Grundlagen der Schienenfahrzeugtechnik

07 Bremse

Dr.-Ing. Michael Karatas

Siemens Mobility GmbH Krefeld-Uerdingen

michael.karatas@siemens.com

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 1

Gliederung

Bremse

- Bremsfunktion
- Bremsenbauarten
- Bremsvermögen

Überblick

- I. Einführung
- II. Zugförderung
- III. Wagenkasten
- IV. Fahrtechnik / Systemkinematik
- V. Komfort
- VI. Antrieb

VII. Bremse

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 2

Gliederung

Bremse

- Bremsfunktion
- Bremsenbauarten
- Bremsvermögen

SIEMENS

7.1 Bremsfunktion

Es ist sicherheitsrelevant, rechtzeitig bremsen zu können!

Historisch

Quelle: Internet: Bild-Online am 17.02.2017 Zug rammt Prellbock

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 5

7.1 Bremsfunktion

Seilzugbremse Bauart Heberlein

Schmalspurbahn-Dampflok mit durchgehender Bremse Bauart Heberlein, eingeführt 1872, eingesetzt bis ca. 1967

- Mechanisch wirkendes System: Der Lokführer steuert die Bremsen eines Wagenzuges über einen Seilzug
- · Vorteil: Zentrale Bedienung durch den Lokführer
- Nachteil: Seilzug störanfällig, aufwendig bei Zugzusammenstellung

7.1 Bremsfunktion

Herkunft

• Die durchgehende Druckluftbremse ist nicht so alt wie die Eisenbahn selbst

- Am Anfang war die Handbremse
- Auf der Lok als Wurfhebelbremse
- Auf den Wagen als Handbremse auf offenen Plattformen oder hochgestellten Bremsersitzen
 - Zp 1: Achtungssignal
 - Zp 2: Handbremsen mäßig anziehen
 - Zp 3: Handbremsen stark anziehen
 - Zp 4: Handbremsen lösen
 - Zp 5: Notsignal

Güterzug um 1920 mit handgebremsten Wagen, zu erkennen an den typischen Bremserhäuschen

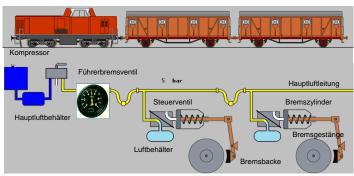
Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 6

7.1 Bremsfunktion

Herkunft der Druckluftbremse

- Die Druckluftbremse hat eine über 100-jährige Entwicklung hinter sich
- Erstmals vorgestellt 1873 von G. Westinghouse in Amerika
- In Deutschland weiterentwickelt von Georg Knorr (geb. 19.10.1859), Gründung der Firma Knorr-Bremse 1905
- Vieles aus Technik und Betrieb hat noch heute Bestand genauso wie etwa auch das Zughaken- und Stoßpuffersystem
- Sowohl die deutschen Bahnen als auch die Fa. Knorr-Bremse haben diese Entwicklung in Deutschland entscheidend geprägt
- Das Bremsvermögen der schnellfahrenden Züge hat sich seither etwa verdoppelt
- Die Zuverlässigkeit der Druckluftbremse und ihrer Steuerorgane ist mittlerweile über alle Zweifel erhaben, deshalb haben es Alternativen schwer sich durchzusetzen
- Eisenbahnunfälle sorgen gelegentlich für Schlagzeilen;
 Bremsversagen aus technischen Gründen schreibt Eisenbahngeschichte

7.1 Bremsfunktion


Einfaches Prinzip der Druckluftbremse (1)

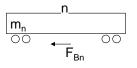
Durchgehende indirekte Druckluftbremse

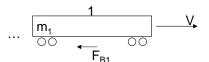
Das Medium Druckluft wird sowohl für die Steuerung als auch für die Betätigung der Bremszylinder verwendet. Indirekt, da die Bremsung bei Druckminderung in der Hauptluftleitung (HL) einsetzt.

Die Bremsen sind gelöst, solange in der HL ein Druck von 5 bar herrscht. Hierzu muss der Kompressor auf der Lok alle Luftbehälter über die HI füllen.

Quelle: Internet

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 9




7.1 Bremsfunktion

Bremsberechnung

1. Theoretische Auslegung Bremse

Verfügbare Bremskraft

$$F_B = \sum_{i=1}^n F_{Bi}$$

Einfacher Fall F_{Ri} = const. (bei Scheibenbremsen hinreichend gut erfüllt; sonst F_{Ri} = f(v))

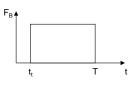

Verzögerung in der Ebene

Abbildung des Verhaltens der Bremssteuerung

$$a = \frac{F_B}{m + m_{rot}}$$

$$m = \sum_{i=1}^{n} m_i$$
 (Zugmasse

$$m = \sum_{i=1}^{n} m_{i} \text{ (Zugmasse)} \qquad m_{rot} = \sum_{i=1}^{n} m_{roti} \text{ (Zuschlag für rot. Massen)}$$

Bremsweg in der Ebene

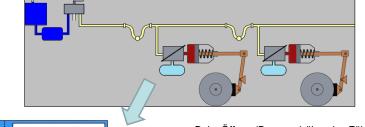
→ konstante Verzögerung a über die Zeit t

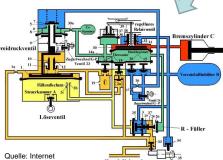
$$x = vt_t + \frac{v^2}{2a}$$

Herleitung:

$$v = v_0 - a \cdot t \quad \text{Haltebremsweg} \quad \Rightarrow 0 = v_0 - a \cdot t \Rightarrow t = \frac{v_0}{a}$$

$$x = \int v dt = v_0 \cdot t - \frac{a}{2} \cdot t^2 = \frac{{v_0}^2}{a} - \frac{a \cdot {v_0}^2}{2 \cdot a^2} = \frac{{v_0}^2}{2 \cdot a}$$


SIEMENS



7.1 Bremsfunktion

Einfaches Prinzip der Druckluftbremse (2)

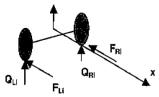
Beim Öffnen (Bremsen) über das Führerbremsventil (oder bei Zugabriss) vermindert sich der Druck in der HL und die Steuerventile steuern um.

Dann drückt der Druck aus den Luftbehältern auf die Bremszylinder und die Bremsen legen sich an.

Im Laufe der Entwicklung sind die Funktionselemente der Bremsen zu hochentwickelten Komponenten geworden. Illustriert am Beispiel des Steuerventils KE2 von Knorr.

