can analyze the state of the art, can compose a list of requirements, can abstract the task, can work out the sub-problems, can seek solutions with different methods, can work out optimal solutions using valuation methods, can set up a final concept, can derive the parameters needed by computation and modeling, can create the production documentation with all necessary documents such as bills of materials, technical drawings and circuit diagrams, can build up and investigate a laboratory prototype and can reflect their development in retrospect.

3. **Recommended prerequisites for participation**
 Product Development Methodology I

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
 MSc ETiT, MSc MEC, MSc WI-ETiT

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Script: Development Methodology (PEM)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-2010-pj</td>
<td>Product Development Methodology III</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ph.D. Thomas Burg, Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr. Mario Kupnik, Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>
Module name
Product Development Methodology IV

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-2060</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>

1. **Teaching content**
 Practical experiences by using methodical procedures in the development of technical products. In addition teamwork, verbal and written representation of results and the organization of development. Work in a project team and organize the development process independently.

2. **Learning objectives**
 Applying the development methodology to a specific development project in a team. To do this, students can create a schedule, can analyze the state of the art, can compose a list of requirements, can abstract the task, can work out the sub-problems, can seek solutions with different methods, can work out optimal solutions using valuation methods, can set up a final concept, can derive the parameters needed by computation and modeling, can create the production documentation with all necessary documents such as part lists, technical drawings and circuit diagrams, can build up and investigate a laboratory prototype and can reflect their development in retrospect.

3. **Recommended prerequisites for participation**
 Product Development Methodology I

4. **Form of examination**
 Module exam:
 - Module exam (Study achievement, Optional, Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Study achievement, Optional, Weighting: 100 %)

7. **Usability of the module**
 MSc ETiT, MSc MEC

8. **Grade bonus compliant to §25 (2)**

9. **References**
 Script: Development Methodology (PEM)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sa-2060-pj</td>
<td>Product Development Methodology IV</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ph.D. Thomas Burg, Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr. Mario Kupnik, Prof. Dr.-Ing. Tran Quoc Khanh</td>
</tr>
</tbody>
</table>
2.5 Field Trip

<table>
<thead>
<tr>
<th>Module name</th>
<th>Railway Vehicle Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-bi-2050</td>
</tr>
<tr>
<td>Credit points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Summer term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. techn. Dr.h.c. Andreas Binder</td>
</tr>
</tbody>
</table>

1 Teaching content
From the comprehensive and interdisciplinary domain of the railway technology (vehicle technology, signal and safety technology, construction engineering and railway operating technology) the lecture picks out the domain of the automotive engineering with the emphasis of the mechanical part. It offers an interrelated introduction into selected chapters of the rail vehicle engineering with special emphasis in the railway-specific technical solutions and procedures. The lecture is divided into 7 chapters, whereby four chapters the theoretical basic topics cover and three chapters the fundamental components of the rail vehicle present.
In a one-day excursion, it is possible to gain insights into the production of modern rail vehicles. Participation is voluntary.

2 Learning objectives
Basic understanding of mechanical parts of railways and their components.

3 Recommended prerequisites for participation
Bachelor in Electrical Engineering, Mechatronics or Mechanical Engineering

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)
In general, the examination takes place in form of a written exam (duration: 90 minutes). If up to 20 students register in semesters in which the lecture does not take place, there will be an oral examination (duration: 30 min.). The type of examination will be announced within one working week after the end of the examination registration phase.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC, MSc EPE, MSc WI-ETiT

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-bi-2050-vl</td>
<td>Railway Vehicle Engineering</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. techn. Dr.h.c. Andreas Binder
Module name
Excursion SAE

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1060</td>
<td>1 CP</td>
<td>30 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Mario Kupnik

1 **Teaching content**
During the excursion SAE (duration 5 days) several companies working on electrical engineering and information technology and other fields will be visited. Students can become acquainted with close-to-reality examples. Working fields of an electrical engineer can be assessed, with technical- or organizational aspects and conditions of work as the main target. By the attendance of several companies in successive days, a comparison becomes possible. During the excursion the group is accommodated in e.g. hostels.

2 **Learning objectives**
Students should be able to understand products and the associated production processes and be able to concisely summarize this in a report.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Optional)

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 **Usability of the module**
BSc ETiT, BSc WI-ETiT

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1060-ek</td>
<td>Excursion SAE</td>
<td>Prof. Ph.D. Thomas Burg, Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr. Mario Kupnik, Prof. Dr.-Ing. Tran Quoc Khanh</td>
<td>Field trip</td>
<td>0</td>
</tr>
</tbody>
</table>
2.6 Colloquia

Module name
Industrial Colloquium

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dt-2010</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Ralf Steinmetz

1 Teaching content
To get an idea about current trends in industry. In addition, to give a glimpse of job opportunities the industry will provide after graduation. Acquired competences are:
- Active knowledge about industry trends and applications in multimedia communications
- Build contact with persons from various important companies
- Presentation skills improvement

2 Learning objectives
Today, the Internet is much more than just a browser window on your desktop-PC. It is a part of our everyday life and has become ubiquitous thanks to smartphones, tablet-PCs and laptops. This pervasiveness of the Internet requires tremendous effort on the provider side. This is due to the fact that the Internet itself is a communication system with a vast number of mechanisms running on different functional layers. With the rapid increase of mobile devices, traffic consumption, and the sheer number of users, many of those mechanisms reach their limits. This problem becomes visible to the end user, if, for example, large crowds of people suddenly overload the mobile communication infrastructure.

With the recently established collaborative research center MAKI (Multi-Mechanismen-Adaption für das künftige Internet) scientists of TU Darmstadt study the possibilities of coordinated and automated transitions between different mechanisms of a communication system. Thereby, the Future Internet will be able to react to changes by, for example, switching from the mobile communication infrastructure to a local ad-hoc network between users if the demand by users exceeds the resources of the available infrastructure.

In this year's industrial colloquium, partners from the industry present their visions, challenges and solutions regarding the Future Internet. Additionally, researchers from TU Darmstadt provide insights into current scientific work in the context of the collaborative research center MAKI.

3 Recommended prerequisites for participation
Mandatory: Basic knowledge in Information Systems and Communication Systems. The student has to be capable to understand the technical aspects and to summarize them in a written report as a short paper.

4 Form of examination
Module exam:
- Module exam (Study achievement, Optional, Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Optional, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc iST, MSc iCE

8 Grade bonus compliant to §25 (2)
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dt-2010-ko</td>
<td>Industrial Colloquium</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, Prof. Dr.-Ing. Ralf Steinmetz, Prof. Dr. rer. nat. Andreas Schürr, Prof. Dr.-Ing. Christian Hochberger, Prof. Dr. rer. nat. Florian Steinke</td>
<td>Colloquium</td>
<td>2</td>
</tr>
</tbody>
</table>
2.7 Modules of the M.Sc. Biomedical Engineering

<table>
<thead>
<tr>
<th>Module name</th>
<th>Clinical Requirements for Medical Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module nr.</td>
<td>18-mt-2020</td>
</tr>
<tr>
<td>Credit points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
</tr>
<tr>
<td>Module duration</td>
<td>1 Term</td>
</tr>
<tr>
<td>Module cycle</td>
<td>Winter term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Module owner</td>
<td>Prof. Dr. Thomas Vogl</td>
</tr>
</tbody>
</table>

1 Teaching content
The module deals with the requirements for imaging methods in clinical diagnostics. Basic knowledge of the anatomy and clinic of common clinical pictures in internal medicine and surgery is discussed. On this basis, possible areas of application of imaging methods for diagnosis are discussed. In addition, the necessity and goals of the respective diagnostics for the clinical referrer are explained. In this context, the different meaningfulness of individual procedures is dealt with. Another perspective of the module is the explanation of typical problems of imaging diagnostics in the course of clinical routine such as structural, patient-related and particularly technical requirements or restrictions. The participants are given the path from the choice of imaging diagnostics to their assessment using common image examples (some of which are case-oriented).