Quelle: Internet - "Die Bremsenbude

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 10


7.1 Bremsfunktion

Bremsberechnung – Überschlägig (1)

Kontakt Rad / Schiene

Bremskraft wird durch die Reibkraft Rad / Schiene aufgebracht

- → Vereinfachung
- $Q_i = Q_{i,i} + Q_{p,i}$; $Fi = F_{i,i} + F_{p,i} = Q_i \mu$
- Voraussetzung: Rad rollt ab
- Ansatz, falls alle Achsen gebremst

$$F_x = \mu \cdot \sum_i Q_i = \mu \cdot m \cdot g$$

$$M \cdot a = \mu \cdot m \cdot g$$

$$(a =) \frac{g}{1 + \rho} \cdot \mu = \frac{v_0^2}{2 \cdot x} \quad ; x - Bremsw$$

→ Erforderlicher Reibwert Rad / Schiene:

$$\mu = \frac{v^2 \cdot (1 + \rho)}{2 \cdot g \cdot x}$$

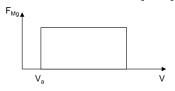
Dieser ist in erster Näherung unabhängig von der absoluten Fahrzeugmasse.

Übliche Grenzwerte für Überschlag

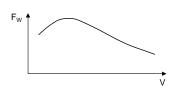
	Vollbahn (EBO) Reisezug-, Triebwagen	Nahverkehr (BOStrab)	Vollbahn Güterwagen
ρ	0,1	0,1	0,06
μ _{max} Betriebs- und Notbremsungen	0,12	0,12	0,07
μ _{max} Gefahrbremsung	-	0,3	-

7.1 Bremsfunktion

Bremsberechnung – Überschlägig (2)


Schienenbremsen

Schienenbremsen müssen die fehlende Bremskraft aufbringen


$$F_s = F - m \cdot g \cdot \mu_{max}$$

Magnetschienenbremse

einfache Näherung: $F_{Mq} = \mu_{Mq} \cdot F_{H}$

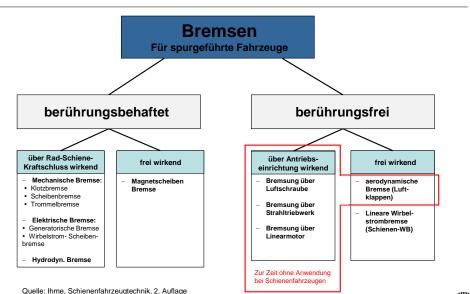
Wirbelstrombremse

Übliche Werte (30 \leq v \leq 200 km/h)

,	Vollbahn (EBO) Reisezug-, Triebwagen	Nahverkehr (BOStrab)
μ_{Mg}	0,1	0,1
F _H [kN]	84	
V _a [km/h]	30-50 ¹⁾	3

1) UIC-Reisezugwagen

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 13



7.2 Bremsenbauarten

Übersicht der verschiedenen Bauarten

Gliederung

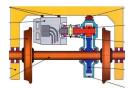
Bremse

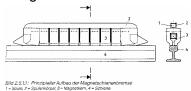
- Bremsfunktion
- Bremsenbauarten
- Bremsvermögen

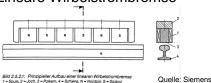
Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 14

7.2 Bremsenbauarten

Bremskomponenten (1)


Klotzbremse

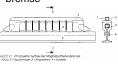

Scheibenbremse


Generatorische Bremse

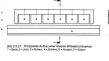
Magnetschienenbremse

Lineare Wirbelstrombremse

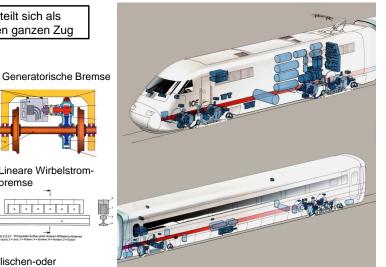
Bremskomponenten (2)


Die Bremse verteilt sich als System über den ganzen Zug

Hauptbremsbauarten:


Pneumatische Bremse

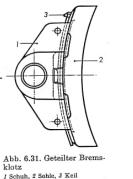
Magnetschienenbremse



Lineare Wirbelstrombremse

Retarder (bei dieselhydraulischen-oder dieselmechanischen Antrieben)

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 17


7.2 Bremsenbauarten

Klotzbremse – Aufbau

Bremsklötze Befestigung der Sohlen im Schuh mit Keilen

Zweiteilige Sohle Verringerung von a und verbesserte Anlage am Rad bessere Reibwerte μ_κ

1 Schuh, 2 Sohle, 3 Keil

Durch Befestigung der Sohle außerhalb der Klotzmitte wird kleinste Einbauhöhe a ermöglicht

> Abb. 6.32. Bremsklotz mit zweiteiliger Sohle a Einbauhöhe des Klotzes

7.2 Bremsenbauarten

Klotzbremse - Prinzip

Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J.

Grundlagen der Schienen-fahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft

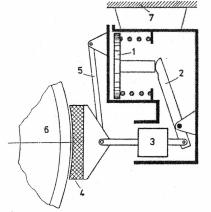


Bild 2.1.2.1: Prinzipieller Aufbau einer Klotzbremseinheit

1 = Kolben, 2 = Hebelübersetzung, 3 = Gestänge-steller, 4 = Klotz, 5 = Hängelasche, 6 = Rad, 7 = Drehgestell

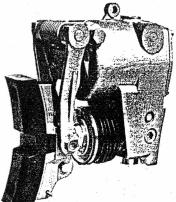
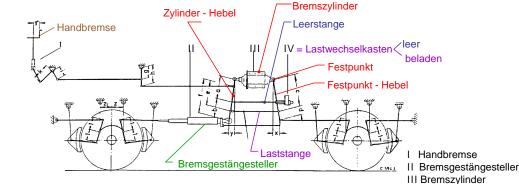


Bild 2.1.2.2: Klotzbremseinheit mit innenliegender Übersetzung, automatischer Verschleißnachstellung und mechanischer Handbremse

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 18



7.2 Bremsenbauarten

Klotzbremse - Anordnung

Gesamtanordnung für einen 2achsigen Güterwagen mit mechanischer Lastabbremsung und Handbremse

IV Lastwechselkasten

Klotzbremse - Wirkende Kräfte

Bei üblichen Betriebsbremsungen wird $\mu_s = f(v)$ im Bereich mittlerer Fahrgeschwindigkeiten konstant mit $\mu_s = 0.15$ für Auslegung zugrunde gelegt

Entstehung der Bremskraft:

Klotzreibungs-/: $F_R = \mu_K \cdot F_K [N]$ **Bremskraft**

Übertragbare

 $F_{Br} = \mu_S \cdot Q[N]$

Bremskraft (Haftkraft)

Maximale Bremsklotzkraft. wenn Gleiten des Rades vermieden werden soll

 $F_R \le F_{Br} \implies$

0

Q

 $F_K = F_{7VI} \cdot i \cdot \eta [N]$

 μ_K = Reibwert der gleitenden Reibung zwischen Rad und Bremsklotz

μ_S = Haftreibwert Rad / Schiene → Reibung im Bremsbetrieb

 $\eta = 0.9$ [1] bei Wagen der Regelbauart

= 0,95 [1] bei sehr einfachen Gestängen (Einzelanordnung)

= 0,80 ... 0,85 [1] bei vielteiligen Gestängen der Triebfahrzeuge

Gestängewirkungsgrad [1]

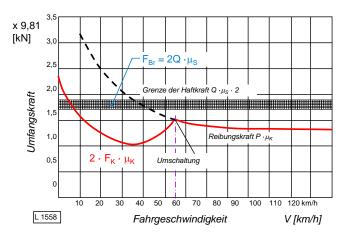
 $F_K = F_{Zvl} \cdot a/b \cdot \eta [N]$

Gestänge - Übersetzung

Bremsklotzkraft [N]

Q = Radlast [N]

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 21

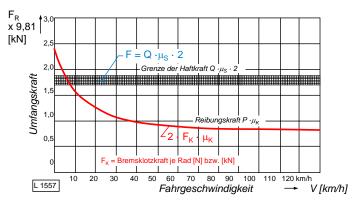


7.2 Bremsenbauarten

Klotzbremse – Hochleistungsbremse

Bremskraft und Haftkraft bei einer Hochleistungsbremse (Umschaltung = Reduktion Klotzkraft)

Quelle: Bremsen, Eisenhahn - Lehrhücherei der Deutschen Bundeshahr Band 122, vierte Auflage, Josef Keller Verlag, Starnberg (1962)


SIEMENS

7.2 Bremsenbauarten

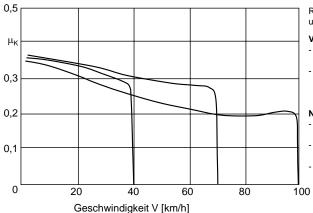
Klotzbremse - Einfache Bremse

Bremskraft und Haftkraft bei einer einfachen Klotzbremse

- $2 \cdot FK = P Bremsklotzkraft / Achse [N]$ $\mu_K = Beiwert der$ 2 · Q Achslast = 9,81 x 10 [kN]
 - gleitenden Reibung zwischen Rad und Bremsklotz
- us = Beiwert der Haftung zwischen Rad und Schiene

Quelle: Bremsen, Eisenbahn - Lehrbücherei der Deutschen Bundesbahn Band 122, vierte Auflage, Josef Keller Verlag, Starnberg (1962)

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 22



7.2 Bremsenbauarten

Klotzbremse – Reibwert

Reibwert uv für Kunststoffklötze aus Versuchen mit unterschiedlicher Ausgangsgeschwindigkeit

Vorteile:

- geringere Abhängigkeit des Reibwertes μκ von Flächenpressung p und Geschwindigkeit V
- bei Verwendung von Klötzen mit höherem Reibwert μ_κ als bei GG - Klötzen →leichtere Zylinder und Gestänge verwendbar

- höhere Nässeempfindlichkeit (in ungünstigen Fällen Reibwertabfall um bis zu 30%)
- Polieren der Lauffläche des Rades → niedrigerer Reibwert μ_S zwischen Rad und Schiene
- niedrige Wärmeleitfähigkeit dieser Klötze →größerer Teil der Bremsenergie wird dem 100 Rad zugeführt

Quelle: SAUMWEBER, E: GERUM, E: BRENDT, P.J.: Grundlage der Schienenfahrzeugbremse. AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

Reibwertverläufe

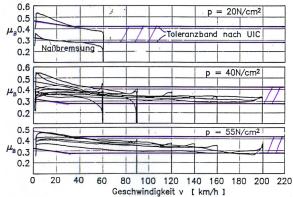


Bild 2.2.4.1: Reibwertverlauf organischer Bremsbeläge abhängig von Geschwindigkeit v und Belagdruck p

Sinterbeläge: Thermisch höher belastbar, weniger nässeempfindlich → aber teurer

Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 25

7.2 Bremsenbauarten

Reibungsbremse – Zeitverh. Haltestellenfahrt

Temperaturverlauf bei gleichmäßiger Haltestellenfahrt

Gute Näherung bei Addition von 9 einer äguivalenten Dauerbremsung bei mittlerer Geschwindigkeit und 75% der Temperaturerhöhung 9_H für letzten Halt:

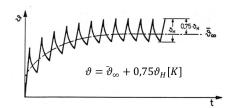


Bild 1.2.3: Temperaturverlauf bei einer gleichmäßigen Haltestellenfahrt. ₺ stationäre Gleichgewichtstemperatur für eine äquivalente Dauerbremsung, ϑ_H Temperaturanstieg bei einem Halt

Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J.: Grundlagen der Schienenfahrzeugbremse. AFT (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag Für einzelne Haltebremsung (mit konstanter Verzögerung):

$$p = \text{Premsleistung [W]}$$

$$p = P_0 \left(1 - \frac{t}{t_B}\right) \quad \text{t = Zeit [s]}$$

$$t_B = \text{Bremszeit [s] bis Halt}$$

Für Ausgangsgeschwindigkeiten bis zu $V_0 = 180 \text{ [km/h]}$ und übliche Verzögerungen a = 1 [m/s²] kann Wärmeabfuhr während Bremszeit t_R vernachlässigt werden.