2 Learning objectives
After successfully completing the module, the students understand the requirements for imaging methods in clinical diagnostics. They know the common indications for imaging diagnostics in the context of common clinical pictures, especially from the fields of surgery and internal medicine. Based on basic anatomical-pathophysiological knowledge, they understand the goal of the requested diagnosis. They also know about differences in imaging methods in terms of sensitivity, specificity, invasiveness, radiation exposure and cost-benefit ratio. Typical structural, technical and patient-related problems in everyday routine diagnostics are known.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Technical examination, Oral examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Will be announced at the event

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>18-mt-2020-vl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name</td>
<td>Clinical requirements for medical imaging</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Thomas Vogl</td>
</tr>
<tr>
<td>Type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Human vs. Computer in Diagnostic Imaging

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2030</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Thomas Vogl

1 Teaching content
The module deals with imaging diagnostics in routine clinical practice. For this purpose, students are taught common areas of application of imaging techniques. In addition, the goals and value for the treating doctor are explained to them. In this context, common clinical pictures are used as examples to discuss the general, case-oriented benefits, risks and costs of the respective procedures. The participants will also be given an explanation of image analysis and image diagnosis, especially with regard to the medical question. Previous and newer technical aids are discussed. This includes filters, processing tools and evaluation algorithms. In addition, frequent human and technical sources of error as well as weaknesses in imaging diagnostics are discussed. Advantages, disadvantages and limitations of computer-assisted image analysis are explained using typical everyday examples. Differences between humans and computers in image assessment such as the integration of clinical information are explained.

2 Learning objectives
The students know the areas of application of imaging methods in clinical routine. They understand the goal and the value of the requested diagnostics. They can also assess requirements for the chosen method and the limitations of this method. They are familiar with various technical aids such as image processing tools and evaluation algorithms and can continue to assess their advantages and disadvantages. They also know about the differences between human and purely computer-assisted image analysis and image assessment. Common sources of error and their causes are known. After successfully completing the module, the students can explain the advantages and limitations of human and computer-assisted image assessment and understand their differential diagnostic potential. They are familiar with the latest technical aids that have been used to date. In addition, they can assess the methodological significance of frequent medical questions.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Will be announced at the event

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2030-vl</td>
<td>Human vs. Computer in diagnostic imaging</td>
<td>Prof. Dr. Thomas Vogl</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Radiotherapy I

<table>
<thead>
<tr>
<th>Module nr. 18-mt-2040</th>
<th>Credit points 3 CP</th>
<th>Workload 90 h</th>
<th>Self-study 60 h</th>
<th>Module duration 1 Term</th>
<th>Module cycle Winter term</th>
</tr>
</thead>
</table>

Language
German

Module owner
Dr. Jörg Licher

1 Teaching content
Basic aspects of radiation therapy; legal framework for the use of ionising radiation in medicine; range of applications of ionising radiation in therapy; systems and devices for percutaneous, intracavitary and interstitial therapy with ionising radiation; physical and technical aspects of systems and devices for the application of ionising radiation in therapy; clinical dosimetry of ionising radiation in therapy; quality assurance in radiation therapy.

2 Learning objectives
The students receive sound basic knowledge of the generation, application and quality assurance of ionising radiation for use in radiotherapy. They know the functioning of systems and devices for percutaneous, intracavitary and interstitial therapy with ionising radiation. They are familiar with the essential aspects of dosimetry and quality assurance of radiation therapy devices as well as the relevant medical requirements. They have knowledge of the specific issues of radiation protection in the use of ionising radiation in therapy.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Schlegel, Karger, Jäckel: „Medizinische Physik“, Springer Spektrum, 2018

Courses
<table>
<thead>
<tr>
<th>Course Nr. 18-mt-2040-vl</th>
<th>Course name Radiotherapy I</th>
<th>Type Lecture</th>
<th>SWS 2</th>
</tr>
</thead>
</table>
Instructor
Dr. Jörg Licher

393
Module name
Radiotherapy II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2050</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Dr. Janett Köhn

1 Teaching content
Basic aspects of radiotherapy planning; basic medical and physical principles of therapy planning; imaging modalities in therapy planning; commissioning of radiation sources in tele- and brachytherapy; conventional and inverse radiation planning; algorithms for dose calculation: pencil beam, collapsed cone and Monte Carlo; quality assurance in radiation planning; special aspects of radiation planning in stereotactic or radiosurgical radiotherapy; special features of radiation planning in brachytherapy.

2 Learning objectives
The students receive sound basic knowledge in radiation planning for percutaneous, intracavitary and interstitial therapy with ionising radiation; they know the basic medical and physical principles of therapy planning and are familiar with different planning procedures and algorithms. They are familiar with the procedures for quality assurance in radiation planning.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Schlegel, Karger, Jäckel: „Medizinische Physik“, Springer Spektrum, 2018

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2050-vl</td>
<td>Radiotherapy II</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Nuclear Medicine

<table>
<thead>
<tr>
<th>Module nr. 18-mt-2060</th>
<th>Credit points 3 CP</th>
<th>Workload 90 h</th>
<th>Self-study 60 h</th>
<th>Module duration 1 Term</th>
<th>Module cycle Winter term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Module owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>Dr. Christian Happel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Teaching content
Basic principles of nuclear medical diagnostics and therapy (radiopharmaceuticals); biological radiation effects and toxicity of radioactively labelled substances; biokinetics of radioactively labelled substances, determination of organ doses; radiation measurement technology and dosimetry in nuclear medicine; imaging: Planar gamma camera systems, emission tomography with gamma rays (SPECT), positron emission tomography (PET); data acquisition and processing in nuclear medicine; in vivo examination methods; in vitro diagnostics; nuclear medicine therapy and intratherapeutic dose measurement; quality control and quality assurance; radiation protection of patients and staff; planning and setting up nuclear medicine departments

2 Learning objectives
The students receive sound basic knowledge of nuclear medicine. They know the physical and biological properties of different radiopharmaceuticals and are familiar with the dosimetric procedures in nuclear medicine. They know the different systems and procedures of nuclear medical diagnostics and therapy. They have knowledge of the specific issues of radiation protection in the use of ionising radiation in nuclear medicine.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Schlegel, Karger, Jäckel: „Medizinische Physik“, Springer Spektrum, 2018
Grünwald, Haberkorn, Kraus, Kuwert; „Nuklearmedizin“, 4. Auflage, Thieme, 2007

Courses

| Course Nr. 18-mt-2060-vl | Course name Nuclear Medicine | Instructor Dr. Christian Happel | Type Lecture | SWS 2 |
Module name
Digital Dentistry and Surgical Robotics and Navigation I

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2070</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Robert Sader

1 Teaching content
The module deals with the basics methods and devices with which preoperative three-dimensional treatment planning can be carried out in the speciality areas of surgery and digital dentistry, and which also can be transferred to the intraoperative situation to support the practitioner. The procedures range from preoperative data acquisition (intra- and extraoral scanning systems, radiological procedures such as computed tomography, magnetic resonance imaging, cone-beam computed tomography) and the various software-based 3D-planning procedures by intraoperative passive (navigation, augmented reality) and active (robotics, Telemanipulation) systems. One focus is the application in the areas of neuronavigation, spine and pelvic surgery in trauma, hand and reconstructive surgery, oncologic surgery, especially in the field of urology, and various areas of reconstructive dentistry such as dental implantology, jaw reconstructions or care with individual dentures.

2 Learning objectives
After successfully completing the module, the students have first insights into the principles, strategies and concepts of medical and dental robotics and navigation as well as the functionality of the associated software and devices. They will be able to describe the workflow from data acquisition to intraoperative implementation. They know the basic advantages and limitations of the various procedures in different medical and dental applications and can independently apply this knowledge to interdisciplinary issues in surgery and digital dentistry together with engineering and thus formulate basic specialist positions.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
To be published during the event.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2070-vl</td>
<td>Digital Dentistry and Surgical Robotics and Navigation I</td>
<td>Prof. Dr. Dr. Robert Sader</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Digital Dentistry and Surgical Robotics and Navigation II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2080</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Robert Sader

1. **Teaching content**
The module deepens the learning content presented in Lecture I and comprehensively presents the methods and devices with which preoperative three-dimensional treatment planning in the fields of surgery and digital dentistry can be carried out and can also transferred to the intraoperative situation to support the practitioner. These medical technology processes, concepts and associated device technologies are now presented in the narrow context of their medical applications. One focus is the application in the areas of neuronavigation, spinal and pelvic surgery in trauma, hand and reconstructive surgery, oncologic surgery, especially in the field of urology, and various areas of reconstructive dentistry such as dental implantology, jaw reconstruction or the supply of individual dentures.

2. **Learning objectives**
After successfully completing the module, students have comprehensive insights into the current principles, strategies and concepts of medical and dental robotics and navigation as well as the functionality of the associated software and devices. They are able to describe the workflow from data acquisition to intraoperative implementation and to understand the functionalities of the disciplines involved in their interdisciplinary networking as well as the related interface problems. They know the advantages and limitations of the various procedures in different medical and dental applications. In addition, they can independently apply the knowledge they have acquired to interdisciplinary issues in surgery and digital dentistry together with engineering and thus formulate subject-related positions.

3. **Recommended prerequisites for participation**
Digital Dentistry and Surgical Robotics and Navigation I

4. **Form of examination**
Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**
M.Sc Medical Engineering

8. **Grade bonus compliant to §25 (2)**

9. **References**
To be published during the event

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2080-vl</td>
<td>Digital Dentistry and Surgical Robotics and Navigation II</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Digital Dentistry and Surgical Robotics and Navigation III

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2090</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Robert Sader

1 Teaching content
The module deepens the learning content presented in Lecture I and presents the latest and visionary methods and devices with which preoperative three-dimensional treatment planning in the fields of surgery and digital dentistry can be carried out and transferred to the intraoperative situation to support the practitioner. These medical technology processes, concepts and associated device technologies are presented problem-oriented and in the narrow context of their medical applications. Based on existing technology problems, future developments in medical technology are presented and discussed. One focus is the application in the areas of neuronavigation, spinal and pelvic surgery in trauma, hand and reconstructive surgery, oncology, especially in the field of urology and various areas of reconstructive dentistry such as dental implantology, jaw reconstruction or care with individual dentures.

2 Learning objectives
After successfully completing the module, students have comprehensive insights into the procedures and devices used in surgical and dental 3D planning, the manufacture of patient-specific implants and dentures, as well as robotics and navigation. You are able to describe the functionalities of the systems involved on the basis of the workflow from data acquisition to intraoperative application-related. One focus is the necessary interdisciplinary networking and the associated interface problems. The students know the advantages and limitations of different procedures in different medical and dental applications. In addition, they can independently develop the knowledge they have acquired and generate new interdisciplinary issues in surgery and digital dentistry combined with engineering.

3 Recommended prerequisites for participation
Concomitant participation either in the module „Digital Dentistry and Surgical Robotics and Navigation I“ or in the module „Digital Dentistry and Surgical Robotics and Navigation II“ is recommended.

4 Form of examination
Module exam:
• Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
To be published during the event.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2090-vl</td>
<td>Digital Dentistry and Surgical Robotics and Navigation III</td>
<td>Prof. Dr. Dr. Robert Sader</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Anesthesia I

Module nr.
18-mt-2100

Credit points
3 CP

Workload
90 h

Self-study
60 h

Module duration
1 Term

Module cycle
Winter term

Language
German

Module owner
Prof. Dr. Dr. Kai Zacharowski

1. **Teaching content**
 Within the scope of the module, basic physiology and anatomy from the areas of: Lung, Nerves, Central Nervous System, Heart, Kidney, Coagulation and Gastrointestinal Tract. Furthermore, selected pathologies and diseases are presented. Based on this, current technologies for monitoring and surveillance of diverse body functions are presented. Emphasis is placed on understanding and interpreting "normal" and pathological measurement results.

2. **Learning objectives**
 After completing the module, the students have basic knowledge of anatomy and physiology with corresponding reference to disease patterns and their pathophysiology. Through this knowledge, the students are able to assess physiological and pathophysiological measurement results of various devices in context and to understand their indication.

3. **Recommended prerequisites for participation**

4. **Form of examination**
 Module exam:
 - Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5. **Prerequisite for the award of credit points**
 Passing the final module examination

6. **Grading**
 Module exam:
 - Module exam (Technical examination, Examination, Weighting: 100 %)

7. **Usability of the module**
 M.Sc. Biomedical Engineering

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2100-vl</td>
<td>Anesthesia I</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr. Dr. Kai Zacharowski
Module name
Clinical Aspects ENT & Anesthesia II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2110</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Kai Zacharowski

1 Teaching content
- **ENT:** Consolidation of knowledge in the anatomy, physiology and pathophysiology of the ear. In addition, basic knowledge of phoniatrics is imparted and here the anatomy and function of the larynx and the swallowing apparatus as well as basic aspects of phoniatric diagnostics and therapy are explained. The anatomy and function of the nasal head and sinuses are presented together with the associated diagnostic procedures. In the subject area of neurootology, knowledge of the function of the vestibular apparatus is deepened and associated diagnostic procedures are explained. In the field of surgical assistance in ENT, procedures of computer-assisted navigation, applications of robotics, neuromonitoring and procedures of laser surgery are presented.
- **Anesthesia II:** During the module, basic physiology and anatomy from the areas of: Lung, Nervous, Central Nervous System, Heart, Kidney, Coagulation and Gastrointestinal Tract. Furthermore, selected pathologies and diseases are presented. Based on this, current instrument technologies for monitoring and surveillance of diverse body functions are presented. Emphasis is placed on understanding and interpreting "normal" and pathological measurement results.

2 Learning objectives
The students have acquired basic knowledge of the anatomy, physiology and pathophysiology of the inner ear, nose, larynx and swallowing apparatus in the field of ENT. They know basic diagnostic examination procedures of ENT/phoniatrics. Furthermore, the students have acquired knowledge about the structure and function as well as the application of intraoperative assistance systems in ENT.
In the field of anesthesia, the students have acquired basic knowledge in anatomy and physiology with corresponding reference to clinical pictures and their pathophysiology. Through this knowledge, students are able to understand the indication of the use of physiological and pathophysiological diagnostic procedures and can assess measurement results of the discussed diagnostic devices in context.

3 Recommended prerequisites for participation
"Anesthesia I"

4 Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 60 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2110-vl</td>
<td>Clinical Aspects ENT & Anesthesia II</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Dr. Kai Zacharowski</td>
</tr>
<tr>
<td>Type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Module name
Audiology, Hearing Aids and Hearing Implants

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2120</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Timo Stöver</td>
</tr>
</tbody>
</table>

1 **Teaching content**
Students learn basic concepts of audiology and gain knowledge of objective and subjective methods for the diagnosis of hearing disorders. In addition, the various devices used in diagnostics are explained and corresponding standards and guidelines are discussed. In the field of pediatric audiology, procedures and devices for performing newborn hearing screening are presented. The design, function and fitting of conventional technical hearing aids and implantable systems are presented. In addition to signal processing and coding strategies of cochlear implant systems, special features of electric-acoustic stimulation are discussed. Special emphasis is given to the treatment of the specific aspects of electrical stimulation of the auditory sense. Students will learn about the fitting pathway for hearing implants, diagnostic procedures for indication, and strategies for managing adverse events. The fitting and monitoring of cochlear implant systems as well as active hearing implants will be explained. The concepts of rehabilitation and support options for hearing impaired children and adults will be presented.

2 **Learning objectives**
After successful completion of the module, students will be familiar with the procedures of subjective and objective audiology and will have learned how the equipment required for the examinations works. They know the advantages and limitations of the various diagnostic procedures in different applications. They have learned the construction, functioning and fitting of conventional technical hearing aids as well as implantable hearing systems. They are able to describe the care process with the various hearing systems and to understand the functionalities of the disciplines involved in their interdisciplinary networking as well as the interface problems. They know the advantages and limitations of the different hearing systems and can name the most important criteria for indication. In addition, they can independently apply their acquired knowledge to interdisciplinary issues of audiology together with the engineering sciences and thus formulate subject-related positions.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 60 Min., Default RS)
The examination takes place in form of a written exam (duration: 60 minutes). If one can estimate that less than 7 students register, the examination will be an oral examination (duration: 30 min.). The type of examination will be announced in the beginning of the lecture.