Temperatur an der Oberfläche (x = 0):

$$\vartheta_{x=0} = \frac{2}{\sqrt{\pi}} \cdot \frac{P_0 \cdot \sqrt{t}}{A \cdot \sqrt{\lambda} \cdot c \cdot c} \left(1 - \frac{2t}{3t_B} \right) [K]$$

mit
$$P_0 = m \cdot a \cdot v_0$$
 [W] und $a = v_0 / t_B$ [m/s]

c = spez. Wärme [l/(kgK)] $\lambda = W \ddot{a} rmeleitzahl [W / (mK)]$

erreicht 9 Maximum für $t = t_p/2$

 $\varsigma = Dichte [kg/m^3]$ v₀ = Geschwindigkeit [m/s] a = Bremsverzögerung [m/s²]

$$_{\max(x=0)} = \frac{4}{3\sqrt{2\pi \cdot \lambda \cdot \varsigma \cdot c}} \cdot \frac{m \cdot v_0^{1,5} \cdot a^{0,5}}{A}$$

SIEMENS

m = Masse [kg]

A = Fläche [m²]

7.2 Bremsenbauarten

Reibungsbremse – Zeitverhalten

Temperaturverlauf bei einer Gefällefahrt:

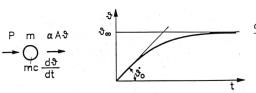


Bild 1.2.1: Wärmebilanz und Temperaturverlauf bei einer Dauerbremsuna

Bremsleistung P [W], Temperatur 9 in der Bremse (Masse m, spez. Wärme c) aleichmäßig verteilt.

Der Temperaturgradient zu Beginn

$$\frac{d\vartheta_0}{dt} = \frac{P}{m \cdot c}$$
 wird von Wärmekapazität m · c
bestimmt \rightarrow Bremse mit
kleinerem Wert m · c erreicht bei
gleichem Wert α · A gleichen
stationären Endwert für ϑ früher

Angenommen → Gefällefahrt mit konstanter

Zu jeder Zeit t muss zugeführte Leistung P gespeichert oder durch Konvektion (Wärmeübergangszahl α, wärmeabgebende Fläche A) abgeführt werden.

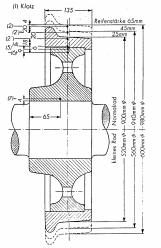
 $P = m \cdot c \frac{d\vartheta}{dt} + \alpha \cdot A\vartheta$ 9 = Temperatur - Differenzgegenüber Umgebung [K]

mit Anfangsbedingung 9 = 0:

$$\vartheta = \frac{P}{\alpha \cdot A} \cdot \left(1 - e^{-\frac{\alpha \cdot A}{m \cdot c}t} \right) \quad mit \quad \frac{P}{\alpha \cdot A} = \vartheta_{\infty}$$

→ Nicht abhängig von m · c

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 26



TECHNISCHE

7.2 Bremsenbauarten

Klotzbremse – Temperaturverteilung

Temperaturverteilung im Rad in Abhängigkeit von der Bremszeit t bei Dauerbremsung



Abb. 6.4. Temperaturverlauf in Funktion der Bremszeit an verschiedenen Meßstellen eines "kleinen Rades" bis zum Lösebeginn des Radreifens bei einer Dauerbremsung; ohne Fahrtwind Schrumpfsitzübermaß 2.00/00 Radreifenstärke 65 mm

Scheibenbremse - Prinzip

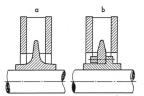


Bild 2.2.2.1: Vereinfachte Konstruktionen von Wellenbremsscheiben (a = einteilig, b = Reibring und Nabe getrennt)

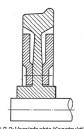
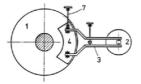



Bild 2.2.2.2: Vereinfachte Konstruktion eine

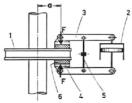


Bild 2.2.2.3: Konstruktiver Aufbau der Betätigung einer Scheibenbremse

= Wellenbremsscheibe, 2 = Bremszylinder, 3 = Bremshebel, 4 = Bremsbacke, 5 = Zuglasche, 6 = Belag, 7 = Hängelasche)

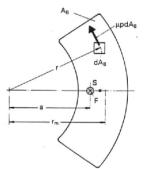


Bild 2.2.2.4: Bremsbelag (Fläche A_B) mit Schwerpunkt S, Kraftangriffspunkt a und mittlerem Reibradius rm

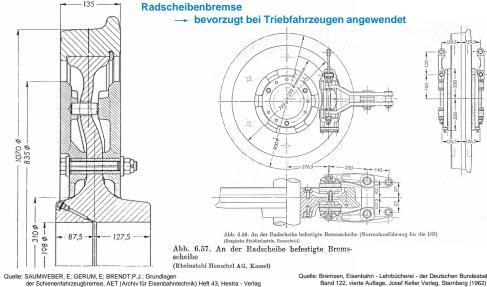
Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 29

7.2 Bremsenbauarten

Wellenscheibenbremse

Tafel 2: Stoffwerte der gebräuchlichsten Bremsscheibenwerkstoffe Grauguß (GG), Sphäroguß (GGG) und Stahlguß (GS)


	GG	GGG	GS
ρ [kg/m³]	7217	7010	7800
λ[W/mK]	50	37,5	24
c [kJ/K kg]	0,524	0,628	0,47
α, [1/K]	1,0 · 10-5	1,2 · 10-5	1,3 · 10-5

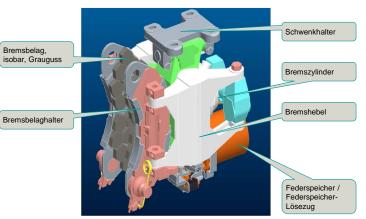
SIEMENS

7.2 Bremsenbauarten

Radscheibenbremse

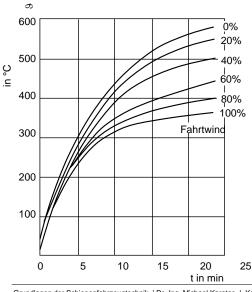
Quelle: Bremsen, Eisenbahn - Lehrbücherei - der Deutschen Bundesbahl Band 122, vierte Auflage, Josef Keller Verlag, Starnberg (1962)

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 30



7.2 Bremsenbauarten

Kompaktbremszange


Quelle: Siemens

SIEMENS

Reibungsbremse – Temperaturverhalten

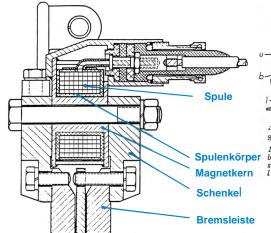
Einfluss des Fahrtwindes auf die Scheibentemperatur bei Dauerbremsung

Anstieg der Scheibentemperatur bei Dauerbremsung mit konstanter Leistung in Abhängigkeit von der Zeit in Minuten und vom Fahrtwind

Bremsscheibe 460 mm Durchmesser: V = 50 km/h. P = 33.5 PS

> Quelle: Bremsen, Eisenbahn - Lehrbücherei - der Deutschen Bundesbahn Band 122, vierte Auflage, Josef Keller Verlag, Starnberg (1962)