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**
M.Sc. Biomedical Engineering

8 **Grade bonus compliant to §25 (2)**

9 **References**
Kießling J, Kollmeier B, Baumann U. Care with hearing aids and hearing implants. 3rd ed. Thieme; 2017

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2120-vl</td>
<td>Audiology, hearing aids and hearing implants</td>
</tr>
<tr>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>Prof. Dr. Timo Stöver</td>
<td>Lecture</td>
</tr>
</tbody>
</table>
Module name
Basics of Medical Information Management

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2130</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner

1 Teaching content
This lecture aims to provide insights into the medical information management focusing on the clinical context.
- Basic concepts of hospital information systems (HIS)
- Exchange formats in clinical information systems (HL7, HL7-FHIR, DICOM)
- Medical data models
- Interfaces with clinical research
- Basic concepts of medical documentation
- Telemedicine / assistive health technology

2 Learning objectives
After successful completion of the course, students are familiar with the terminology of a typical hospital system landscape and understand formats and concepts of interfaces for information exchange.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination)
The type of examination will be announced in the first lecture. Possible types include presentation (30 minutes), documentation, report.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2130-vl</td>
<td>Basics of medical information management</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Technical Performance Optimization of Radiological Diagnostics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2140</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Thomas Vogl

1 Teaching content
In this module, students learn ways to optimize the performance of radiological diagnostics. Common areas of application of projection radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography are taught. Limitations of the procedures used in relation to common medical questions are explained. In addition, current research results and research projects in the field of radiological diagnostics are presented and explained to the students. On this basis, a research-oriented module approach with a focus on the technical optimization of a radiological procedure in a typical clinical application will be pursued.

2 Learning objectives
After successfully completing the module, the students are familiar with current scientific questions regarding the technical development of radiological-diagnostic procedures. They know common areas of application of radiological procedures in clinical routine and understand their meaningfulness and value. They also know about common problems and limitations of common procedures and can discuss them on a scientific level. They are also able to develop and pursue their own current research hypotheses in the field of technical support for radiological procedures. Another aim of this module is that students discuss scientific questions with clinicians working in radiology and learn the dialog between developers, researchers and users. Finally, the results are presented in a simulated scientific lecture and then discussed.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Study achievement, Oral/written examination, Default RS)
The examination form will be announced at the beginning of the course. Possible paths are presentation (25 min), report.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Will be announced at the event

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2140-pj</td>
<td>Technical performance optimization of radiological diagnostics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Vogl</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
Module name
Seminar Radiation Physics and Technology in Medicine

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2150</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Every Semester</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Dr. Jörg Licher

1 Teaching content

- Independent study of current specialist literature, conference and journal papers from the field of radiotherapy and nuclear medicine on a selected topic in the area of basic methods.
- Critical examination of the topic dealt with
- Own further literature research
- Preparation of a lecture (written paper and slide presentation) on the topic dealt with
- Presentation of the lecture to an audience with heterogeneous prior knowledge
- Professional discussion of the topic after the lecture

2 Learning objectives

The students independently acquire in-depth knowledge of aspects of modern radiotherapy or nuclear medicine based on current scientific articles, standards and reference books. In doing so, they learn how to search for and evaluate relevant scientific literature. You can analyse and assess complex physical, technical and scientific information and present it in the form of a summary. The acquired knowledge can be presented in front of a heterogeneous audience and a professional discussion can be held on the acquired knowledge.

3 Recommended prerequisites for participation

Radiotherapy I; Nuclear Medicine

4 Form of examination

Module exam:
- Module exam (Study achievement, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module

M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Will be announced at the beginning of the course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2150-se</td>
<td>Seminar Radiation Physics and Technology in Medicine</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Dr. Jörg Licher
1 Teaching content
The module includes the clinical applications of surgical robotics and navigation and digital dentistry procedures, especially in the areas of neuronavigation, spinal and pelvic surgery in trauma, hand and reconstructive surgery, oncologic surgery, especially in the field of urology, and various areas of reconstructive dentistry such as dental implantology, jaw reconstruction or the provision of individual dentures. The students are familiarized with the associated software applications and technologies of the associated medical device technologies in their basics and can also carry out initial practical exercises. In selected cases, the clinical use is demonstrated on the patient.

2 Learning objectives
After successfully completing the module, the students have first insights into the principles and functions of radiological and non-radiological scanning procedures for generating 3D-patient treatment data, their software-based evaluation, their further use for treatment planning and the technological transfer to the actual treatment situation. They can name the clinical fields of application in surgery and dentistry and the advantages and disadvantages, especially in the areas of neuronavigation, spinal and pelvic surgery, urological oncology, dental implantology and various areas of reconstructive digital dentistry and oral and cranio-maxillofacial surgery. In addition, they can position their acquired knowledge in the context of other interdisciplinary issues in medicine and engineering and thus formulate fundamental subject-related positions.

3 Recommended prerequisites for participation
Concomitant participation in the module „Digital Dentistry and Surgical Robotics and Navigation I“ is recommended.

4 Form of examination
Module exam:
• Module exam (Technical examination, Colloquium, Duration: 20 Min.)
The colloquium takes place during the internship in the context of scientific discussions on the contents of the weekly units.
The module is considered to have been passed if the student has attended a time portion of usually 80% of the course offerings and has participated in the scientific discourse on the contents of the weekly units. The qualification goals of the module, e.g. clinical application of various procedures, familiarization with medical device technologies, the performance of practical exercises and clinical demonstration on patients, can only be achieved through regular participation in the internship.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Technical examination, Colloquium, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
To be published during the event.

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2160-pr</td>
<td>Internship in Surgery and Dentistry I</td>
<td>Prof. Dr. Dr. Robert Sader</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name

Internship in Surgery and Dentistry II

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2170</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Dr. Robert Sader</td>
</tr>
</tbody>
</table>

1 Teaching content

The module includes the deepend clinical application of procedures in surgical robotics and navigation and digital dentistry, especially in the areas of neuronavigation, spine and pelvic surgery in trauma, hand and reconstructive surgery, in oncologic surgery, especially in the field of urology, and in various areas of reconstructive dentistry such as dental implantology, jaw reconstructions or the supply of individual dentures. The students are made familiar with the associated software applications and technologies of the associated medical device technologies in clinical use and they also carry out practical exercises. In selected cases, clinical use is demonstrated on the patient.

2 Learning objectives

After successfully completing the module, the students have comprehensive insights into the principles and functions of radiological and non-radiological scanning methods for generating 3D-patient treatment data, their evaluation, their further use for 3D-treatment planning and the technological transfer to the actual treatment situation. They can name the clinical fields of application in surgery and dentistry and can comprehensively describe the advantages and disadvantages of the different applications for the respective application, especially in the areas of neuronavigation, spinal and pelvic surgery, urological oncology, dental implantology and various areas reconstructive digital dentistry and oral and cranio-maxillofacial surgery. In addition, they can independently apply the knowledge they have acquired to other interdisciplinary issues in medicine and engineering and thus formulate subject-related positions.

3 Recommended prerequisites for participation

Concomitant participation in the module „Digital Dentistry and Surgical Robotics and Navigation II“ is recommended.

4 Form of examination

Module exam:
- Module exam (Technical examination, Colloquium, Duration: 20 Min.)

The colloquium takes place during the internship in the context of scientific discussions on the contents of the weekly units. The module is considered to have been passed if the student has attended a time portion of usually 80% of the course offerings and has participated in the scientific discourse on the contents of the weekly units. The qualification goals of the module, e.g. clinical application of various procedures, familiarization with medical device technologies, the performance of practical exercises and clinical demonstration on patients, can only be achieved through regular participation in the internship.

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Technical examination, Colloquium, Weighting: 100 %)

7 Usability of the module

M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

To be published during the event.
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2170-pr</td>
<td>Internship in Surgery and Dentistry II</td>
<td>Prof. Dr. Dr. Robert Sader</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
1 Teaching content

The module includes the comprehensive clinical application of procedures in surgical robotics and navigation and digital dentistry, especially in the areas of neuronavigation, spine and pelvic surgery in the field of trauma, hand and reconstructive surgery, and oncology, especially in the field of urology and various areas of reconstructive dentistry such as dental implantology, jaw reconstructions or the dental care with individual dentures. The students will be familiar with the associated software applications and technologies of the associated medical device technologies that they can independently develop further questions to be solved in the context of a master's or doctoral thesis. For this, they also carry out practical exercises in which different medical products are involved. In selected cases, the clinical use is demonstrated on the patient.