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 33



7.2 Bremsenbauarten

Magnetschienenbremse - Aufbau (1)

Aufbau eines Schienenbremsmagneten

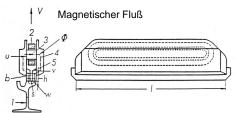
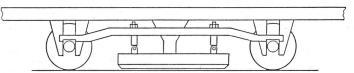


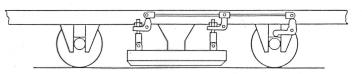
Abb. 6.73. Querschnitt und Ansicht einer Magnetschienenbremse

- 1 Schiene, 2 Spule, 3 Kern, 4 Schenkel, 5 Bremsleiste
- b Leisten-(Pol-)Breite, h Leistenhöhe
- Spaltbreite
- l Leistenlänge, u, v, w Stoßfugen

Abb. 6.72. Aufbau eines Schienenbremsmagneten (Knorr-Bremse GmbH, München)

Quelle: SAUMWEBER, E: GERUM, E: BRENDT, P. J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Fisenhahntechnik) Heft 43 Hestra - Verlag




7.2 Bremsenbauarten

Magnetschienenbremse - Prinzip

Quelle: SAUMWEBER, F: GERUM, F: BRENDT, P. J. Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

Tiefaufhängung: ca. 10 mm über SO an Federn gehalten, bei Betätigung magnetisch an Schiene gezogen Einsatz im Nahverkehr

Oben: Magnetschienenbremse an Achsbuchsträgern aufgehängt

Unten: Magnetschienenbremse an Ausgleichgestänge aufgehängt

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 34

TECHNISCHE

UNIVERSITÄT

DARMSTADT

7.2 Bremsenbauarten

Magnetschienenbremse - Aufbau (2)

Gliedermagnet → kann sich Schienenunebenheiten besser anpassen

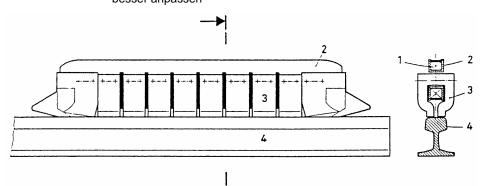
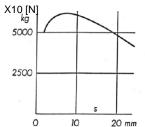
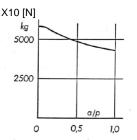


Bild 2.5.1.1: Prinzipieller Aufbau der Magnetschienenbremse 1 = Spule, 2 = Spulenkörper, 3 = Magnetkern, 4 = Schiene

Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J. Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Fisenbahntechnik) Heft 43. Hestra - Verla




Magnetschienenbremse - Vertikalkraft

(Erregerstrom konstant)

Abb. 6.74. Einfluß der Spaltbreite Abb. 6.75. Vertikalzugkraft Veiner s auf die Vertikalzugkraft einer ruhenden Magnetschienenbremse

ruhenden Magnetschienenbremse in Abhängigkeit von der relativen Einschaltdauer a/p

a Einschaltzeit p Zeit einer Periode

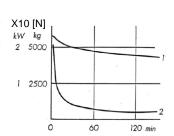


Abb. 6.76. Vertikalzugkraft 1 und kW-Verbrauch 2 einer Magnetschienenbremse für Erregung in Abhängigkeit von der einmaligen

Quelle: SAUMWEBER, E: GERUM, E: BRENDT, P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43. Hestra - Verla

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 37

7.2 Bremsenbauarten

Lineare Wirbelstrombremse – Prinzip

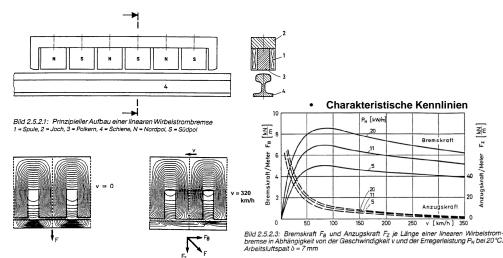


Bild 2.5.2.2: Feldlinienverlauf und Kraftvektor F einer linearen Wirbelstrombremse im Stillstand (v = 0) und bei hoher Geschwindigkeit v

Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43. Hestra - Verlag

SIEMENS

7.2 Bremsenbauarten

Magnetschienenbremse – Reibwert / Kollektiv

Aus Haftkräften und gemessenen Bremskräften bei Streckenfahrversuchen wurde $\mu = f(v)$ ermittelt

- mit v fallend
- Gliedermagnete bei großem v eindeutig überlegen
- bei Vollbahnen häufig Abschalten der Magnete unterhalb 50 km/h

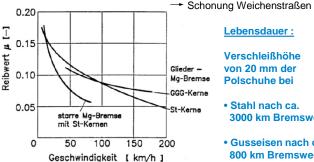


Bild 2.5.1.3: Reibwert µ der Magnetschienenbremse in Abhängigkeit der Geschwindigkeit v für Gliedermagnete aus Stahl (St) und Gußeisen mit Kugelgrafit (GGG) und starren Magneten aus Stahl (St)

Lebensdauer:

Verschleißhöhe von 20 mm der Polschuhe bei

- · Stahl nach ca. 3000 km Bremsweg
- · Gusseisen nach ca. 800 km Bremsweg erreicht

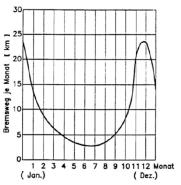


Bild 2.5.1.4: Gemessenes Bremswegkollektiv einer Magnetschienenbremse abhängig von der Jahreszeit am Beispiel des Triebzuges VT 628

(gemittelt über 4 Jahre)

Quelle: SAUMWEBER, E; GERUM, E; BRENDT,P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 38

SIEMENS

7.2 Bremsenbauarten

Lineare Wirbelstrombremse - Charakterist. KL

Charakteristische Kennlinien

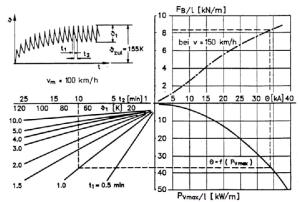
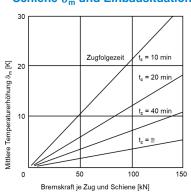


Bild 2.5.2.4: Zusammenhang zwischen Bremskraft F_B je Länge, Durchflutung Θ, maximaler Erregerleistung $P_{v max}$ je m im warmen Zustand (ϑ_{zul} = 155 **K**) in Abhängigkeit vom Bremszyklus (Einschaltzeit t1, Ausschaltzeit t2) für eine lineare Wirbelstrombremse



Lineare Wirbelstrombremse – Erhöhung Temp.

Mittlere Temperaturerhöhung einer Schiene ϑ_m und Einbausituation

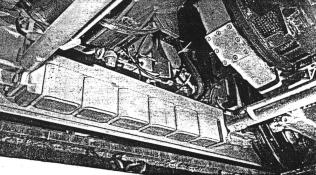


Bild 2.5.2.6: Einbau einer Wirbelstrombremse in ein ICE-Triebdrehgestell

Bild 2.5.2.5: Mittlere Temperaturerhöhung 9m einer Schiene abhängig von der Bremskraft der linearen Wirbelstrombremse je Zug und Schiene und der Zugfolgezeit t_z

Quelle: SAUMWEBER, E; GERUM, E; BRENDT,P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 41

7.2 Bremsenbauarten

Standardfunktionen (2)

Parkbremse (u.a.):

- Federspeicher-Ausführung
- Ansteuerung über Magnetventile vom Führerstand aus
- Rein pneumatisch bedienbar, bei Stromausfall
- Federspeicher-Lösezug
- Auslegung für 40‰ bei Höchstgewicht
- Unplanmäßiges Anlegen Federspeicher löst Notbremsung aus

Federspeicher

Quelle: Internet

Fahrgastnotbremse (u.a.):

 Während der Fahrt durch Triebfahrzeugführer aufhebbar (Brand im Tunnel)

SIEMENS

7.2 Bremsenbauarten

Standardfunktionen (1)

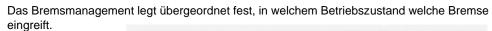
Betriebsbremse (u.a.):

- Gleitschutz
- Automatische Haltebremse zum Anfahren in Steigungen
- Lastabhängige Bremskraft bei wirksamer Luftfeder
- Zentrales Bremsmanagement mit Vorrang für dynamische E-Bremse, pneumatisch nur soweit nötig

Notbremse (u.a.):

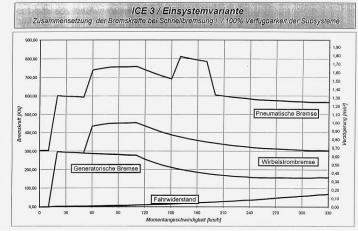
- Anforderung kurze Reaktionszeit
- Beschränkung (vorzugsweise) auf pneumatische Bremse
- Gleitschutz

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 42


TECHNISCHE

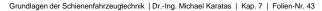
UNIVERSITÄT

DARMSTADT


7.2 Bremsenbauarten

Bremsmanagement

Kriterien:


- Verschleißvermeidung
- Bremsvermögen
- Sicherheit

^{*)} zwischen 190 km/h und 160km/h wird bei der Schnellbremsung die pneumatische Bremse (2-stufig) in der hohen Bremsstufe betrieben, um das Bremsvermögen zu erhöhen. Unterhalb von 160 km/h wird die niedrige Stufe genutzt.

Gliederung

Bremse

- Bremsfunktion
- Bremsenbauarten
- Bremsvermögen

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 45


TECHNISCHE

UNIVERSITÄT

DARMSTADT

7.3 Bremsvermögen

Bremszettel (2)

- Das Bremsvermögen des Zuges in BrH (Bremshundertstel)
- Bauart der eingeschalteten Bremsen
- Gewicht, V_{max}, Länge des Zuges, etc.

Bremszettel 1300 R / (R) Im Zuge sind

7.3 Bremsvermögen

Bremszettel (1)

Wer an wen?

Vom Zugführer an den Lokführer

Welche Papiere?

- Den Bremszettel
- ggf. auch andere wie z.B. schriftliche Befehle, Fahrplanabweichungen

Abb.: Übergabe der "Papiere" an den Lokführer

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 46

7.3 Bremsvermögen

Generelles zum Bremsen

Generelles zum Bremsen:

- > Das Bremsen eines Zuges ist ein durch und durch geplanter und vorherbestimmter Vorgang
 - Nicht so bei Rangierfahrten bis 25 km/h
- > Das Bremsen ist (bei den "großen" Bahnen) eine eigene Wissenschaft und wird begleitet durch ein umfangreiches Regelwerk, z.B. UIC-Merkblätter 540 ff, Bremsvorschrift, Fahrdienstvorschrift, EBO, TSI, EN, nationale Regelungen
- Die DB gehört international zu den "meinungsbildenden" Bahnen und tritt entsprechend selbstbewusst und anspruchsvoll als Kunde auf
- > Das Bremsen ist neben der Lauftechnik und der Signaltechnik mit den Zugsicherungssystemen - tragende Säule für die Sicherheit des Bahnverkehrs

Quelle: Internet

7.3 Bremsvermögen

Bremswegsicherheit

- Fahren auf Sicht nur unter besonderen Bedingungen:
 - ➤ Im Rangierbetrieb mit V_{max} = 25 km/h
 - Mit Vorsichtsbefehl, u.a.
- Zugfahrten werden durch Signale gesichert
 - Signale (und andere Zwangspunkte) werden mit definierten Bremswegen angefahren
 - Die Bremswege werden durch den Vorsignalabstand definiert
 - > Die zulässige Geschwindigkeit wird durch das installierte (und angerechnete) Bremsvermögen definiert
 - Die Zusammenhänge zwischen Bremsweg, Bremsvermögen, maßgeblicher Neigung und V_{zul} werden durch die Bremstafeln definiert
 - Die Bremstafeln sind vom Verkehrsminister zu genehmigen; sie sind Gesetz
 - Für den Geschwindigkeitsbereich V > 160 km/h wurde die kontinuierliche Signalisierung mittels L(inienförmige)Z(ug)B(eeinflussung) eingeführt
 - > EU-weiter Standard ETCS (European Train Control System)

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 49

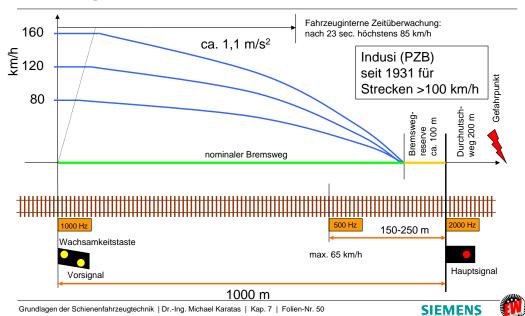
7.3 Bremsvermögen

Bremshundertstel

- Seit gut 60 Jahren ausgedrückt durch eine geheimnisumwitterte Größe
- Definition und Handhabung sind genial einfach
- Der technische Hintergrund ist evolutionär bedingt relativ komplex
- Definition: BrH =x t (Bremsgewicht Bg) / y t (Fahrzeug- bzw. Zuggewicht M) x 100 %
- Ganz wichtig ist der Aspekt Zugbildung aus verschieden leistungsfähigen Einzelfahrzeugen
- Die bremstechnische Zugbildung findet auf dem Bremszettel statt