2 Learning objectives

After successfully completing the module, the students have comprehensive insights into the principles and functions of radiological and non-radiological scanning methods for generating 3D-patient treatment data, their software-based evaluation, their further use for treatment planning and the technological transfer to the actual treatment situation. They know the current clinical fields of application in surgery and dentistry, can describe the advantages and disadvantages of the different applications and can develop problem-solving approaches. This is implemented in particular in the areas of neuronavigation, spine and pelvic surgery, urological oncology, dental implantology and various areas of reconstructive digital dentistry and oral and cranio-maxillofacial surgery. They can independently apply the knowledge they have acquired to other interdisciplinary issues in medicine and engineering and thus can formulate subject-related positions and can develop solutions.

3 Recommended prerequisites for participation

Concomitant participation in the module „Digital Dentistry and Surgical Robotics and Navigation III“ is recommended.

4 Form of examination

Module exam:
- Module exam (Technical examination, Colloquium, Duration: 20 Min.)

The colloquium takes place during the internship in the context of scientific discussions on the contents of the weekly units.

The module is considered to have been passed if the student has attended a time portion of usually 80% of the course offerings and has participated in the scientific discourse on the contents of the weekly units. The qualification goals of the module, e.g. clinical application of various procedures, familiarization with medical device technologies, the performance of practical exercises and clinical demonstration on patients, can only be achieved through regular participation in the internship.

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:
- Module exam (Technical examination, Colloquium, Weighting: 100 %)

7 Usability of the module

M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
To be published during the event.

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
</tr>
<tr>
<td>18-mt-2180-pr</td>
</tr>
</tbody>
</table>
Module name
Internship "Medicine Live"

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2190</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Dr. Kai Zacharowski

1 Teaching content
As part of the combined POL seminar / simulation training, students are given the opportunity to work together under supervision on everyday problems in the context of patient care. Problems are evaluated and solution strategies are developed.

- **Anesthesia:** In simulation training, students can practice the procedure of a classic anesthesia on mannequins and deepen previously learned knowledge from lectures and practical courses on airway management and airway devices. Through guided hands-on training, a close link to practice is established and understanding is further deepened.
- **ENT:** Students receive practical insights into procedures of audiological, neurootological and phoniatric diagnostics and are familiarized with the respective device technology. Furthermore, procedures for metrological control of conventional hearing aids are demonstrated and practical exercises are performed. In addition, basic aspects of electrical stimulation of the auditory nerve are clarified by means of practical exercises with cochlear implant systems.

2 Learning objectives
After completing the module, students are able to work out and solve problems and simple issues independently in context. The students receive an overview of the equipment technology used in the specialties of anesthesia and ENT/phoniatrics. In the practical part, manual skills are trained and the use of various diagnostic devices is practiced. This provides a better understanding of medical activities, which facilitates communication with users of medical technology equipment in later professional life.

3 Recommended prerequisites for participation
Competencies from the "Anesthesia I & II" modules.

4 Form of examination
Module exam:
- Module exam (Study achievement, Presentation, Duration: 20 Min.)
The oral examination takes the form of a presentation during the internship. As a rule, there is one presentation per content area (anesthesia and ENT).

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Presentation, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2190-pr</td>
<td>Internship "Medicine Live"</td>
<td>Prof. Dr. Dr. Kai Zacharowski</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Introduction to Ethics: The Example of Medical Ethics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2200</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Christof Mandry

1 **Teaching content**
In exploring basic questions of medical ethics, the lecture provides an introduction to ethical thinking and the theories and reasoning of ethics. At the same time, it imparts basic knowledge about central and selected current discussions in medical ethics and healthcare ethics. Different Levels will be dealt with: What are the sets of values comprised in our notions of health and illness? What are the necessary requirements for decisions to be ethically good and correct? How are courses of action at the beginning and at the end of life to be evaluated? Is health to be regarded as an "asset" that can be "distributed" through public systems, and what criteria of justice do healthcare systems have to meet?

2 **Learning objectives**
Students know basic terms of ethics, like norm, responsibility, duty, ought, and (human) rights, as well as central classifications of ethics into metaethics, ought ethics, aspiration ethics, and domain ethics. They are familiar with different approaches to ethics and the justification of norms (deontological / teleological, virtue ethical approaches) and their respective theoretical prerequisites as well as strengths and weaknesses. Also, they are familiar with medical ethics being specific ethics with typical approaches like the Beauchamp/Childress principles model. Students have a basic understanding of fundamental conflicts in medical ethical decision making, for example regarding treatment at the beginning and the end of life and are able to analyze exemplary cases in a structured manner and make well-founded assessments. They know central legal regulations of selected clinical contexts (such as living wills or organ donation) and are familiar with the corresponding ethical discussions. They are familiar with basic social-ethical approaches like Rawls' theory of justice and understand their relevance to healthcare. They are able to identify and classify institutional-ethical issues of healthcare.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Oral/written examination, Duration: 60 Min., Default RS)
Module exam usually is a written exam (duration: 60 minutes) or an oral exam (duration: 15-20 minutes). The examination method will be announced at the start of the lecture, or one week after the end of the exam registration period (during terms where no courses are offered).

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**
M.Sc. Biomedical Engineering

8 **Grade bonus compliant to §25 (2)**

9 **References**

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2200-vl</td>
<td>Introduction to Ethics: The Example of Medical Ethics</td>
</tr>
<tr>
<td>Instructor</td>
<td>Type</td>
</tr>
<tr>
<td>Prof. Dr. Christof Mandry</td>
<td>Lecture</td>
</tr>
</tbody>
</table>
Module name
Current Issues in Medical Ethics

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2210</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Christof Mandry

1. **Teaching content**
This course deals in depth with current issues in medical ethics. These can either be related to clinical ethics (ethical decisions in medicine), such as organ removal and organ transplantation, change of therapeutic objectives, terminal care, etc. Or the issues are related to research ethics (for example research on individuals without capability to consent) or to the development of new treatments, for example in biomedicine, prosthetics, enhancement, etc. Key points are methodological questions of applied ethics, such as consideration of ethical and legal aspects, as well as questions of justification.

2. **Learning objectives**
Students will have acquired higher level skills to theoretically and methodologically reflect, analyze and reason within the scientific area of applied medical ethics. They are able to relate questions of justification and practicability to one another, whilst considering different objective and disciplinary perspectives. They are able to theoretically and methodologically analyze current topics in medical ethics and, at the same time, to discern different levels (persons affected, institutional and social contexts), and to combine ethical perspectives (such as perspectives of individual, social, and legal ethics). They master different ethical approaches, have an understanding of their prerequisites and scopes, and can apply them in a way suitable to the respective context. Students have a deepened understanding of the subject and are capable of ethical assessment. They are able to work on specific topics and questions, and to present their results in a comprehensible way.

3. **Recommended prerequisites for participation**
A basic understanding of ethics and/or medical ethics is desirable.

4. **Form of examination**
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
The examination method will be announced at the start of the first lesson. Possible forms are either giving a keynote presentation (duration: 20 min.) followed by a discussion or writing a protocol.

5. **Prerequisite for the award of credit points**
Passing the final module examination

6. **Grading**
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7. **Usability of the module**
M.Sc. Biomedical Engineering

8. **Grade bonus compliant to §25 (2)**

9. **References**

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2210-se</td>
<td>Current Issues in Medical Ethics</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Christof Mandry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Anthropological and Ethical Issues of Digitization

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2220</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Christof Mandry

1 Teaching content
In this seminar, we will analyze current and developing applications of digitization and AI in different areas of life, and also discuss them with regard to the perspectives of philosophy of technology, anthropology and ethics. In doing so, we will deal with fundamental questions such as the relationship between man and technology, the autonomy of autonomous systems, or the meaning of "responsibility", "action" or "intelligence" in the context of digitality and AI. Also, the seminar deals with the generic anthropological and ethical analysis and evaluation of particular scopes of application, in which digitization or AI play a key role, such as healthcare (health apps, big data mining, care robots), transportation (autonomous driving) etc., whilst applying interdisciplinary approaches like ethical design, algorithmic ethics, and privacy.