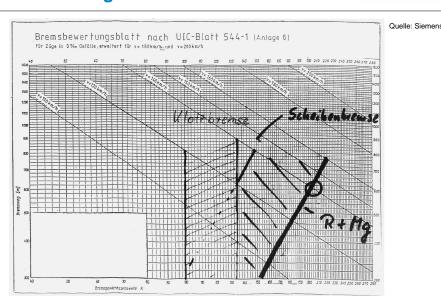
$$BrH_{Zug} = \Sigma Bg_i / \Sigma M_i \times 100\%$$

- > "Zugbildung" findet auch in vermeintlich unveränderlichen Zugkonfigurationen wie Triebzügen statt, nämlich bei Ausfallbetrachtungen oder Mehrfachtraktion
- Welches Bremsvermögen hat der Zug bei Ausschaltung von 1...n Steuerventilen oder von 1...n Mg-Bremsen???



7.3 Bremsvermögen

Halteweg



7.3 Bremsvermögen

Bremsbewertungsblatt nach UIC-Blatt 544

7.3 Bremsvermögen

Bremstafel für 1000m Bremsweg

Bremstafel für 1000 m Bremsweg (für Hauptbahnen) R. P = schnelkvirkende Druckluftbremsen
G = langsamwirkende Druckluft- und Handbremsen

Quelle:

Maßgel			_									Für	eine 2	ugela	ssen	e Ges	chwi	ndigk	eit b	is zu										
Gefälle	- Dienia-	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160
in im Ve 0/00 hältn		Η,						Ki	lome	ter in	der 5	Stune	ie (kr	n/h)	sind f	olger	ide N	linde:	stbre	mshui	ndert	stel e	rforde	erlich	:					
		6	6	6	6	6	6	T 8	11	13	18	22	26	32	38	144	51	58	65	73	82				122	135	149	164	180	196
0 1 ∞	G	6	6	6	6	6	8	11	14	18	22	27	33	39	-	-				-	_	_	_	-	_	_	_	-	-	
1 1:100	O R/P	6	6	6	6	6	7	12	12	15 19	19	23	28	33 40	39	46	52	60	67	75	83	92	102	113	124	137	152	166	182	198
2 1: 50		6	6	6	6	6	8	10	13	16	20	24	29	34	41	47	54	61	68	76	85	94	104	114	126	139	154	168	185	201
	G	6	6	6	6	7	10	13	16	20	25	30 26	36	42 36	42	49	55	63	70	73	87	96	106	116	128	142	156	170	187	204
3 1. 33	3 R/P	6	6	6	7	é	111	14	16	22	26	31	37	43	_	_		_	_	_		_	_	-	_		_		-	_
4 1: 25		6	6	6	6	10	10	12	15 19	18 23	23 28	27 33	32 39	37 45	44	50	57	64	72	80	88	98	108	118	130	144	158	173	190	206
5 1: 20	O R/P	6	6	6	7	9	111	13	16	20	24	28	33	39	45	52	58	66	73	82	90	99	110	120	133	146	161	175	192	208
	G	6	6	7 7	9	11.	14	17	20 17	25 21	29 25	34 30	40 35	47	46	53	60	67	75	83	92	101	112	122	135	148	163	178	194	211
6 1: 16	7 R/P	6	. 7	ál	10	12	15	18	22	26	31	36	42	48	_	_		-	_				_	-	_	_				
7 1: 14		6	2	8	9	11	13	15	19	22	26	31 37	36	41 50	48	54	61	69	76	85	94	103	113	124	137	150	165	180	197	214
8 1: 12	5 R/P	7 6	8	9	11	13	16	19 16	23	27	32 28	32	43 37	43	49	56	63	70	78	86	95	105	115	126	138	152	168	182	199	216
	G	8	9	10	12.	14	17	20	24	29	34	39	45	52	-	59	66	74	81	90	99	-	119			157	.=	.=		221
10 1: 10	O R/P	8 10	11	10 13	12	14	16	18	22 27	26 32	30	35 42	40 48	46 55	52	59	- 00	/4	81	90	99	-	119	30	143	157		187	204	- 221
12 1: 8	3 R/P	10	11	12	14	16	18	21	24	28	33	38	43	48	55	62	69	77	85	93	102	112	123	134	147	161	177	192	ر 20	_
14 1: 6	7 R/P		13	15	17	19	22	26 24	30 28	34	40 36	45 41	52 47	59 53	59	66	73	81	90	98	107	117	128	140	153	168	_	=	_	_
	G	15	16	18	20	23	27	130	34	39	44	50	57	64		_	_	-	-	-	_	_	-	_	-	-	-	-	-	_
17 1: 5	9 R/P G		15 18	16	18	20 25	23	26 32	30 36	34 41	39 47	44 53	50 60	55 67	62	69	76	84	93	101	111	121	132	143		_				_
20 1: 5		16	17	19	21	23	27	30	34	38	43	48	54	60	67	74	81	89	98	107	116	127	138	149	-	-	-	-1	-1	_
22 1 4	5 R/P		22 19	24	26	29 25	33	36 32	41 36	46 41	52 46	58 51	65 57	73 63	70	76	84	92	101	=	_						_			_
	G	22	24	26	29	32	35	39	44	49	55	62	69	77	_	_	_	_	-	_	=	_	_	-1	_	-	_	-	-	_
. 25 1: 4	0 R/P	20	22	30	26 33	28 36	32 40	35 44	40 48	45 54	50 60	55 67	61 74	67 83	74	Ŗ1	89	.97	106	=	\equiv	_	=		=			\equiv		_
27 1: 3	7 R/P	22	23	25	28	30	34	38	43	47	53	58	64	70	77	84	92	101	110	_	-	_	-	-1	_	_	-	-	-	
	G	27	29	33	35 31	39	43 37	47	51	57 51	63 57	70 62	78 68	87 75	82	87	97	106	115	-	-	-	-	-	-	-	-	-	-	_
30 1: 3			26 33	28	39	43	47	51	46 56	62	68	75	84	93	-	0/	-	-	"	_	=	=	=	=		_		_	\equiv	=
,			1					,																						