2 Learning objectives
Students are familiar with fundamental concepts of digitization and AI, and are able to take position in related discussions, for example regarding subject status, intelligence and capability of action, as well as the moral capacity of digital systems and systems involving AI. They are familiar with theories of technological development, like the theory of singularity, and the respective anthropological and ethical challenge involved. They are familiar with the approaches of philosophy and ethics of technology, for example digital design, as well as with critical stances regarding data security / privacy, and are able to apply them in certain scopes and with regards to particular developments. Students are able to analyze and present exemplary applications and developments regarding their technological, social and ethical aspects, and to profoundly discuss them with regard to their ethical and anthropological issues. In doing so, they are able to apply different approaches of ethics of technology and social ethics.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral examination, Default RS)
The type of examination will be announced in the first lecture. Possible types include presentation (20 minutes), moderation or oral examination.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2220-se</td>
<td>Anthropological and Ethical Issues of Digitization</td>
<td>Prof. Dr. Christof Mandry</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Medical Data Science

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2230</td>
<td>2 CP</td>
<td>60 h</td>
<td>45 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner

1 Teaching content
Students will attend a regular series of lectures and seminars (colloquium) in which they obtain extensive information about theory as well as practical experiences from the fields of medical informatics and medical data science. In these regular talks, members of the Medical Informatics Group, staff from the data integration centre as well as national and international speakers present timely and relevant topics from the field. The schedule will be provided in time.

Topics:
- Set up and establishment of patient registries
- Anonymization of public health data
- Consent and data protection
- Overview of research infrastructure in medical informatics and related disciplines
- Development of software solutions for applications and application management

2 Learning objectives
Students shall:
- familiarize themselves with timely topics from the field of medical informatics
- know methodologies in medical informatics and their applications
- understand data exploitation and usage of medical data
- understand interdisciplinary research approaches
- get a possibility for networking

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Written examination, Default RS)
The type of examination will be announced in the first lecture. Possible types include reports or protocols.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Written examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
Recent publications of the speakers (will be announced)

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2230-ko</td>
<td>Medical Data Science</td>
<td></td>
<td>Colloquium</td>
<td>1</td>
</tr>
</tbody>
</table>
Module name
Seminar Medical Data Science - Medical Informatics

Module nr. 18-mt-2240
Credit points 4 CP
Workload 120 h
Self-study 90 h
Module duration 1 Term
Module cycle Summer term

Language German/English
Module owner Prof. Dr. Holger Storf

1 Teaching content
In the seminar „Medical Data Science - Medical Informatics“, the students familiarize themselves with selected topics of recent conference and journal papers in the field of medical data science / medical informatics and finalize the course with an oral presentation.
- critical reflections on the selected topic
- further reading and individual literature review
- preparation of a presentation (written and powerpoint) about the selected topic
- presenting the talk in front of a group with heterogeneous prior knowledge
- specialist discussion about the selected topic after the presentation

The topics will derive from diverse medical applications from the field of medical data science / medical informatics such as standardized exchange formats of medical data or technical and semantic interoperability.

2 Learning objectives
After successful completion of the module, students are able to independently work themselves into a topic using scientific publications.
- They learn to recognize relevant aspects of the selected study and to comprehensibly present the topic in front of a heterogeneous audience using different presentation techniques.

After successful completion of the module, students are able to independently work themselves into a topic using scientific publications.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
Details of the exam will be announced at the beginning of the course [presentation (30 minutes) and report].

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 Usability of the module
M.Sc. Biomedical Engineering

8 Grade bonus compliant to §25 (2)

9 References
To be announced during the course.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2240-se</td>
<td>Seminar Medical Data Science - Medical Informatics</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Project seminar „Medical Data Science - Medical Informatics“

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2250</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
German/English

Module owner
Prof. Dr. Holger Storf

1 **Teaching content**
In this project seminar „Medical Data Science - Medical Informatics“, students are involved in planning, realization and further development of novel applications. This practical course covers topics such as data acquisition and data processing in the clinic for example for health care and research, for patient registries or for further innovative topics of public-funded research projects.

2 **Learning objectives**
- **Knowledge**: In this project seminar, students will get practical training in the field of medical informatics through active integration into the working group and learn about typical challenges in the clinical context such as data protection or data integration. Furthermore, knowledge about medical classifications and standardized exchange formats will be conveyed.
- **Skills**: Students will deepen their skills in software development particularly through their active integration into open source projects in the clinical context as well as the communication/networking within software projects.
- **Competences**: Participants will be able to apply and largely independently develop discipline-relevant technologies. In group work, they acquire the ability for independent realization of elements of larger software solutions.

3 **Recommended prerequisites for participation**

4 **Form of examination**
Module exam:
- Module exam (Study achievement, Oral/written examination, Default RS)
The type of examination will be announced in the first lecture. Possible types include presentation (30 minutes), documentation.

5 **Prerequisite for the award of credit points**
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Study achievement, Oral/written examination, Weighting: 100 %)

7 **Usability of the module**
M.Sc. Biomedical Engineering

8 **Grade bonus compliant to §25 (2)**

9 **References**
Will be announced during the project seminar.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-mt-2250-pj</td>
<td>Project seminar „Medical Data Science - Medical Informatics“</td>
<td>Prof. Dr. Holger Storf</td>
<td>Project seminar</td>
<td>4</td>
</tr>
</tbody>
</table>
3 Interdisciplinary modules of FB 18

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-4010</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
</tr>
</tbody>
</table>

1 Teaching content
In the European Union (EU), the fundamental requirements for electrical equipment, such as safety and electromagnetic compatibility (EMC) including functionality, are stipulated in EC Directives and by national implementation in laws and decrees. These requirements take shape in harmonized standards. The manufacturer or his authorized agent resident in the EU or, as the case may be, the user of the equipment has to show compliance with the requirements by means of
- Own tests or
- Tests carried out by an independent neutral testing laboratory.

During the lecture, these criteria are considered with respect to the following topics:
- Product safety law (ProtSG)
- Energy promotion law (EnWG)
- Law on electromagnetical compatibility of equipment (EMVG)
- Telecommunications law (TKG)
- X-ray decree (RöV)
- Explosion-protection decree
- Standardization by the German Electrotechnical Commission of DIN and VDE (DKE)
- Standardization:
 - In Europe by CENELEC (= European Committee of Electrotechnical Standardization)
- Application of regulation on the basis of case studies:
 - Case study 1: Functional Safety
 - Case Study 2: Protection against electric shock
- Separation of device and product standards (which are taught in the course) against grid codes such as BdEW or Entso-e Grid Code

2 Learning objectives
Participants of the course will be aware of connections between basic requirements given by law and technical standards for research and development of electrotechnical equipment. As an outcome the participants will know the basic requirements for safety and reliability of such products.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral examination, Duration: 30 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 **Grading**
Module exam:
- Module exam (Technical examination, Oral examination, Weighting: 100 %)

7 **Usability of the module**
BSc/MSc ETiT, MEC, iST

8 **Grade bonus compliant to §25 (2)**

9 **References**
- Link für EG-Richtlinien: eur-lex.europa.eu/de/index.htm

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-4010-vl</td>
<td>Standardization, Testing and Approvals in the Electrotechnical Area</td>
<td>Dr.-Ing. Stefan Heusinger, Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
What is Behind All this?

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-3002</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Herbert De Gersem

1 Teaching content

2 Learning objectives

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
• Module exam (Study achievement, Colloquium)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
• Module exam (Study achievement, Colloquium, Weighting: 100 %)

7 Usability of the module

8 Grade bonus compliant to §25 (2)

9 References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-3002-ko</td>
<td>What is behind all this?</td>
<td>Colloquium</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructor
Prof. Dr.-Ing. Herbert De Gersem
Module name
What is Behind All this?

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-3003</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr.-Ing. Herbert De Gersem

Teaching content

Learning objectives

Recommended prerequisites for participation

Form of examination
Module exam:
- Module exam (Study achievement, Special form, Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Study achievement, Special form, Weighting: 100 %)

Usability of the module

Grade bonus compliant to §25 (2)

References

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-dg-3002-ko</td>
<td>What is behind all this?</td>
<td>Prof. Dr.-Ing. Herbert De Gersem</td>
<td>Colloquium</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Patents - How to Protect Technical Inventions

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-3010</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
</tr>
</tbody>
</table>

1 Teaching content
Within the scope of this lecture aspects of national and international patent law as well as aspects of the law on employee will be treated as follows:

- German, European and international filing procedures and their legal prerequisites (formal and substantive patent law)
- Enforcement of technical property rights
- Infringement of technical property rights
- Law on employee invention - rights and obligations of employees and employers

2 Learning objectives
After completing the module, students will be able to deal with basic patent law issues and will have gained insight into patent law practice.

3 Recommended prerequisites for participation

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 90 Min., Default RS)

The examination takes place in form of a written exam (duration: 90 minutes). If one can estimate that less than 5 students register, the examination generally will be an oral examination (duration: 20 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ETiT, MSc MEC

8 Grade bonus compliant to §25 (2)

9 References
• German Patent Law „Patentgesetz (PatG)“ - www.gesetze-im-internet.de/patg/index.html
• German Utility Model Act „Gebrauchsmustergesetz (GbmG)“ - www.gesetze-im-internet.de/gebrmg/index.html
• German Law on Employee Invention „Arbeitnehmererfindergesetz (ArbEG)“ - www.gesetze-im-internet.de/arbnerfg/index.html

Students will find a compilation of the relevant legal texts in the following book:

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-fi-3010-vl</td>
<td>Patents - How to protect technical inventions</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>
4 Modules for other departments

<table>
<thead>
<tr>
<th>Module number</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-3010</td>
<td>5 CP</td>
<td>150 h</td>
<td>75 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language

- German

Module owner

- Prof. Dr. rer. nat. Sebastian Schöps

1 Teaching content

Maxwell’s equations, basics of numerical calculation of electromagnetic fields, knowledge about different types of possible errors

2 Learning objectives

Starting from basic electromagnetic problems in terms of electric and magnetic circuits the field aspect inherent to these models is accentuated. After attending the lecture, the student is capable of modeling given geometric structures and devices using the methods of Computational Engineering. Furthermore, the student is able to solve the related task numerically using appropriate software. The student should understand the basics of the numerical calculation of electromagnetic fields as well as become acquainted with the related procedures in practical applications. The gathered solution methods will be applied practically during the laboratory courses. Moreover basic programming skills related to specific simulation tasks as well as for the purpose of postprocessing the results of the numerical simulations are taught.

3 Recommended prerequisites for participation

- Elektrotechnik und Informationstechnik I und II

4 Form of examination

- Module exam: (Technical examination, Optional, Default RS)

5 Prerequisite for the award of credit points

- Passing the final module examination

6 Grading

- Module exam: (Technical examination, Optional, Weighting: 100 %)

7 Usability of the module

- BSc CE

8 Grade bonus compliant to §25 (2)

9 References

- Will be handed out during the lecture and is provided at www.temf.de

Courses
<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-3010-vl</td>
<td>Introduction into the numerical computation of electromagnetic fields</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Sebastian Schöps</td>
<td>Lecture</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-sc-3010-pj</td>
<td>Introduction into the numerical computation of electromagnetic fields</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Sebastian Schöps</td>
<td>Project seminar</td>
<td>3</td>
</tr>
</tbody>
</table>
Introduction to Electrical Engineering

Module name

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-3010</td>
<td>6 CP</td>
<td>180 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language

German

Module owner

Prof. Dr. Mario Kupnik

1 Teaching content

Basic physical quantities, fundamental forces, stationary charges - electrostatics, Coulomb's law, superposition, electrical field, electric flow, Gaus' law, area charge density, electrical potential and difference of potential, capacitor and term capacity, charging process, polarization, moving charge - electric flux field, drift velocity, electrical current, Ohm's law, electrical power, voltage- and current source, battery, power matching, efficiency ratio, Kirchhoff law, linear DC circuits, term magnetism, magnetic field, magnetic flux, electromagnet, electrodynamic principle - Lorentzforce, electric motor, solenoid and term inductance, Biot-Savart and Ampere's law, magnitization, magnetic excitation and magnetic flux density, matter in magnetic field and explanation of hesterysis curve, Lenz's law, Faraday's law, generator principle, harmonic functions, basics alternating current quantities, pointer diagrams, basic elements and power in alternating current circuits, term of impedance, transient events in RC- and RL-elements, ODE of first order, complex variable domain, transformer, three-phase current, resonant circuits and mechanical analogy, two and four-port elements, measurement amplifiers, electrical lines and electromagnetic wave.

2 Learning objectives

On successful completion of this module, students should be able to:

- comprehend and analyze electric and magnetic fields, as well as the electric flux field,
- utilize Maxwell's equations in integral form for this,
- calculate currents and voltages in DC and AC circuits,
- use complex numbers for electrical engineering,
- calculate transient switching events,
- comprehend and know the underlying principles of electrical machines (motor, generator, transformer),
- comprehend the basics of resonant circuits, measurement amplifiers and closed loop systems,
- know the mechanism behind energy- and information transfer via electric lines and electromagnetic waves.

3 Recommended prerequisites for participation

Mathematics I

4 Form of examination

Module exam:

- Module exam (Technical examination, Examination, Duration: 150 Min., Default RS)

5 Prerequisite for the award of credit points

Passing the final module examination

6 Grading

Module exam:

- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module

BSc MPE, BSc Wi-MB

8 Grade bonus compliant to §25 (2)

9 References
Lecture notes

- Vorlesungsfolien mit Abbildungen zum Download und Mitschreiben in Vorlesung über Lehrplattform,
- Aufzeichnungen (Bild und Ton) von Visualizer über Lehrplattform nach jeder Vorlesung,
- Vorlesungsfolien mit handschriftlichen Ergänzungen und Skizzen des Dozenten zum Download über Lehrplattform nach jeweiliger Vorlesung,
- Bergmann, Schaefer.: Lehrbuch der Experimentalphysik - Elektromagnetismus, Band 2, 9. Auflage, de Gruyter Verlag, 2006 (vertiefend)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-3010-vl</td>
<td>Introduction to Electrical Engineering</td>
<td>Lecture</td>
<td>4</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>18-kn-3010-ue</td>
<td>Introduction to Electrical Engineering</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td>Instructor</td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Introduction to Electrical Engineering

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-3011</td>
<td>6 CP</td>
<td>180 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

Language
German

Module owner
Prof. Dr. Mario Kupnik

Teaching content
Basic physical quantities, fundamental forces, stationary charges - electrostatics, Coulomb's law, superposition, electrical field, electric flow, Gauss' law, area charge density, electrical potential and difference of potential, capacitor and term capacity, charging process, polarization, moving charge - electric flux field, drift velocity, electrical current, Ohm's law, electrical power, voltage- and current source, battery, power matching, efficiency ratio, Kirchhoff law, linear DC circuits, term magnetism, magnetic field, magnetic flux, electromagnet, electrodynamic principle - Lorentzforce, electric motor, solenoid and term inductance, Biot-Savart and Ampere's law, magnetization, magnetic excitation and magnetic flux density, matter in magnetic field and explanation of hesterysis curve, Lenz's law, Faraday's law, generator principle, harmonic functions, basics alternating current quantities, pointer diagrams, basic elements and power in alternating current circuits, term of impedance, transient events in RC- and RL-elements, ODE of first order, complex variable domain, transformer, three-phase current, resonant circuits and mechanical analogy, two and four-port elements, measurement amplifiers, electrical lines and electromagnetic wave.

Learning objectives
On successful completion of this module, students should be able to:
- comprehend and analyze electric and magnetic fields, as well as the electric flux field,
- utilize Maxwell's equations in integral form for this,
- calculate currents and voltages in DC and AC circuits,
- use complex numbers for electrical engineering,
- calculate transient switching events,
- comprehend and know the underlying principles of electrical machines (motor, generator, transformer),
- comprehend the basics of resonant circuits, measurement amplifiers and closed loop systems,
- know the mechanism behind energy- and information transfer via electric lines and electromagnetic waves.