Werte für Bremsart G in neuerer Ausgabe geringfügig geändert

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 53

7.3 Bremsvermögen

Bremsarten R/P und G

Bremsarten

Einteilungsbegriff für Druckluftbremsen der Eisenbahnfahrzeuge nach ihrer Wirkung

➢ Bremsart R/P

schnellwirkend (R = Rapid, P = Personen-Zug) Bremszyl.- Füllzeit: 3 - 5 [s]

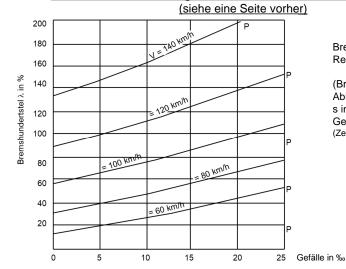
Lösezeit : 15 - 20 [s]

In Bremsart R/P gibt es Bremsstellung R für schnell fahrende Züge und Mg mit zusätzlicher Magnetschienenbremse

Bremsart G

Langsamwirkend (G = Güterzug) Bremszyl. - Füllzeit 18 - 30 [s] Lösezeit 45 - 60 [s]

Die Bremszylinderfüllzeiten werden künstlich verlängert. Dadurch verschlechtert sich zwar das Bremsvermögen, aber man erreicht einen stoßfreieren Verlauf der Bremsung über den ganzen Zug



7.3 Bremsvermögen

Berechnung der Bremswege

Grafische Darstellung der Bremstafel für 1000m Bremsweg

Bremstafel für 1000m Weg für Reisezüge und Güterzüge

(Bremshundertstel λ in % in Abhängigkeit des Gefälles s in $^{0}/_{00}$ für verschiedene Geschwindigkeiten) (Zentralamt Minden der DB)

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 54

TECHNISCHE UNIVERSITÄT

DARMSTADT

7.3 Bremsvermögen

Entleeren / Füllen Hauptluftleitung

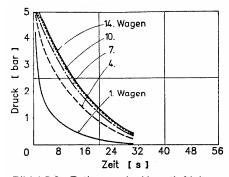


Bild 1.5.2: Entleeren der Hauptluftleitung eines Reisezuges mit Lok und 14 Wagen durch das Führerbremsventil; die Steuerventile sind abgeschaltet; Leitungsdurchmesser 1"

Quelle: SAUMWEBER, E; GERUM, E; BRENDT, P.J.: Grundlagen der Schienenfahrzeugbremse, AET (Archiv für Eisenbahntechnik) Heft 43, Hestra - Verlag

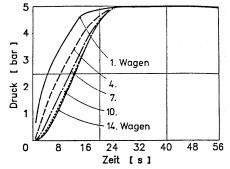



Bild 1.5.3: Füllen der leeren Hauptluftleitung eines Reisezuges mit Lok und 14 Wagen durch das Führerbremsventil Knort D12; die Steuerventile sind abgeschaltet; Leitungsdurchmesser 1"; der Knick im Druckverlauf des 1. Wagens bei 16 s und 4,6 bar rührt von der Charakteristik des Führerbremsventils

7.3 Bremsvermögen

Bremsprobe (1)

Nach der Zugbildung ist eine Bremsprobe durchzuführen

Zweck?

Feststellen, ob die Druckluft ungehindert bis zum Zugschluss gelangt und die absolute Gewissheit gegeben ist, dass alle eingeschalteten Bremsen vom Tfz-Führer bei vorschriftsmäßiger Bedienung des Führerbremsventils einwandfrei funktionieren.

Durch wen?

Von Bediensteten mit Befähigung zum "Bremsbeamten" (dafür gibt es spezielle staatliche Lehrgänge und Prüfungen) also z.B. Wagenuntersuchungsbeamte. Zugbegleitbeamte, Rangierbedienstete mit voller Befähigung zum Rangierleiter etc.

Wann?

Volle Bremsprobe, wenn:

- der Zug neu gebildet wurde
- die Bremsart des Zuges gewechselt wurde
- der Zug bei Temperaturen bis -12°C länger als 2 h
- der Zug bei Temperaturen unter -12°C länger als 1 h abgestellt war und in einigen Sonderfällen

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 57

Zusammenfassung

Bremse

- Bremsfunktion
- Bremsenbauarten
- Bremsvermögen

Bremsprobe (2)

Ablauf

- 1. Alle Druckluftbremsen auf den Wagen sind eingeschaltet, der HL-Druck ist abgesenkt
 - → Bremsen sind angelegt. Der Bremsbeamte steht vorne an der Lok.
- 2. Füllen der HL auf 5 kg/cm² = Lösen. Prüfung der durchgehenden Leitung und der Kupplungen, wobei der Bremsbeamte am Zug nach hinten geht; dabei akustisches Überprüfen auf Undichtigkeiten
- 3. Der Bremsbeamte gibt vom Zugschluss das Signal "Bremse anlegen". Der Tfz-Führer betätigt die Betriebsbremse (Luftauslass von 0,5 kg/cm²)
- 4. Der Bremsbeamte wartet am Zugschluss das Eintreten der Bremswirkung ab und geht nun am Zug nach vorne, wobei er das feste Anliegen der Bremsklötze an den Wagen überprüft.
- 5. Ist das der Fall, gibt er vorne den Befehl "Bremse lösen" und geht wieder am Zug zurück, wobei er prüft, ob die Bremsbacken alle gelöst sind.

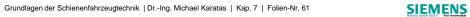
(Wird an einem Wagen ein Problem festgestellt, kann die Bremse dieses Wagens ausgeschaltet werden, was natürlich mit einer Reduzierung des Bremsvermögens des Zuges verbunden ist)

6. Zum Abschluss gibt der Bremsbeamte das Zeichen "Bremse in Ordnung" Eine volle Bremsprobe kann bei einem Güterzug mit z.B. 100 Achsen durchaus 35 min dauern. Es gibt Sonderregeln für vereinfachte Bremsprüfungen.

Grundlagen der Schienenfahrzeugtechnik | Dr.-Ing. Michael Karatas | Kap. 7 | Folien-Nr. 58

Überblick

- Einführung
- Zugförderung
- III. Wagenkasten
- IV. Fahrtechnik / Systemkinematik
- V. Komfort
- VI. Antrieb
- VII. Bremse



Grundlagen der Schienenfahrzeugtechnik

Quelle: Siemens