Recommended prerequisites for participation
Mathematics I

Form of examination
Module exam:
- Module exam (Technical examination, Examination, Duration: 150 Min., Default RS)

Prerequisite for the award of credit points
Passing the final module examination

Grading
Module exam:
- Module exam (Technical examination, Examination, Weighting: 100 %)

Usability of the module
BSc MaWi

Grade bonus compliant to §25 (2)

References
Lecture notes

- Vorlesungsfolien mit Abbildungen zum Download und Mitschreiben in Vorlesung über Lehrplattform,
- Aufzeichnungen (Bild und Ton) von Visualizer über Lehrplattform nach jeder Vorlesung,
- Vorlesungsfolien mit handschriftlichen Ergänzungen und Skizzen des Dozenten zum Download über Lehrplattform nach jeweiliger Vorlesung,
- Bergmann, Schaefer.: Lehrbuch der Experimentalphysik - Elektromagnetismus, Band 2, 9. Auflage, de Gruyter Verlag, 2006 (vertiefend)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-3010-vl</td>
<td>Introduction to Electrical Engineering</td>
<td>Lecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-kn-3010-ue</td>
<td>Introduction to Electrical Engineering</td>
<td>Practice</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Mario Kupnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name
Introduction to Electrical Engineering for BEd

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-3012</td>
<td>3 CP</td>
<td>90 h</td>
<td>0 h</td>
<td>1 Term</td>
<td>Summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Module owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Prof. Dr. Mario Kupnik</td>
</tr>
</tbody>
</table>

1 Teaching content
Basic physical quantities, fundamental forces, stationary charges - electrostatics, Coulomb's law, superposition, electrical field, electric flow, Gauss' law, area charge density, electrical potential and difference of potential, capacitor and term capacity, charging process, polarization, moving charge - electric flux field, drift velocity, electrical current, Ohm's law, electrical power, voltage- and current source, battery, power matching, efficiency ratio, Kirchhoff law, linear DC circuits, term magnetism, magnetic field, magnetic flux, electromagnet, electromagnetic principle - Lorentzforce, electric motor, solenoid and term inductance, Biot-Savart and Ampere's law, magnetization, magnetic excitation and magnetic flux density, matter in magnetic field and explanation of hysteresis curve, Lenz's law, Faraday's law, generator principle, harmonic functions, basics alternating current quantities, pointer diagrams, basic elements and power in alternating current circuits, term of impedance, transient events in RC- and RL-elements, ODE of first order, complex variable domain, transformer, three-phase current, resonant circuits and mechanical analogy, two and four-port elements, measurement amplifiers, electrical lines and electromagnetic wave.

2 Learning objectives
On successful completion of this module, students should be able to:

- comprehend and analyze electric and magnetic fields, as well as the electric flux field,
- utilize Maxwell's equations in integral form for this,
- calculate currents and voltages in DC and AC circuits,
- use complex numbers for electrical engineering,
- calculate transient switching events,
- comprehend and know the underlying principles of electrical machines (motor, generator, transformer),
- comprehend the basics of resonant circuits, measurement amplifiers and closed loop systems,
- know the mechanism behind energy- and information transfer via electric lines and electromagnetic waves.

3 Recommended prerequisites for participation
Mathematics I

4 Form of examination
Module exam:

- Module exam (Technical examination, Examination, Duration: 150 Min., Default RS)

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:

- Module exam (Technical examination, Examination, Weighting: 100 %)

7 Usability of the module
BEd, Metalltechnik

8 Grade bonus compliant to §25 (2)

9 References
Lecture notes

- Vorlesungsfolien mit Abbildungen zum Download und Mitschreiben in Vorlesung über Lehrplattform,
- Aufzeichnungen (Bild und Ton) von Visualizer über Lehrplattform nach jeder Vorlesung,
- Vorlesungsfolien mit handschriftlichen Ergänzungen und Skizzen des Dozenten zum Download über Lehrplattform nach jeweiliger Vorlesung,
- Bergmann, Schaefer.: Lehrbuch der Experimentalphysik - Elektromagnetismus, Band 2, 9. Auflage, de Gruyter Verlag, 2006 (vertiefend)

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-3010-vl</td>
<td>Introduction to Electrical Engineering</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Lecture</td>
<td>4</td>
</tr>
<tr>
<td>18-kn-3010-ue</td>
<td>Introduction to Electrical Engineering</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Practice</td>
<td>2</td>
</tr>
</tbody>
</table>
Module name
Applied Computational Modeling and Analysis

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-3020</td>
<td>6 CP</td>
<td>180 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. techn. Heinz Köppl

1 Teaching content
The module provides an introduction to modeling and analysis approaches relevant to synthetic biology. It builds on the mathematical basis provided in the module “mathematical foundations of modeling and analysis”. Apart from short introductory lectures, practical programming of respective algorithms will be the main modality to learn the subject. The course covers purely data-driven methods from biostatistics and machine learning but also first-principle modeling approaches from biophysics and biochemistry. Concrete scientific problem statements will used to learn about the modeling and analysis algorithms.

- Introduction to scientific programming using Julia
- Introduction to biostatistics, bioinformatics and machine learning
- Deterministic and stochastic approaches for modeling reaction networks
- Thermodynamic analysis of reactions networks
- Principles of molecular dynamics, structure prediction
- Statistical methods for structure prediction
- Numerical solution and simulation methods

2 Learning objectives
Students gained an overview of relevant computational approaches in the area of synthetic biology. They can categorize approaches and find dedicated literature for an in-depth coverage. They are able to understand new modeling and analysis algorithms and are able to implement them on their own in a programming language of choice. They know how to practically handle real experimental data, analyze the data and utilize data with a modeling project. They are able to work in a team efficiently to make progress on a scientific problem.

3 Recommended prerequisites for participation
Passing of module “Basics in Synthetic Biology”

4 Form of examination
Module exam:
- Module exam (Technical examination, Presentation, Default RS)

5 Prerequisite for the award of credit points
Passing the exams. Compulsory attendance in 75% of the seminar. A focus of the module is on making progress on a scientific problem in a team. For this purpose, it is necessary that the team members spend time together as a team.

6 Grading
Module exam:
- Module exam (Technical examination, Presentation, Weighting: 100 %)

7 Usability of the module
M.Sc. Synthetic Biology

8 Grade bonus compliant to §25 (2)

9 References
- Daniel Beard & Hing Qian. *Chemical Biophysics*, Cambridge University Press, 2010

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kp-3020-vl</td>
<td>Applied computational modeling and analysis</td>
<td>Prof. Dr. techn. Heinz Köppl</td>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>18-kp-3020-se</td>
<td>Applied computational modeling and analysis</td>
<td>Prof. Dr. techn. Heinz Köppl</td>
<td>Seminar</td>
<td>5</td>
</tr>
</tbody>
</table>
Module name
Fundamentals of Electrical Engineering and Power Systems

<table>
<thead>
<tr>
<th>Module nr.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Module duration</th>
<th>Module cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-st-3020</td>
<td>5 CP</td>
<td>150 h</td>
<td>90 h</td>
<td>1 Term</td>
<td>Winter term</td>
</tr>
</tbody>
</table>

Language
English

Module owner
Prof. Dr. rer. nat. Florian Steinke

1 Teaching content

- Direct current circuits: Ohm's law, Kirchhoff's theorems
- Alternating current circuits: dynamic behavior of coils and capacitors, computation via phasors and complex-valued impedances, active and reactive power
- Electro-magnetic fields: source and vortex fields, Coulomb's law, electrical displacement density, influence, magnetic fields, induction, Maxwell's laws in integral form
- Elements of power engineering: three phase systems, transformers, electrical machines, power electronics and power converters
- Introduction into current research topics in power engineering

2 Learning objectives
After the course, students are able to name the electric variables and components, to calculate the electric direct- and alternating current circuits, and to derive electric and magnetic fields in simple, quasi-stationary settings. Moreover, they know the working principles of important power system components.

3 Recommended prerequisites for participation
Basic mathematics: working with complex numbers, matrices / vectors / systems of linear equations, ordinary differential equations

4 Form of examination
Module exam:
- Module exam (Technical examination, Oral/written examination, Duration: 120 Min., Default RS)
The examination takes place in form of a written exam (duration: 120 minutes). If one can estimate that less than 7 students register, the examination will be an oral examination (duration: 25 min.). The type of examination will be announced in the beginning of the lecture.

5 Prerequisite for the award of credit points
Passing the final module examination

6 Grading
Module exam:
- Module exam (Technical examination, Oral/written examination, Weighting: 100 %)

7 Usability of the module
MSc ESE

8 Grade bonus compliant to §25 (2)

9 References
A lecture script and slides are provided via Moodle.

Courses

<table>
<thead>
<tr>
<th>Course Nr.</th>
<th>Course name</th>
<th>Instructor</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Nr.</td>
<td>Course name</td>
<td>Instructor</td>
<td>Type</td>
<td>SWS</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
<td>---------</td>
</tr>
</tbody>
</table>